簡易檢索 / 詳目顯示

研究生: Nigusu Tiruneh Temesgen
Nigusu Tiruneh Temesgen
論文名稱: 銅箔電流收集器表面改質和電解液製備之整合方法以抑制無陽極鋰金屬電池中的枝晶生長
An Integrated Approach of Copper Current Collector Surface Modification and Electrolyte Fabrication for Suppressing Dendrite Growth in Anode-Free Lithium Metal Battery
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-huang Wu
鄧熙聖
Hsisheng Teng
楊純誠
Chun-Chen Yang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 196
中文關鍵詞: 銀奈米顆粒無陽極介面兼容性雙層集電器鋰枝晶生長親鋰層
外文關鍵詞: Ag nanoparticles, Anode-free, Interface compatibility, Double-layered current collector, Li dendrite growth, Lithiophilic layer
相關次數: 點閱:354下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 商用鋰離子電池 (LIBs) 已廣泛用於攜帶式式電子設備和智能電網設備的能量儲存來源。然而,LIBs 無法滿足電動汽車和大規模存儲設備不斷增長的能源需求。鋰金屬負極的高能量密度和較低的氧化還原電位(-3.04 V vs. 標準氫電極,SHE),使得鋰金屬電池(LMBs)成為一種有前途的能源儲存裝置。不幸的是,由於鋰枝晶的形成、界面不穩定性、安全問題和劇烈的體積變化,LMBs 在過去 40 年實際應用受到了嚴重阻礙。為了克服這些挑戰並加快其應用,大量的研究工作取得了顯著進展。其中一種策略是在電流收集器上設計原位鍍鋰,通常稱為無陽極鋰金屬電池 (AFLMBs),不管在液體或固體電解質都能有效地利用鋰金屬的高理論容量。使用這種架構的電池具有幾個優點,容易製造、提高能量密度以及降低商業 LIBs 的電池成本。然而,與 LMBs 一樣,AFLMBs 配置仍然受到鋰枝晶生長和死鋰形成的影響,這主要源於銅的疏鋰和非均勻表面。因此,應設計適當的策略以實現無枝晶和長循環壽命的高效能 AFLMBs。
    在第一部分,電流收集器上的鋰枝晶和死鋰的形成阻礙了 AFLMBs 的實際應用。這些挑戰主要源於不均勻的鋰鍍層和脆弱的固體電解質界面(SEI),由粗糙的銅表面和常用的腐蝕性碳酸鹽電解質造成的。因此,我們成功地用聚多巴胺(Ag@P)包裹的合成銀納米顆粒和人工保護膜(APF)修飾了銅表面,引入具有功能雙層的界面。第一層的功用為鋰核種,用於均勻鋰成核和沈積。後者(PVDF-HFP/LiTFSI)包覆了沉積的鋰,以促進陰離子形成的緻密 SEI 膜,並大量減少新沉積的鋰造成後續的電解質分解。發現電流收集器上的雙層塗層銅能夠實現均勻且無枝晶形成。與純銅的96.18% 的 CE 和 25% 的容量保持率 (CR) 相比,具有雙層塗層銅和 NMC 陰極的無陽極電池在 70 次循環中保持了 98.15% 的出色庫侖效率 (CE)和容量保持率 (CR) 在相同的 0.2 mA cm-2 下進行循環。這些顯著的效能提升源於親鋰銀納米粒子的作用和陰離子衍生的堅固的富 LiF SEI 薄膜的生成。
    在第二部分中,我們設計了一種無溶劑方法,通過將硫銀鍺礦硫化物電解質(Li6PS5Cl, LPSC)加入共晶溶液(琥珀腈(SN)和鋰雙(三氟甲磺酰)亞胺 (LiTFSI) 與聚偏二氟乙烯 (PVDF) 黏著劑和 LiF 鹽添加劑一起,然後研磨複合材料一小時。新製備的 SCSE-4 的離子電導率為 1.59 mS cm-1,比僅能循環 200 小時的原始 LPSC (1.27 mS cm-1) 相比,在 0.2 mA cm-2 下顯示出高達 3000 小時的超長半電池循環性能,沒有短路現象的跡象。由 SCSE-4 組裝的無陽極電池和 NMC811 可以保持 30.12 mAh g-1 的容量,即使在 0.1 mA cm-2 下循環 40 次後,CE 也有望達到 96.45 %。
    最後一部分,有機液態電解質無陽極鋰金屬電池(AFLMBs)由於鋰枝晶生長和容量快速衰減問題,所以發展上受到嚴重限制。然而,隨著高安全性和耐用性儲能設備的需求不斷增加,電池研究逐漸轉向推廣固態電解質的 AFLMBs。因此,我們成功地證明了聚環氧乙烷(PEO)和銀溶液的可行性,即銅上的雙重保護塗層(Cu@Ag-PEO)與開發的硫化物摻入複合固態電解質(SCSE-4)配對以抑制鋰枝晶。根據結果所示,採用 SCSE-4 的電流收集器表現出相對光滑的表面且無枝晶型態。與穩定 340 小時的原始 LPSC 相比,有雙重保護層的銅和 SCSE-4 電解質的相互作用可以在半電池系統中實現超過 1600 小時的電鍍/剝離。無陽極全電池 (Cu@Ag-PEO||NMC811) 在 50 次循環後保持 41.4 mAh g-1 克電容量,庫侖效率 (CE) 為 96.2%。


    Commercial lithium (Li)-ion batteries (LIBs) have been extensively served as chemically stored energy sources for portable electronics and smart grid devices. However, LIBs are unable to fully satisfy the ever-increasing energy demand for electric vehicles and devices for large-scale storage. Thus, Li metal batteries (LMBs) appeared as a promising alternative owing to the high energy density and lower redox potential (-3.04 V vs. standard hydrogen electrode, SHE) of the Li-metal anode. Unfortunately, the real application of LMBs had been harshly hindered for the last forty years due to the persistent dendritic Li formation, interfacial instability, safety issues, and extreme volume variation. To overcome these challenges and speed up its application, tremendous research efforts were conducted and remarkable progress has been achieved. One of these strategies is designing in-situ plated Li on the current collector and usually called anode-free lithium metal batteries (AFLMBs) based on employing either liquid or solid electrolytes to use effectively the high theoretical capacity of in-situ plated Li metal circuitously. Constructing a battery with this architecture possesses several merits including ease of cell manufacturing, boosting energy density, and reducing cell cost over the commercial LIBs. However, like LMBs, AFLMBs configuration still suffered from Li dendrite growth and dead lithium formation, which primarily originated from lithiophobic and the non-homogenous surface of the bare copper (bare Cu). Thus, appropriate strategies should be designed in order to realize dendrite-free and long cycle life high-energy AFLMBs.
    In the first part, Li dendrite and dead Li formation on the current collector hindered AFLMBs from practical applications. These challenges were mainly derived from the inhomogeneous Li plating and flimsy solid electrolyte interface (SEI) due to the rough bare Cu surface and commonly used corrosive carbonate electrolytes. Hence, we successfully modified the bare Cu surface with synthesized Ag nanoparticles wrapped with polydopamine (Ag@P) and an artificial protection film (APF) to introduce an interface with functional double-layers. The first layer serves as Li-seeds for uniform Li nucleation and deposition. The latter (PVDF-HFP/LiTFSI) encapsulates the deposited Li to promote the formation of an anion-derived compact SEI film and minimize the inevitable electrolyte decomposition with freshly deposited Li. It is found that the double-layer coating on the current collector enables homogenous and dendrite-free morphology. The anode-free cell with double layer-coated copper and NMC cathode maintained a superior coulombic efficiency (CE) of 98.15% over 70 cycles at 40% capacity retention (CR) compared to the CE of 96.18% and CR of 40% after 25 cycles using bare Cu under same 0.2 mA cm2. These prominent achievements stem from the synergetic role of the lithiophilic Ag nanoparticles and the generation of an anion-derived robust LiF-rich SEI film.
    In the second part, we designed effectively a solvent-free approach to fabricate air-stable and deformable Sulfide inclusive composite solid electrolyte (SCSE-4) by incorporating lithium argyrodite (Li6PS5Cl, LPSC) into a eutectic solution (succinonitrile (SN) and lithium bis (trifluoromethanesulfonyl)imide (LiTFSI) together with polyvinylidene fluoride (PVDF) binder and LiF salt additive, then shearing the composite for an hour. The new prepared SCSE-4 demonstrated better ionic conductivity of 1.59 mS cm-1 than pristine LPSC (1.27 mS cm-1), revealing ultra-long half-cell cycling performance up to 3000 h at 0.2 mA cm-2 with no sign of short circuit phenomena as compared with pristine LPSC cycled only 200 h. An anode-free battery assembled from SCSE-4 and NMC811 can maintain a retention capacity of 30.12 mAh g-1 with a promising CE of 96.45 % after 40 cycles even at a 0.1 mA cm-2.
    In the last part, the progress of anode-free lithium metal batteries (AFLMBs) using organic liquid electrolytes is severely restricted due to Li dendrite growth and rapid capacity fading. However, the increasing demand for higher safety and durable storage device pushes the battery studies toward solid electrolyte-based AFLMBs. Thus, we demonstrated successfully the feasibility of polyethylene oxide (PEO) and Ag solution i.e. double protective coating on copper (Cu@Ag-PEO) paired with developed sulfide incorporated composite solid electrolyte (SCSE-4) toward Li dendrite suppression. As a result, the advanced current collector configured with SCSE-4 exhibited a relatively smooth surface with dendrite-free morphology. The mutual roles of double-layered Cu and the prepared SCSE-4 electrolyte can enable plating/stripping for over 1600 h in half cell configuration in comparison with pristine LPSC, which is only stable for 340 h. Anode-free full cell (Cu@Ag-PEO||NMC811) retained 41.4 mAh g-1 specific capacity with coulombic efficiency (CE) of 96.2% after 50 cycles.

    摘要 vi Abstract viii Acknowledgement xii Chapter 1. Introduction to Energy Sources 1 1.1. Non-Renewable Energy Sources 1 1.2. Alternative Renewable Energy Resources 2 1.3. Development of Batteries 3 1.3.1. Cathode Materials 6 1.3.2. Anode (Negative) Electrode Materials 7 1.3.3. Electrolytes 10 Chapter 2. Opportunities, Challenges, and Strategies of Rechargeable Lithium Metal Batteries 13 2.1. Lithium Metal Batteries (LMBs) 13 2.2. Challenges of Li Metal as Anode Materials 13 2.3. Side Effects of Li Dendrite Growth 14 2.4. Li Dendrite and Dead Li Characterization Tools 15 2.5. Possible Strategies to Apply Lithium Metal as Anodes 16 2.5.1. Lithium Salts 17 2.5.2. Electrolyte Solvents 18 2.5.3. Electrolyte Additives 19 2.5.6. Composite Solid Electrolytes 24 2.5.7. Surface Architecture 26 2.6. The Progress of Anode-Free Lithium Batteries 33 2.7. Motivation and Objectives of the Study 44 2.7.1. Motivation 44 2.7.2. Objectives 45 Chapter 3. Experiment, Electrochemical Measurement and Characterization 47 3.1. Chemicals and Reagents 47 3.2. Experimental Section 49 3.2.1. Silver Nanoparticle Preparations 49 3.2.2. Procedure for Coating Polydopamine on Silver Nanoparticles (Ag@P) 49 3.2.3. The Preparation of an Artificial Protection Film (APF) 49 50 3.2.4. Preparations of Ag@P and APF Coated Copper 50 3.2.5. Silver Solution Preparation 51 3.2.7. Copper treatment 52 3.2.8. Lithium treatment 52 3.2.9. LiNi0.8Co0.1Mn0.1O2 (NMC811) cathode composites 52 3.3. Fabrication of Sulfide Incorporated Composite Solid Electrolytes 53 3.5. Materials Characterization 56 3.6. Density Functional Theory Computational Details 58 Chapter 4. Mitigating Dendrite Formation and Electrolyte Decomposition via Functional Double Layer Coating on Copper Current Collector in Anode-Free Lithium Metal Battery 59 4.1. Introduction 59 4.2. Results and Discussion 61 4.2.1. Characterization of the Synthesized AgNPs and Ag@P 61 4.2.2. Mechanical Strength and Thermal Stability of APF 62 4.2.3. Ionic Conductivity and Swelling Behavior of APF 65 4.2.4. Effects of Coating Layers on the Morphology of Anode Electrodes 68 4.2.5. Nucleation Overpotential and Alloying 70 4.2.6. Effects of Double Coating on Cycling Stability 72 4.2.7. Effects of Coating on Lithium Electrodeposition Morphology 79 4.2.8. Post-Mortem Interface Analysis of Bare and Modified Copper Electrodes 82 4.3. Summary 87 Chapter 5. 89 5.1. Introduction 89 5.2. Results and discussion 92 5.2.1. Characterization of the Fabricated Sulfide Incorporated Composite Solid Electrolytes 92 5.2.2. Air Stability and Conductivity 96 5.2.3. Stability and Li Dendrite Suppression 100 5.3. Summary 116 Chapter 6. Suppressing Dendrite Growth using Double-Layer Modified Copper and Composite Sulfide Solid Electrolyte in Anode-Free Lithium Metal Battery 118 6.1. Introduction 118 6.2. Results and Discussion 120 6.2.1. Cu@Ag-PEO Morphology and Phase Characterization 120 6.3.2. Electrochemical Performance Assessment 122 6.3.3. Surface Morphology and Interphase Evaluation 125 6.3. Summary 129 Chapter 7. Conclusions and Future Perspectives 131 7.1. Conclusions 131 7.2. Future Perspectives 133 References 135

    [1] R.A. Salim, K. Hassan, S. Shafiei, Renewable and non-renewable energy consumption and economic activities: Further evidence from OECD countries, Energy Econ., 44 (2014) 350-360.
    [2] U. Bulut, P. Research, The impacts of non-renewable and renewable energy on CO2 emissions in Turkey, Environ Sci Pollut Res, 24 (2017) 15416-15426.
    [3] J. Rogelj, M. Den Elzen, N. Höhne, T. Fransen, H. Fekete, H. Winkler, R. Schaeffer, F. Sha, K. Riahi, M. Meinshausen, Paris Agreement climate proposals need a boost to keep warming well below 2 C, Nature, 534 (2016) 631-639.
    [4] S. Gawusu, X. Zhang, A. Ahmed, S.A. Jamatutu, E.D. Miensah, A.A. Amadu, F.A.J. Osei, Renewable energy sources from the perspective of blockchain integration: From theory to application, Sustain. Energy Technol. Assess., 52 (2022) 102108.
    [5] M. Cheng, Y. Zhu, management, The state of the art of wind energy conversion systems and technologies: A review, Energy Convers. Manag., 88 (2014) 332-347.
    [6] F.M. Guangul, G.T. Chala, Solar energy as renewable energy source: SWOT analysis, 2019 4th MEC international conference on big data and smart city (ICBDSC), IEEE, 2019, pp. 1-5.
    [7] J. Zimny, P. Michalak, S. Bielik, K. Szczotka, Directions in development of hydropower in the world, in Europe and Poland in the period 1995–2011, Renew. Sust. Energ. Rev., 21 (2013) 117-130.
    [8] I. Yüksel, Hydropower for sustainable water and energy development, Renew. Sust. Energ. Rev., 14 (2010) 462-469.
    [9] E. Barbier, Geothermal energy technology and current status: an overview, Renew. Sust. Energ. Rev., 6 (2002) 3-65.
    [10] R.J. Brodd, K.R. Bullock, R.A. Leising, R.L. Middaugh, J.R. Miller, E. Takeuchi, Batteries, 1977 to 2002, J. Electrochem. Soc., 151 (2004) K1.
    [11] H.D. Abruna, Y. Kiya, J.C. Henderson, Batteries and electrochemical capacitors, Phys. Today, 61 (2008) 43-47.
    [12] B. Scrosati, History of lithium batteries, J. Solid State Electrochem., 15 (2011) 1623-1630.
    [13] C. Morehouse, R. Glicksman, G. Lozier, Batteries, Proc. IRE, 46 (1958) 1462-1483.
    [14] J.-K. Park, Principles and applications of lithium secondary batteries, John Wiley & Sons2012.
    [15] Y. Meesala, A. Jena, H. Chang, R.-S. Liu, Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries, ACS Energy Lett., 2 (2017) 2734-2751.
    [16] P. Kurzweil, Gaston Planté and his invention of the lead–acid battery—The genesis of the first practical rechargeable battery, J. Power Sources, 195 (2010) 4424-4434.
    [17] Y. Tang, Y. Zhang, X. Rui, D. Qi, Y. Luo, W.R. Leow, S. Chen, J. Guo, J. Wei, W. Li, Conductive inks based on a lithium titanate nanotube gel for high‐rate lithium‐ion batteries with customized configuration, Adv. Mater., 28 (2016) 1567-1576.
    [18] Y. Zhang, O.I. Malyi, Y. Tang, J. Wei, Z. Zhu, H. Xia, W. Li, J. Guo, X. Zhou, Z. Chen, Reducing the charge carrier transport barrier in functionally layer‐graded electrodes, Angew. Chem., 129 (2017) 15043-15048.
    [19] H.-M. Cheng, F.-M. Wang, J.P. Chu, R. Santhanam, J. Rick, S.-C. Lo, Enhanced cycleabity in lithium ion batteries: Resulting from atomic layer depostion of Al2O3 or TiO2 on LiCoO2 electrodes, J. Phys. Chem. C, 116 (2012) 7629-7637.
    [20] H. Xia, Z. Luo, J. Xie, Nanostructured LiMn2O4 and their composites as high-performance cathodes for lithium-ion batteries, Prog. Nat. Sci., 22 (2012) 572-584.
    [21] X. Tian, W. Chen, Z. Jiang, Z.-J. Jiang, Porous carbon-coated LiFePO4 nanocrystals prepared by in situ plasma-assisted pyrolysis as superior cathode materials for lithium ion batteries, Ionics, 26 (2020) 2715-2726.
    [22] V. Aravindan, Y.S. Lee, S. Madhavi, Research progress on negative electrodes for practical Li‐ion batteries: beyond carbonaceous anodes, Adv. Energy Mater., 5 (2015) 1402225.
    [23] S.-K. Jeong, M. Inaba, T. Abe, Z. Ogumi, Surface film formation on graphite negative electrode in lithium-ion batteries: AFM study in an ethylene carbonate-based solution, J. Electrochem. Soc., 148 (2001) A989.
    [24] A.M. Haregewoin, A.S. Wotango, B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy Environ. Sci., 9 (2016) 1955-1988.
    [25] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, J. Power Sources, 257 (2014) 421-443.
    [26] J. Zhao, G. Zhou, K. Yan, J. Xie, Y. Li, L. Liao, Y. Jin, K. Liu, P.-C. Hsu, J. Wang, Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes, Nat. Nanotechnol., 12 (2017) 993-999.
    [27] X. Gu, J. Dong, C. Lai, Li‐containing alloys beneficial for stabilizing lithium anode: A review, Eng. Reports, 3 (2021) e12339.
    [28] L. Wang, Z. Zhou, X. Yan, F. Hou, L. Wen, W. Luo, J. Liang, S.X. Dou, Engineering of lithium-metal anodes towards a safe and stable battery, Energy Storage Materials, 14 (2018) 22-48.
    [29] K. Zhang, G.H. Lee, M. Park, W. Li, Y.M. Kang, Recent developments of the lithium metal anode for rechargeable non‐aqueous batteries, Adv. Energy Mater., 6 (2016) 1600811.
    [30] X. Zhang, Y. Yang, Z. Zhou, Towards practical lithium-metal anodes, Chem. Soc. Rev., 49 (2020) 3040-3071.
    [31] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7 (2014) 513-537.
    [32] J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater., 22 (2010) 587-603.
    [33] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy Environ. Sci., 7 (2014) 3857-3886.
    [34] P. Arora, Z. Zhang, Battery separators, Chem. Rev., 104 (2004) 4419-4462.
    [35] C.F. Francis, I.L. Kyratzis, A.S. Best, Lithium‐ion battery separators for ionic‐liquid electrolytes: a review, Adv. Mater., 32 (2020) 1904205.
    [36] V. Deimede, C. Elmasides, Separators for lithium‐ion batteries: a review on the production processes and recent developments, Energy Technol., 3 (2015) 453-468.
    [37] B. Liu, J.-G. Zhang, W. Xu, Advancing lithium metal batteries, Joule, 2 (2018) 833-845.
    [38] C. Fang, X. Wang, Y.S. Meng, Key issues hindering a practical lithium-metal anode, Trends Chem., 1 (2019) 152-158.
    [39] A. Kraytsberg, Y. Ein-Eli, Review on Li–air batteries—Opportunities, limitations and perspective, J. Power Sources, 196 (2011) 886-893.
    [40] R. Demir-Cakan, M. Morcrette, A. Guéguen, R. Dedryvère, J.-M. Tarascon, Li–S batteries: simple approaches for superior performance, Energy Environ. Sci., 6 (2013) 176-182.
    [41] L. Zhang, C. Zhu, S. Yu, D. Ge, H. Zhou, Status and challenges facing representative anode materials for rechargeable lithium batteries, J. Energy Chem., 66 (2022) 260-294.
    [42] C.A. Vincent, Lithium batteries: a 50-year perspective, 1959–2009, Solid State Ion, 134 (2000) 159-167.
    [43] N. Naoki, W. Feixiang, L. Tae, Y. Gleb, A new cathode material for batteries of high-energy density, Mater. Today, 18 (2015) 252-264.
    [44] R. Bhattacharyya, B. Key, H. Chen, A.S. Best, A.F. Hollenkamp, C.P. Grey, In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries, Nat. Mater., 9 (2010) 504-510.
    [45] D. Lu, Y. Shao, T. Lozano, W.D. Bennett, G.L. Graff, B. Polzin, J. Zhang, M.H. Engelhard, N.T. Saenz, W.A. Henderson, Failure mechanism for fast‐charged lithium metal batteries with liquid electrolytes, Adv. Energy Mater., 5 (2015) 1400993.
    [46] X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review, Chem. Rev., 117 (2017) 10403-10473.
    [47] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12 (2017) 194-206.
    [48] J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, High-performance anode materials for rechargeable lithium-ion batteries, Electrochem. Energy Rev., 1 (2018) 35-53.
    [49] J.Y. Huang, L. Zhong, C.M. Wang, J.P. Sullivan, W. Xu, L.Q. Zhang, S.X. Mao, N.S. Hudak, X.H. Liu, A. Subramanian, In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode, Science, 330 (2010) 1515-1520.
    [50] Y. Yao, M.T. McDowell, I. Ryu, H. Wu, N. Liu, L. Hu, W.D. Nix, Y. Cui, Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano Lett., 11 (2011) 2949-2954.
    [51] K.J. Harry, D.T. Hallinan, D.Y. Parkinson, A.A. MacDowell, N.P. Balsara, Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes, Nat. Mater., 13 (2014) 69-73.
    [52] J.H. Um, K. Kim, J. Park, Y.-E. Sung, S.-H. Yu, Revisiting the strategies for stabilizing lithium metal anodes, J. Mater. Chem. A, 8 (2020) 13874-13895.
    [53] A. Mauger, C. Julien, A. Paolella, M. Armand, K. Zaghib, A comprehensive review of lithium salts and beyond for rechargeable batteries: Progress and perspectives, Mater. Sci. Eng. R Rep., 134 (2018) 1-21.
    [54] B.S. Parimalam, B.L. Lucht, Reduction reactions of electrolyte salts for lithium ion batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI, J. Electrochem. Soc., 165 (2018) A251.
    [55] H. Yang, G.V. Zhuang, P.N. Ross Jr, Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6, J. Power Sources, 161 (2006) 573-579.
    [56] B. Philippe, R.m. Dedryvère, M. Gorgoi, H.k. Rensmo, D. Gonbeau, K. Edström, Role of the LiPF6 salt for the long-term stability of silicon electrodes in Li-ion batteries–A photoelectron spectroscopy study, Chem. Mater., 25 (2013) 394-404.
    [57] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 104 (2004) 4303-4418.
    [58] S. Hess, M. Wohlfahrt-Mehrens, M. Wachtler, Flammability of Li-ion battery electrolytes: flash point and self-extinguishing time measurements, J. Electrochem. Soc., 162 (2015) A3084.
    [59] S.S. Zhang, A review on electrolyte additives for lithium-ion batteries, J. Power Sources, 162 (2006) 1379-1394.
    [60] W.A. Tegegne, M.L. Mekonnen, A.B. Beyene, W.-N. Su, B.-J. Hwang, Sensitive and reliable detection of deoxynivalenol mycotoxin in pig feed by surface enhanced Raman spectroscopy on silver nanocubes@ polydopamine substrate, Spectrochim. Acta A Mol. Biomol. Spectrosc., 229 (2020) 117940.
    [61] K. Kanamura, S. Shiraishi, Z.i. Takehara, Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF, J. Electrochem. Soc., 143 (1996) 2187.
    [62] Y. Lu, Z. Tu, L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nat. Mater., 13 (2014) 961-969.
    [63] D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider, On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochim. acta, 47 (2002) 1423-1439.
    [64] Y. Qian, P. Niehoff, M. Börner, M. Grützke, X. Mönnighoff, P. Behrends, S. Nowak, M. Winter, F.M. Schappacher, Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode, J. power sources, 329 (2016) 31-40.
    [65] C. Yan, Y.X. Yao, X. Chen, X.B. Cheng, X.Q. Zhang, J.Q. Huang, Q. Zhang, Lithium nitrate solvation chemistry in carbonate electrolyte sustains high‐voltage lithium metal batteries, Angew. Chem., 130 (2018) 14251-14255.
    [66] M. Hu, J. Wei, L. Xing, Z. Zhou, Effect of lithium difluoro (oxalate) borate (LiDFOB) additive on the performance of high-voltage lithium-ion batteries, J. Appl. Electrochem., 42 (2012) 291-296.
    [67] B. Horstmann, J. Shi, R. Amine, M. Werres, X. He, H. Jia, F. Hausen, I. Cekic-Laskovic, S. Wiemers-Meyer, J. Lopez, Strategies towards enabling lithium metal in batteries: interphases and electrodes, Energy Environ. Sci., 14 (2021) 5289-5314.
    [68] D. Zhou, D. Shanmukaraj, A. Tkacheva, M. Armand, G. Wang, Polymer electrolytes for lithium-based batteries: advances and prospects, Chem, 5 (2019) 2326-2352.
    [69] S.B. Aziz, Li+ ion conduction mechanism in poly (ε-caprolactone)-based polymer electrolyte, Iran. Polym. J., 22 (2013) 877-883.
    [70] R. Chen, W. Qu, X. Guo, L. Li, F. Wu, The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons, Mater. Horizons, 3 (2016) 487-516.
    [71] C. Daniel, Materials and processing for lithium-ion batteries, Jom, 60 (2008) 43-48.
    [72] Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors, Nat. Energy, 1 (2016) 1-7.
    [73] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A lithium superionic conductor, Nat. Mater., 10 (2011) 682-686.
    [74] J. Lee, K. Lee, T. Lee, H. Kim, K. Kim, W. Cho, A. Coskun, K. Char, J.W. Choi, In situ deprotection of polymeric binders for solution‐processible sulfide‐based all‐solid‐state batteries, Adv. Mater., 32 (2020) 2001702.
    [75] M. Yang, Y. Liu, A.M. Nolan, Y. Mo, Interfacial Atomistic Mechanisms of Lithium Metal Stripping and Plating in Solid‐State Batteries, Adv. Mater., 33 (2021) 2008081.
    [76] G. Xi, M. Xiao, S. Wang, D. Han, Y. Li, Y. Meng, Polymer‐Based Solid Electrolytes: Material Selection, Design, and Application, Adv. Funct. Mater., 31 (2021) 2007598.
    [77] K. Zhu, C. Wang, Z. Chi, F. Ke, Y. Yang, A. Wang, W. Wang, L. Miao, How far away are lithium-sulfur batteries from commercialization?, Front. Energy Res., (2019) 123.
    [78] D.H. Tan, A. Banerjee, Z. Deng, E.A. Wu, H. Nguyen, J.-M. Doux, X. Wang, J.-h. Cheng, S.P. Ong, Y.S. Meng, Enabling thin and flexible solid-state composite electrolytes by the scalable solution process, ACS Appl. Energy Mater., 2 (2019) 6542-6550.
    [79] B.W. Taklu, W.-N. Su, Y. Nikodimos, K. Lakshmanan, N.T. Temesgen, P.-X. Lin, S.-K. Jiang, C.-J. Huang, D.-Y. Wang, H.-S. Sheu, Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries, Nano Energy, 90 (2021) 106542.
    [80] Y. Lee, J. Jeong, H.J. Lee, M. Kim, D. Han, H. Kim, J.M. Yuk, K.-W. Nam, K.Y. Chung, H.-G. Jung, Lithium Argyrodite Sulfide Electrolytes with High Ionic Conductivity and Air Stability for All-Solid-State Li-Ion Batteries, ACS Energy Lett., 7 (2021) 171-179.
    [81] Z. Ding, J. Li, J. Li, C. An, Interfaces: Key issue to be solved for all solid-state lithium battery technologies, J. Electrochem. Soc., 167 (2020) 070541.
    [82] A. Sakuda, A. Hayashi, M. Tatsumisago, Interfacial observation between LiCoO2 electrode and Li2S− P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy, Chem. Mater., 22 (2010) 949-956.
    [83] Z.-J. Zhang, S.-L. Chou, Q.-F. Gu, H.-K. Liu, H.-J. Li, K. Ozawa, J.-Z. Wang, Enhancing the high rate capability and cycling stability of LiMn2O4 by coating of solid-state electrolyte LiNbO3, ACS Appl. Mater. Interfaces, 6 (2014) 22155-22165.
    [84] S.H. Jung, K. Oh, Y.J. Nam, D.Y. Oh, P. Brüner, K. Kang, Y.S. Jung, Li3BO3–Li2CO3: rationally designed buffering phase for sulfide all-solid-state Li-ion batteries, Chem. Mater., 30 (2018) 8190-8200.
    [85] K.H. Park, Q. Bai, D.H. Kim, D.Y. Oh, Y. Zhu, Y. Mo, Y.S. Jung, Design strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all‐solid‐state batteries, Adv. Energy Mater., 8 (2018) 1800035.
    [86] F. Lv, Z. Wang, L. Shi, J. Zhu, K. Edström, J. Mindemark, S. Yuan, Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries, J. Power Sources, 441 (2019) 227175.
    [87] L. Liu, D. Zhang, X. Xu, Z. Liu, J. Liu, Challenges and Development of Composite Solid Electrolytes for All-solid-state Lithium Batteries, Chem. Res. Chin. Univ., 37 (2021) 210-231.
    [88] R. Agrawal, G. Pandey, Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview, J. Phys. D, 41 (2008) 223001.
    [89] F. Croce, G. Appetecchi, L. Persi, B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries, Nature, 394 (1998) 456-458.
    [90] W. Wieczorek, Z. Florjanczyk, J. Stevens, Composite polyether based solid electrolytes, Electrochim. Acta, 40 (1995) 2251-2258.
    [91] W. Wieczorek, J. Stevens, Z. Florjańczyk, Composite polyether based solid electrolytes. The Lewis acid-base approach, Solid State Ion, 85 (1996) 67-72.
    [92] F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, M. Hendrickson, Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes, Electrochim. Acta, 46 (2001) 2457-2461.
    [93] X. Ban, W. Zhang, N. Chen, C. Sun, A high-performance and durable poly (ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery, J. Phys. Chem. C, 122 (2018) 9852-9858.
    [94] X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu, Y. Lin, B. Xu, L. Li, C.-W. Nan, Y. Shen, Synergistic coupling between Li6. 75La3Zr1. 75Ta0. 25O12 and poly (vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes, J. Am. Chem. Soc., 139 (2017) 13779-13785.
    [95] Y.-C. Jung, S.-M. Lee, J.-H. Choi, S.S. Jang, D.-W. Kim, All solid-state lithium batteries assembled with hybrid solid electrolytes, J. Electrochem. Soc., 162 (2015) A704.
    [96] N.A. Sahalie, Z.T. Wondimkun, W.-N. Su, M.A. Weret, F.W. Fenta, G.B. Berhe, C.-J. Huang, Y.-C. Hsu, B.J. Hwang, Multifunctional properties of Al2O3/polyacrylonitrile composite coating on Cu to suppress dendritic growth in anode-free Li-metal battery, ACS Appl. Energy Mater., 3 (2020) 7666-7679.
    [97] H. Wang, H. Huang, S.L. Wunder, Novel microporous poly (vinylidene fluoride) blend electrolytes for lithium‐ion batteries, J. Electrochem. Soc., 147 (2000) 2853.
    [98] G. Homann, L. Stolz, J. Nair, I.C. Laskovic, M. Winter, J. Kasnatscheew, Poly (ethylene oxide)-based electrolyte for solid-state-lithium-batteries with high voltage positive electrodes: evaluating the role of electrolyte oxidation in rapid cell failure, Sci. Rep., 10 (2020) 1-9.
    [99] R. Xu, X.Q. Zhang, X.B. Cheng, H.J. Peng, C.Z. Zhao, C. Yan, J.Q. Huang, Artificial soft–rigid protective layer for dendrite‐free lithium metal anode, Adv. Funct. Mater., 28 (2018) 1705838.
    [100] C.-P. Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li, Y.-G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes, Nat. Commun., 6 (2015) 1-9.
    [101] Y. Shi, Z. Wang, H. Gao, J. Niu, W. Ma, J. Qin, Z. Peng, Z. Zhang, A self-supported, three-dimensional porous copper film as a current collector for advanced lithium metal batteries, J. Mater. Chem. A, 7 (2019) 1092-1098.
    [102] C. Yang, Y. Yao, S. He, H. Xie, E. Hitz, L. Hu, Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode, Advanced materials, 29 (2017) 1702714.
    [103] Z. Hou, Y. Yu, W. Wang, X. Zhao, Q. Di, Q. Chen, W. Chen, Y. Liu, Z. Quan, Lithiophilic Ag nanoparticle layer on Cu current collector toward stable Li metal anode, ACS Appl. Mater. Interfaces, 11 (2019) 8148-8154.
    [104] A.A. Assegie, J.-H. Cheng, L.-M. Kuo, W.-N. Su, B.-J. Hwang, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery, Nanoscale, 10 (2018) 6125-6138.
    [105] F. Shen, K. Wang, Y. Yin, L. Shi, D. Zeng, X. Han, PAN/PI functional double-layer coating for dendrite-free lithium metal anodes, J. Mater. Chem. A, 8 (2020) 6183-6189.
    [106] X. Li, Y. Liu, Y. Pan, M. Wang, J. Chen, H. Xu, Y. Huang, W.M. Lau, A. Shan, J. Zheng, A functional SrF 2 coated separator enabling a robust and dendrite-free solid electrolyte interphase on a lithium metal anode, J. Mater. Chem. A, 7 (2019) 21349-21361.
    [107] H. Duan, Y.-X. Yin, Y. Shi, P.-F. Wang, X.-D. Zhang, C.-P. Yang, J.-L. Shi, R. Wen, Y.-G. Guo, L.-J. Wan, Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers, J. Am. Chem. Soc., 140 (2018) 82-85.
    [108] Q. Li, S. Zhu, Y. Lu, 3D porous Cu current collector/Li‐metal composite anode for stable lithium‐metal batteries, Adv. Funct. Mater., 27 (2017) 1606422.
    [109] T.T. Beyene, B.A. Jote, Z.T. Wondimkun, B.W. Olbassa, C.-J. Huang, B. Thirumalraj, C.-H. Wang, W.-N. Su, H. Dai, B.-J. Hwang, Effects of concentrated salt and resting protocol on solid electrolyte interface formation for improved cycle stability of anode-free lithium metal batteries, ACS Appl. Mater. Interfaces, 11 (2019) 31962-31971.
    [110] L.-L. Lu, J. Ge, J.-N. Yang, S.-M. Chen, H.-B. Yao, F. Zhou, S.-H. Yu, Free-standing copper nanowire network current collector for improving lithium anode performance, Nano Lett., 16 (2016) 4431-4437.
    [111] J. Pu, J. Li, K. Zhang, T. Zhang, C. Li, H. Ma, J. Zhu, P.V. Braun, J. Lu, H. Zhang, Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits, Nat. Commun., 10 (2019) 1-10.
    [112] K. Huang, Z. Li, Q. Xu, H. Liu, H. Li, Y. Wang, Lithiophilic cuo nanoflowers on Ti‐mesh inducing lithium lateral plating enabling stable lithium‐metal anodes with ultrahigh rates and ultralong cycle life, Adv. Energy Mater., 9 (2019) 1900853.
    [113] R. Guan, S. Liu, C. Wang, Y. Yang, D. Lu, X. Bian, Lithiophilic Sn sites on 3D Cu current collector induced uniform lithium plating/stripping, Chem. Eng. J., 425 (2021) 130177.
    [114] C. Zhang, R. Lyu, W. Lv, H. Li, W. Jiang, J. Li, S. Gu, G. Zhou, Z. Huang, Y. Zhang, A lightweight 3D Cu nanowire network with phosphidation gradient as current collector for high‐density nucleation and stable deposition of lithium, Adv. Mater., 31 (2019) 1904991.
    [115] W. Liu, P. Liu, D. Mitlin, Tutorial review on structure–dendrite growth relations in metal battery anode supports, Chem. Soc. Rev., 49 (2020) 7284-7300.
    [116] Y. Liu, S. Zhang, X. Qin, F. Kang, G. Chen, B. Li, In-plane highly dispersed Cu2O nanoparticles for seeded lithium deposition, Nano Lett., 19 (2019) 4601-4607.
    [117] Y. Ma, Y. Gu, Y. Yao, H. Jin, X. Zhao, X. Yuan, Y. Lian, P. Qi, R. Shah, Y. Peng, Alkaliphilic Cu 2 O nanowires on copper foam for hosting Li/Na as ultrastable alkali-metal anodes, J. Mater. Chem. A, 7 (2019) 20926-20935.
    [118] G. Wang, X. Xiong, P. Zou, X. Fu, Z. Lin, Y. Li, Y. Liu, C. Yang, M. Liu, Lithiated zinc oxide nanorod arrays on copper current collectors for robust Li metal anodes, Chem. Eng. J., 378 (2019) 122243.
    [119] X. Huang, X. Feng, B. Zhang, L. Zhang, S. Zhang, B. Gao, P.K. Chu, K. Huo, Lithiated NiCo2O4 nanorods anchored on 3D nickel foam enable homogeneous Li plating/stripping for high-power dendrite-free lithium metal anode, ACS Appl. Mater. Interfaces, 11 (2019) 31824-31831.
    [120] Y. Li, W. Arnold, A. Thapa, J.B. Jasinski, G. Sumanasekera, M. Sunkara, T. Druffel, H. Wang, Stable and flexible sulfide composite electrolyte for high-performance solid-state lithium batteries, ACS Appl. Mater. Interfaces, 12 (2020) 42653-42659.
    [121] C. Wang, X.-W. Zhang, A.J. Appleby, Solvent-free composite PEO-ceramic fiber/mat electrolytes for lithium secondary cells, J. Electrochem. Soc., 152 (2004) A205.
    [122] L. Wang, Q. Wang, W. Jia, S. Chen, P. Gao, J. Li, Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries, J. Power Sources, 342 (2017) 175-182.
    [123] J. Luo, C.C. Fang, N.L. Wu, High polarity poly (vinylidene difluoride) thin coating for dendrite‐free and high‐performance lithium metal anodes, Adv. Energy Mater., 8 (2018) 1701482.
    [124] N. Wu, Q. Cao, X. Wang, X. Li, H. Deng, A novel high-performance gel polymer electrolyte membrane basing on electrospinning technique for lithium rechargeable batteries, J. Power Sources, 196 (2011) 8638-8643.
    [125] L.H. Abrha, T.A. Zegeye, T.T. Hagos, H. Sutiono, T.M. Hagos, G.B. Berhe, C.-J. Huang, S.-K. Jiang, W.-N. Su, Y.-W. Yang, Li7La2. 75Ca0. 25Zr1. 75Nb0. 25O12@ LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery, Electrochim. Acta, 325 (2019) 134825.
    [126] T.A. Zegeye, W.-N. Su, F.W. Fenta, T.S. Zeleke, S.-K. Jiang, B.J. Hwang, Ultrathin Li6. 75La3Zr1. 75Ta0. 25O12-Based Composite Solid Electrolytes Laminated on Anode and Cathode Surfaces for Anode-free Lithium Metal Batteries, ACS Appl. Energy Mater., 3 (2020) 11713-11723.
    [127] Z. Hu, S. Zhang, S. Dong, W. Li, H. Li, G. Cui, L. Chen, Poly (ethyl α-cyanoacrylate)-based artificial solid electrolyte interphase layer for enhanced interface stability of Li metal anodes, Chem. Mater., 29 (2017) 4682-4689.
    [128] Y. Liu, D. Lin, P.Y. Yuen, K. Liu, J. Xie, R.H. Dauskardt, Y. Cui, An artificial solid electrolyte interphase with high Li‐ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes, Adv. Mater., 29 (2017) 1605531.
    [129] C. Wang, K.R. Adair, J. Liang, X. Li, Y. Sun, X. Li, J. Wang, Q. Sun, F. Zhao, X. Lin, Solid‐state plastic crystal electrolytes: effective protection interlayers for sulfide‐based all‐solid‐state lithium metal batteries, Adv. Funct. Mater., 29 (2019) 1900392.
    [130] X. Yao, N. Huang, F. Han, Q. Zhang, H. Wan, J.P. Mwizerwa, C. Wang, X. Xu, High‐performance all‐solid‐state lithium–sulfur batteries enabled by amorphous sulfur‐coated reduced graphene oxide cathodes, Adv. Energy Mater., 7 (2017) 1602923.
    [131] M. Weiss, F.J. Simon, M.R. Busche, T. Nakamura, D. Schröder, F.H. Richter, J. Janek, From liquid-to solid-state batteries: ion transfer kinetics of heteroionic interfaces, Electrochem. Energy Rev., 3 (2020) 221-238.
    [132] A. Jena, Y. Meesala, S.-F. Hu, H. Chang, R.-S. Liu, Ameliorating interfacial ionic transportation in all-solid-state Li-ion batteries with interlayer modifications, ACS Energy Lett., 3 (2018) 2775-2795.
    [133] Z. Zhang, S. Chen, J. Yang, J. Wang, L. Yao, X. Yao, P. Cui, X. Xu, Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life, ACS Appl. Mater. Interfaces, 10 (2018) 2556-2565.
    [134] Y. Chen, W. Li, C. Sun, J. Jin, Q. Wang, X. Chen, W. Zha, Z. Wen, Sustained release‐driven formation of ultrastable sei between Li6PS5Cl and lithium anode for sulfide‐based solid‐state batteries, Adv. Energy Mater., 11 (2021) 2002545.
    [135] X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, C. Wang, Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery, Sci. Adv., 4 (2018) eaau9245.
    [136] J. Besenhard, H. Fritz, Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts, J. Electroanal. Chem. Interfacial Electrochem., 53 (1974) 329-333.
    [137] X. Li, M. Gu, S. Hu, R. Kennard, P. Yan, X. Chen, C. Wang, M.J. Sailor, J.-G. Zhang, J. Liu, Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes, Nat. Commun., 5 (2014) 1-7.
    [138] F. Xin, M.S. Whittingham, Challenges and development of tin-based anode with high volumetric capacity for Li-ion batteries, Electrochem. Energy Rev., 3 (2020) 643-655.
    [139] Z. Xie, Z. Wu, X. An, X. Yue, J. Wang, A. Abudula, G. Guan, Anode-free rechargeable lithium metal batteries: progress and prospects, Energy Storage Materials, 32 (2020) 386-401.
    [140] J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson, J. Wang, M.E. Bowden, S. Xu, J. Hu, J.G. Zhang, Anode‐free rechargeable lithium metal batteries, Adv. Funct. Mater., 26 (2016) 7094-7102.
    [141] B. Neudecker, N. Dudney, J. Bates, “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode, J. Electrochem. Soc., 147 (2000) 517.
    [142] S.S. Zhang, Problem, status, and possible solutions for lithium metal anode of rechargeable batteries, ACS Appl. Energy Mater., 1 (2018) 910-920.
    [143] Z.T. Wondimkun, T.T. Beyene, M.A. Weret, N.A. Sahalie, C.-J. Huang, B. Thirumalraj, B.A. Jote, D. Wang, W.-N. Su, C.-H. Wang, Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries, J. Power Sources, 450 (2020) 227589.
    [144] S.S. Zhang, X. Fan, C. Wang, A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery, Electrochim. Acta, 258 (2017) 1201-1207.
    [145] Z.L. Brown, S. Jurng, B.L. Lucht, Investigation of the lithium solid electrolyte interphase in vinylene carbonate electrolytes using Cu|| LiFePO4 cells, J. Electrochem. Soc., 164 (2017) A2186.
    [146] X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S.-C. Liou, Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries, Nat. Nanotechnol., 13 (2018) 715-722.
    [147] T.T. Hagos, B. Thirumalraj, C.-J. Huang, L.H. Abrha, T.M. Hagos, G.B. Berhe, H.K. Bezabh, J. Cherng, S.-F. Chiu, W.-N. Su, Locally concentrated LiPF6 in a carbonate-based electrolyte with fluoroethylene carbonate as a diluent for anode-free lithium metal batteries, ACS applied materials & interfaces, 11 (2019) 9955-9963.
    [148] A.J. Louli, M. Genovese, R. Weber, S. Hames, E. Logan, J. Dahn, Exploring the impact of mechanical pressure on the performance of anode-free lithium metal cells, J. Electrochem. Soc., 166 (2019) A1291.
    [149] T.M. Hagos, G.B. Berhe, T.T. Hagos, H.K. Bezabh, L.H. Abrha, T.T. Beyene, C.-J. Huang, Y.-W. Yang, W.-N. Su, H. Dai, Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries, Electrochim. Acta, 316 (2019) 52-59.
    [150] R. Weber, M. Genovese, A. Louli, S. Hames, C. Martin, I.G. Hill, J. Dahn, Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte, Nat. Energy, 4 (2019) 683-689.
    [151] N.A. Sahalie, A.A. Assegie, W.-N. Su, Z.T. Wondimkun, B.A. Jote, B. Thirumalraj, C.-J. Huang, Y.-W. Yang, B.-J. Hwang, Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte, J. Power Sources, 437 (2019) 226912.
    [152] Z.L. Brown, S. Heiskanen, B.L. Lucht, Using triethyl phosphate to increase the solubility of LiNO3 in carbonate electrolytes for improving the performance of the lithium metal anode, J. Electrochem. Soc., 166 (2019) A2523.
    [153] M. Genovese, A. Louli, R. Weber, C. Martin, T. Taskovic, J. Dahn, Hot formation for improved low temperature cycling of anode-free lithium metal batteries, J. Electrochem. Soc., 166 (2019) A3342.
    [154] V. Nilsson, A. Kotronia, M. Lacey, K. Edström, P. Johansson, Highly concentrated LiTFSI–EC electrolytes for lithium metal batteries, ACS Appl. Energy Mater., 3 (2019) 200-207.
    [155] A.A. Assegie, C.-C. Chung, M.-C. Tsai, W.-N. Su, C.-W. Chen, B.-J. Hwang, Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries, Nanoscale, 11 (2019) 2710-2720.
    [156] Z.T. Wondimkun, W.A. Tegegne, J. Shi-Kai, C.-J. Huang, N.A. Sahalie, M.A. Weret, J.-Y. Hsu, P.-L. Hsieh, Y.-S. Huang, S.-H. Wu, Highly-lithiophilic Ag@ PDA-GO film to suppress dendrite formation on Cu substrate in anode-free lithium metal batteries, Energy Storage Materials, 35 (2021) 334-344.
    [157] N.T. Temesgen, W.A. Tegegne, K.N. Shitaw, F.W. Fenta, Y. Nikodimos, B.W. Taklu, S.-K. Jiang, C.-J. Huang, S.-H. Wu, W.-N. Su, B.J. Hwang, Mitigating dendrite formation and electrolyte decomposition via functional double layers coating on copper current collector in anode-free lithium metal battery, J. Taiwan Inst. Chem. Eng., 128 (2021) 87-97.
    [158] M.J. Wang, E. Carmona, A. Gupta, P. Albertus, J. Sakamoto, Enabling “lithium-free” manufacturing of pure lithium metal solid-state batteries through in situ plating, Nat. Commun., 11 (2020) 1-9.
    [159] S. Nanda, A. Gupta, A. Manthiram, A.-F.F. Cells, A Pathway to High-Energy Density Lithium-Metal Batteries, Adv, Energy Mater., 2000804 (2020) 1-18.
    [160] P. Lee, D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols, J. Phys. Chem., 86 (1982) 3391-3395.
    [161] W.A. Tegegne, M.L. Mekonnen, A.B. Beyene, W.-N. Su, B.-J. Hwang, Sensitive and reliable detection of deoxynivalenol mycotoxin in pig feed by surface enhanced Raman spectroscopy on silver nanocubes@ polydopamine substrate, Spectrochim. Acta A Mol. Biomol. Spectrosc., 229 (2020) 117940.
    [162] L. Gan, C. Chen, P. Qin, Y. Wang, P. Wang, Silver nanoparticle-functionalized polydopamine nanotubes for highly sensitive nanocomposite electrode sensors, J. Electroanal. Chem., 861 (2020) 113961.
    [163] E.M. Tapia, Journal: Ab initio Theory of Magnetic Ordering Springer Theses, (2020) 1-5.
    [164] R.G. Parr, W. Yang, Density functional approach to the frontier-electron theory of chemical reactivity, J. Am. Chem. Soc., 106 (1984) 4049-4050.
    [165] G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium, Phys. Rev. B, 49 (1994) 14251.
    [166] P. Blöchl, O. Jepsen, O. Andersen, Phys. Rev. B: Condens. Matter Mater. Phys, (1994).
    [167] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (1996) 3865.
    [168] E. Kononova, L. Leites, S. Bukalov, A. Zabula, I. Pisareva, V. Konoplev, I. Chizhevsky, Experimental and theoretical study of the vibrational spectrum, structure and electron density distribution of the [2-CB10H11]− anion, Chem. Phys. Lett., 390 (2004) 279-284.
    [169] K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, J. Appl. Crystallogr., 41 (2008) 653-658.
    [170] W. Liu, M.S. Song, B. Kong, Y. Cui, Flexible and stretchable energy storage: recent advances and future perspectives, Adv. Mater., 29 (2017) 1603436.
    [171] K.N. Shitaw, S.C. Yang, S.K. Jiang, C.J. Huang, N.A. Sahalie, Y. Nikodimos, H.H. Weldeyohannes, C.H. Wang, S.H. Wu, W.N. Su, Decoupling Interfacial Reactions at Anode and Cathode by Combining Online Electrochemical Mass Spectroscopy with Anode‐Free Li‐Metal Battery, Adv. Funct. Mater., 31 (2021) 2006951.
    [172] B.G. Pollet, I. Staffell, J.L. Shang, Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects, Electrochim. Acta, 84 (2012) 235-249.
    [173] J.-Y. Huang, W.-R. Liu, Synthesis and characterizations of CoCr2O4/C composite using high energy ball-milling technique as novel anode materials for Li-ion batteries, J.Taiwan Inst. Chem. Eng., 96 (2019) 205-213.
    [174] C. Wang, G. Bai, Y. Yang, X. Liu, H. Shao, Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes, Nano Res., 12 (2019) 217-223.
    [175] Z. Huang, G. Zhou, W. Lv, Y. Deng, Y. Zhang, C. Zhang, F. Kang, Q.-H. Yang, Seeding lithium seeds towards uniform lithium deposition for stable lithium metal anodes, Nano Energy, 61 (2019) 47-53.
    [176] P. Barai, K. Higa, V. Srinivasan, Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies, Phys. Chem. Chem. Phys., 19 (2017) 20493-20505.
    [177] X.B. Cheng, T.Z. Hou, R. Zhang, H.J. Peng, C.Z. Zhao, J.Q. Huang, Q. Zhang, Dendrite‐free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries, Adv. Mater., 28 (2016) 2888-2895.
    [178] X. Zhang, A. Wang, X. Liu, J. Luo, Dendrites in lithium metal anodes: suppression, regulation, and elimination, Acc. Chem. Res., 52 (2019) 3223-3232.
    [179] R. Gonçalves, D. Miranda, A. Almeida, M.M. Silva, J.M. Meseguer-Dueñas, J.G. Ribelles, S. Lanceros-Méndez, C. Costa, Solid polymer electrolytes based on lithium bis (trifluoromethanesulfonyl) imide/poly (vinylidene fluoride-co-hexafluoropropylene) for safer rechargeable lithium-ion batteries, Sustain. Mater. Techno., 21 (2019) e00104.
    [180] C.M. Costa, M.M. Silva, S. Lanceros-Méndez, Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications, RSC Adv., 3 (2013) 11404-11417.
    [181] L. Sim, S.R. Majid, A.K. Arof, FTIR studies of PEMA/PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt, Vib. Spectrosc., 58 (2012) 57-66.
    [182] C. Yang, Y. Yao, S. He, H. Xie, E. Hitz, L. Hu, Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode, Adv. Mater., 29 (2017) 1702714.
    [183] F. Wu, H. Quan, J. Han, X. Peng, Z. Yan, X. Zhang, Y. Xiang, Free-standing lithiophilic Ag-nanoparticle-decorated 3D porous carbon nanotube films for enhanced lithium storage, RSC Adv., 10 (2020) 30880-30886.
    [184] D. Wei, W. Qian, Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent, Colloids Surf. B, 62 (2008) 136-142.
    [185] Y. Zhang, S. Liu, L. Wang, X. Qin, J. Tian, W. Lu, G. Chang, X. Sun, One-pot green synthesis of Ag nanoparticles-graphene nanocomposites and their applications in SERS, H 2 O 2, and glucose sensing, RSC Adv., 2 (2012) 538-545.
    [186] E. Kazuma, T. Tatsuma, Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips, Nanoscale, 6 (2014) 2397-2405.
    [187] A.M. Stephan, K.S. Nahm, M.A. Kulandainathan, G. Ravi, J. Wilson, Poly (vinylidene fluoride-hexafluoropropylene)(PVdF-HFP) based composite electrolytes for lithium batteries, Eur. Polym. J., 42 (2006) 1728-1734.
    [188] L. Cong, Y. Li, W. Lu, J. Jie, Y. Liu, L. Sun, H. Xie, Unlocking the Poly (vinylidene fluoride-co-hexafluoropropylene)/Li10GeP2S12 composite solid-state Electrolytes for Dendrite-Free Li metal batteries assisting with perfluoropolyethers as bifunctional adjuvant, J. Power Sources, 446 (2020) 227365.
    [189] J. Lu, Y. Liu, P. Yao, Z. Ding, Q. Tang, J. Wu, Z. Ye, K. Huang, X. Liu, Hybridizing poly (vinylidene fluoride-co-hexafluoropropylene) with Li6. 5La3Zr1. 5Ta0. 5O12 as a lithium-ion electrolyte for solid state lithium metal batteries, Chem. Eng. J., 367 (2019) 230-238.
    [190] S. Xia, X. Wu, Z. Zhang, Y. Cui, W. Liu, Practical challenges and future perspectives of all-solid-state lithium-metal batteries, Chem. , 5 (2019) 753-785.
    [191] C. Klapperich, K. Komvopoulos, L. Pruitt, Nanomechanical properties of polymers determined from nanoindentation experiments, J. Trib., 123 (2001) 624-631.
    [192] B. Liu, Y. Gong, K. Fu, X. Han, Y. Yao, G. Pastel, C. Yang, H. Xie, E.D. Wachsman, L. Hu, Garnet solid electrolyte protected Li-metal batteries, ACS Appl. Mater. Interfaces, 9 (2017) 18809-18815.
    [193] P. Martins, A. Lopes, S. Lanceros-Mendez, Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications, Prog. Polym. Sci., 39 (2014) 683-706.
    [194] V.K. Singh, R.K. Singh, Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties, J. Mater. Chem. C, 3 (2015) 7305-7318.
    [195] G. Appetecchi, Y. Aihara, B. Scrosati, Investigation of swelling phenomena in PEO-based polymer electrolytes: II. Chemical and electrochemical characterization, Solid State Ion, 170 (2004) 63-72.
    [196] M. Liu, N. Deng, J. Ju, L. Wang, G. Wang, Y. Ma, W. Kang, J. Yan, Silver nanoparticle-doped 3D porous carbon nanofibers as separator coating for stable lithium metal anodes, ACS applied materials & interfaces, 11 (2019) 17843-17852.
    [197] C.-J. Huang, B. Thirumalraj, H.-C. Tao, K.N. Shitaw, H. Sutiono, T.T. Hagos, T.T. Beyene, L.-M. Kuo, C.-C. Wang, S.-H. Wu, Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries, Nat. Commun., 12 (2021) 1-10.
    [198] B. Thirumalraj, T.T. Hagos, C.-J. Huang, M.A. Teshager, J.-H. Cheng, W.-N. Su, B.-J. Hwang, Nucleation and growth mechanism of lithium metal electroplating, J. Am. Chem. Soc., 141 (2019) 18612-18623.
    [199] T.S. Wang, X. Liu, X. Zhao, P. He, C.W. Nan, L.Z. Fan, Regulating Uniform Li Plating/Stripping via Dual‐Conductive Metal‐Organic Frameworks for High‐Rate Lithium Metal Batteries, Adv. Funct. Mater., 30 (2020) 2000786.
    [200] J. Holoubek, H. Liu, Z. Wu, Y. Yin, X. Xing, G. Cai, S. Yu, H. Zhou, T.A. Pascal, Z. Chen, Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature, Nat. Energy, 6 (2021) 303-313.
    [201] T.T. Hagos, W.-N. Su, C.-J. Huang, B. Thirumalraj, S.-F. Chiu, L.H. Abrha, T.M. Hagos, H.K. Bezabh, G.B. Berhe, W.A. Tegegne, Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration, J. Power Sources, 461 (2020) 228053.
    [202] M.A. Weret, C.-F.J. Kuo, T.S. Zeleke, T.T. Beyene, M.-C. Tsai, C.-J. Huang, G.B. Berhe, W.-N. Su, B.-J. Hwang, Mechanistic understanding of the Sulfurized-Poly (acrylonitrile) cathode for lithium-sulfur batteries, Energy Storage Materials, 26 (2020) 483-493.
    [203] X.-B. Cheng, Q. Zhang, Dendrite-free lithium metal anodes: stable solid electrolyte interphases for high-efficiency batteries, J. Mater. Chem. A, 3 (2015) 7207-7209.
    [204] X.-B. Cheng, H.-J. Peng, J.-Q. Huang, R. Zhang, C.-Z. Zhao, Q. Zhang, Dual-phase lithium metal anode containing a polysulfide-induced solid electrolyte interphase and nanostructured graphene framework for lithium–sulfur batteries, ACS Nano, 9 (2015) 6373-6382.
    [205] K.N. Shitaw, C.-J. Huang, S.-C. Yang, Y. Nikodimos, N.T. Temesgen, S.K. Merso, S.-K. Jiang, C.-H. Wang, S.-H. Wu, W.-N. Su, B.J. Hwang, Evolution of Interfacial Phenomena Induced by Electrolyte Formulation and Hot Cycling of Anode-Free Li-Metal Batteries, ACS Appl. Energy Mater., 5 (2022) 7770-7783.
    [206] Y. Wang, J. Ju, S. Dong, Y. Yan, F. Jiang, L. Cui, Q. Wang, X. Han, G. Cui, Facile design of sulfide‐based all solid‐state lithium metal battery: in situ polymerization within self‐supported porous argyrodite skeleton, Adv. Funct. Mater., 31 (2021) 2101523.
    [207] H. Liu, P. He, G. Wang, Y. Liang, C. Wang, L.-Z. Fan, Thin, flexible sulfide-based electrolyte film and its interface engineering for high performance solid-state lithium metal batteries, Chem. Eng. J., 430 (2022) 132991.
    [208] Y. Nikodimos, L.H. Abrha, H.H. Weldeyohannes, K.N. Shitaw, N.T. Temesgen, B.W. Olbasa, C.-J. Huang, S.-K. Jiang, C.-H. Wang, H.-S. Sheu, S.-H. Wu, W.-N. Su, C.-C. Yang, B.J. Hwang, A new high-Li+-conductivity Mg-doped Li 1.5 Al 0.5 Ge 1.5 (PO 4) 3 solid electrolyte with enhanced electrochemical performance for solid-state lithium metal batteries, J. Mater. Chem. A, 8 (2020) 26055-26065.
    [209] Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.-S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes, Nat. Energy, 5 (2020) 299-308.
    [210] Y. Nikodimos, C.-J. Huang, B.W. Taklu, W.-N. Su, B.J. Hwang, Chemical Stability of Sulfide Solid-state Electrolytes: Stability Toward Humid Air and Compatibility with Solvents and Binders, Energy Environ. Sci., 15 (2022) 991-1033.
    [211] B.W. Taklu, W.-N. Su, Y. Nikodimos, K. Lakshmanan, N.T. Temesgen, P.-X. Lin, S.-K. Jiang, C.-J. Huang, D.-Y. Wang, H.-S. Sheu, B.J. Hwang, Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries, Nano Energy, 90 (2021) 106542.
    [212] B. Zheng, X. Liu, J. Zhu, J. Zhao, G. Zhong, Y. Xiang, H. Wang, W. Zhao, E. Umeshbabu, Q.-H. Wu, Unraveling (electro)-chemical stability and interfacial reactions of Li10SnP2S12 in all-solid-state Li batteries, Nano Energy, 67 (2020) 104252.
    [213] Q. Zhang, D. Cao, Y. Ma, A. Natan, P. Aurora, H. Zhu, Sulfide‐based solid‐state electrolytes: synthesis, stability, and potential for all‐solid‐state batteries, Adv. Mater., 31 (2019) 1901131.
    [214] S. Wenzel, S. Randau, T. Leichtweiß, D.A. Weber, J. Sann, W.G. Zeier, J.r. Janek, Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode, Chem. Mater., 28 (2016) 2400-2407.
    [215] M. Suyama, A. Kato, A. Sakuda, A. Hayashi, M. Tatsumisago, Lithium dissolution/deposition behavior with Li3PS4-LiI electrolyte for all-solid-state batteries operating at high temperatures, Electrochim. Acta, 286 (2018) 158-162.
    [216] J. Wan, J. Xie, X. Kong, Z. Liu, K. Liu, F. Shi, A. Pei, H. Chen, W. Chen, J. Chen, Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries, Nat. nanotechnol., 14 (2019) 705-711.
    [217] X. Yu, L. Wang, J. Ma, X. Sun, X. Zhou, G. Cui, Selectively Wetted Rigid–Flexible Coupling Polymer Electrolyte Enabling Superior Stability and Compatibility of High‐Voltage Lithium Metal Batteries, Adv. Energy Mater., 10 (2020) 1903939.
    [218] W. Zha, J. Li, W. Li, C. Sun, Z. Wen, Anchoring succinonitrile by solvent-Li+ associations for high-performance solid-state lithium battery, Chem. Eng. J., 406 (2021) 126754.
    [219] J. Zhang, C. Zheng, J. Lou, Y. Xia, C. Liang, H. Huang, Y. Gan, X. Tao, W. Zhang, Poly (ethylene oxide) reinforced Li6PS5Cl composite solid electrolyte for all-solid-state lithium battery: Enhanced electrochemical performance, mechanical property and interfacial stability, J. Power Sources, 412 (2019) 78-85.
    [220] Y.S. Jung, D.Y. Oh, Y.J. Nam, K.H. Park, Issues and challenges for bulk‐type all‐solid‐state rechargeable lithium batteries using sulfide solid electrolytes, Isr. J. Chem., 55 (2015) 472-485.
    [221] X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries, Adv. Funct. Mater., 27 (2017) 1605989.
    [222] W. Zha, W. Li, Y. Ruan, J. Wang, Z. Wen, In situ fabricated ceramic/polymer hybrid electrolyte with vertically aligned structure for solid-state lithium batteries, Energy Storage Materials, 36 (2021) 171-178.
    [223] L. Zhou, K.-H. Park, X. Sun, F. Lalère, T. Adermann, P. Hartmann, L.F. Nazar, Solvent-engineered design of argyrodite Li6PS5X (X= Cl, Br, I) solid electrolytes with high ionic conductivity, ACS Energy Lett., 4 (2018) 265-270.
    [224] Z. Zhang, L. Zhang, X. Yan, H. Wang, Y. Liu, C. Yu, X. Cao, L. van Eijck, B. Wen, All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune, J. Power Sources, 410 (2019) 162-170.
    [225] D.A. Ziolkowska, W. Arnold, T. Druffel, M. Sunkara, H. Wang, Rapid and economic synthesis of a Li7PS6 solid electrolyte from a liquid approach, ACS Appl. Mater. Interfaces, 11 (2019) 6015-6021.
    [226] Y. Zhao, C. Wu, G. Peng, X. Chen, X. Yao, Y. Bai, F. Wu, S. Chen, X. Xu, A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries, J. Power Sources, 301 (2016) 47-53.
    [227] R. Xu, F. Han, X. Ji, X. Fan, J. Tu, C. Wang, Interface engineering of sulfide electrolytes for all-solid-state lithium batteries, Nano Energy, 53 (2018) 958-966.
    [228] C. Wang, Y. Yang, X. Liu, H. Zhong, H. Xu, Z. Xu, H. Shao, F. Ding, Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries, ACS Appl. Mater. Interfaces, 9 (2017) 13694-13702.
    [229] Q. Pang, L. Zhou, L.F. Nazar, Elastic and Li-ion–percolating hybrid membrane stabilizes Li metal plating, Proc. Natl. Acad. Sci., 115 (2018) 12389-12394.
    [230] S. Li, Z. Han, W. Hu, L. Peng, J. Yang, L. Wang, Y. Zhang, B. Shan, J. Xie, Manipulating kinetics of sulfurized polyacrylonitrile with tellurium as eutectic accelerator to prevent polysulfide dissolution in lithium-sulfur battery under dissolution-deposition mechanism, Nano Energy, 60 (2019) 153-161.
    [231] S. Wenzel, S.J. Sedlmaier, C. Dietrich, W.G. Zeier, J. Janek, Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes, Solid State Ion, 318 (2018) 102-112.
    [232] J. Auvergniot, A. Cassel, D. Foix, V. Viallet, V. Seznec, R. Dedryvère, Redox activity of argyrodite Li6PS5Cl electrolyte in all-solid-state Li-ion battery: An XPS study, Solid State Ion, 300 (2017) 78-85.
    [233] Y. Qiao, H. Yang, Z. Chang, H. Deng, X. Li, H. Zhou, A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent, Nat. Energy, 6 (2021) 653-662.
    [234] Y. Tian, Y. An, C. Wei, H. Jiang, S. Xiong, J. Feng, Y. Qian, Recently advances and perspectives of anode-free rechargeable batteries, Nano Energy, 78 (2020) 105344.
    [235] C.-J. Huang, B. Thirumalraj, H.-C. Tao, K.N. Shitaw, H. Sutiono, T.T. Hagos, T.T. Beyene, L.-M. Kuo, C.-C. Wang, S.-H. Wu, W.-N. Su, B.J. Hwang, Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries, Nature communications, 12 (2021) 1-10.
    [236] L. Peng, Y. Zhu, U. Khakoo, D. Chen, G. Yu, Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capability, Nano Energy, 17 (2015) 36-42.
    [237] H. Zheng, X. Chen, Y. Yang, L. Li, G. Li, Z. Guo, C. Feng, Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathode with high electrochemical performance, ACS Appl. Mater. Interfaces, 9 (2017) 39560-39568.
    [238] D. Cao, Q. Li, X. Sun, Y. Wang, X. Zhao, E. Cakmak, W. Liang, A. Anderson, S. Ozcan, H. Zhu, Amphipathic Binder Integrating Ultrathin and Highly Ion‐Conductive Sulfide Membrane for Cell‐Level High‐Energy‐Density All‐Solid‐State Batteries, Adv. Mater., 33 (2021) 2105505.
    [239] C. Lai, C. Shu, W. Li, L. Wang, X. Wang, T. Zhang, X. Yin, I. Ahmad, M. Li, X. Tian, Stabilizing a lithium metal battery by an in situ Li2S-modified interfacial layer via amorphous-sulfide composite solid electrolyte, Nano Lett., 20 (2020) 8273-8281.
    [240] F.J. Simon, M. Hanauer, F.H. Richter, J.r. Janek, Interphase formation of PEO20: LiTFSI–Li6PS5Cl composite electrolytes with lithium metal, ACS Appl. Mater. Interfaces, 12 (2020) 11713-11723.
    [241] S. Wang, X. Zhang, S. Liu, C. Xin, C. Xue, F. Richter, L. Li, L. Fan, Y. Lin, Y. Shen, High-conductivity free-standing Li6PS5Cl/poly (vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries, J. Materiomics, 6 (2020) 70-76.
    [242] S. Luo, Z. Wang, A. Fan, X. Liu, H. Wang, W. Ma, L. Zhu, X. Zhang, A high energy and power all-solid-state lithium battery enabled by modified sulfide electrolyte film, J. Power Sources, 485 (2021) 229325.
    [243] X. Ji, S. Hou, P. Wang, X. He, N. Piao, J. Chen, X. Fan, C. Wang, Solid‐State Electrolyte Design for Lithium Dendrite Suppression, Adv. Mater., 32 (2020) 2002741.
    [244] L. Ye, X. Li, A dynamic stability design strategy for lithium metal solid state batteries, Nature, 593 (2021) 218-222.
    [245] Z. Gao, H. Sun, L. Fu, F. Ye, Y. Zhang, W. Luo, Y. Huang, Promises, challenges, and recent progress of inorganic solid‐state electrolytes for all‐solid‐state lithium batteries, Adv. Mater., 30 (2018) 1705702.
    [246] Z. Wu, Z. Xie, A. Yoshida, Z. Wang, X. Hao, A. Abudula, G. Guan, Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review, Renew. Sust. Energ. Rev., 109 (2019) 367-385.
    [247] S. Wang, Y. Zhang, X. Zhang, T. Liu, Y.-H. Lin, Y. Shen, L. Li, C.-W. Nan, High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium–sulfur batteries, ACS Appl. Mater. Interfaces, 10 (2018) 42279-42285.
    [248] Z. Zhang, J. Zhang, H. Jia, L. Peng, T. An, J. Xie, Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-Argyrodite, J. Power Sources, 450 (2020) 227601.
    [249] L. Yong-Gun, F. Satoshi, J. Changhoon, N. Suzuki, Y. Nobuyoshi, O. Ryo, K. Dong-Su, S. Toshinori, R. Saebom, J.H. Ku, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes, Nat. Energy, 5 (2020) 299-308.
    [250] H.-T. Ren, Z.-Q. Zhang, J.-Z. Zhang, L.-F. Peng, Z.-Y. He, M. Yu, C. Yu, L. Zhang, J. Xie, S.-J. Cheng, Improvement of stability and solid-state battery performances of annealed 70Li2S–30P2S5 electrolytes by additives, Rare Met., 41 (2022) 106-114.
    [251] Y. Shi, D. Zhou, M. Li, C. Wang, W. Wei, G. Liu, M. Jiang, W. Fan, Z. Zhang, X. Yao, Surface Engineered Li Metal Anode for All‐Solid‐State Lithium Metal Batteries with High Capacity, ChemElectroChem, 8 (2021) 386-389.
    [252] C. Lai, C. Shu, W. Li, L. Wang, X. Wang, T. Zhang, X. Yin, I. Ahmad, M. Li, X. Tian, Stabilizing a lithium metal battery by an in situ Li2S-modified interfacial layer via amorphous-sulfide composite solid electrolyte, Nano Letters, 20 (2020) 8273-8281.
    [253] S.P. Ong, Y. Mo, W.D. Richards, L. Miara, H.S. Leeb, G. Ceder, Phase stability, electrochemical stability and ionic conductivity of the Li10Æ1 MP2X12 (M ¼ Ge, Si, Sn, Al or P, and X ¼ O, S or Se) family of superionic conductors, Energy Environ. Sci.
    [254] J.A. Rodriguez, J. Hrbek, Electronic and chemical properties of silver-lithium alloy films: the Ag-Li, O2/Ag-Li, and CO/Ag-Li systems, J. Phys. Chem., 98 (1994) 4061-4068.
    [255] F. Guo, C. Wu, H. Chen, F. Zhong, X. Ai, H. Yang, J. Qian, Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode, Energy Storage Materials, 24 (2020) 635-643.

    無法下載圖示 全文公開日期 2027/08/12 (校內網路)
    全文公開日期 2032/08/12 (校外網路)
    全文公開日期 2027/08/12 (國家圖書館:臺灣博碩士論文系統)
    QR CODE