簡易檢索 / 詳目顯示

研究生: 石建元
Yuan-Chien Shih
論文名稱: 新型碳酸鹽型局部高濃度電解液搭配添加劑應用在高電壓無陽極鋰金屬電池
New Carbonate-based Locally Concentrated Electrolyte with Additives for High-voltage Anode-free Batteries
指導教授: 黃炳照
Bing-Joe Hwang
吳溪煌
She-huang Wu
蘇威年
Wei-Nien Su
口試委員: 黃炳照
Bing-Joe Hwang
吳溪煌
She-Huang Wu
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 110
中文關鍵詞: 無陽極鋰金屬電池局部高濃度電解液添加劑固態電解液介面電化學圖譜氧化電位
外文關鍵詞: anode-free battery, locally concentrated electrolyte, additives, solid-electrolyte interface, electrochemical performance, oxidation-potential stability
相關次數: 點閱:270下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,科學家致力發展高電壓的正極材料和無陽極鋰金屬電池,以提升電池的使用電容量,而傳統電解液已經無法負擔新型電池系統的運作。因為傳統電解液含有過多的游離溶劑,以至於無法負荷高電位的環境,以及容易沉積富含有機化合物的固態電解液介面,導致電容量和循環壽命會急速下降。科學家極力發展新型的電解液來匹配新穎的電池系統,其中的高濃度電解液是一個解方,但是高濃度電解液有黏度過高的問題,這會讓電解液不易潤濕隔離膜,而形成多餘的介面問題,影響電池整體的循環效率。
    本次研究為開發一款新型局部高濃度電解液,此電解液以LiPF6為主要鹽類,並且以ethylene carbonate(EC)/ethyl methyl carbonate(EMC)3:7(v:v)為主要溶劑,調配3MLiPF6-EC/EMC3:7(v:v),並以1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether(TTE) 為稀釋劑,TTE的添加量為整體電解液體積量的50v %。此款電解液通稱-BC-1.5M-EC/EMC/TTE3:7:10(v:v:v),此電解液對於隔離膜的接觸角為28.5°優於傳統電解液的接觸角為48.19°,可以證明新型電解液對於隔離膜的親和力優於傳統電解液,接著新型電解液在Cu‖LiNi0.8Mn0.1Co0.1O2的無陽極鋰金屬電池中,第1圈的庫倫效率為91.87 %,20圈的平均庫倫效率為94.52 %,第20圈的電容量保持率為37.21 %,其整體效能優於傳統電解液的表現。在Li‖ LiNi0.8Mn0.1Co0.1O2的電池中,第一圈的庫倫效率為91.67 %,其優於傳統電解液的90.98 %,且在高電壓的環境中,在正極材料表面會形成穩定的介面而且電解液本身的氧化電位較高,則沒有任何分解反應的發生。接著在SEM、XPS、介面阻抗分析皆有不錯的表現。接下來,為了提升局部高濃度電解液的電化學表現,探究添加劑對於局部高濃度電解液的影響,劑量從0.5wt %、1wt %、1.5wt %和2wt %進行探討。添加LiDFOB之後,對於電池的正極材料具有良好的影響性,在Li‖ LiNi0.8Mn0.1Co0.1O2的電池中,其10圈的平均庫倫效率為100 %,優於BC-1.5M-EC/EMC/TTE(3:7:10 v:v:v)的99.8 %,而在Cu‖ LiNi0.8Mn0.1Co0.1O2的全電池中,其第20圈的電容量保持率為41 %優於BC-1.5M-EC/EMC/TTE(3:7:10 v:v:v)的37.21 %。由此可知,添加LiDFOB可以改變SEI層的組成,使無陽極鋰金屬電池呈現更好的循環壽命以及電容量的維持率。


    We are constantly searching for lithium-ion batteries with higher capacity. High voltage cathode, such as NMC811 (LiNi0.8Mn0.1Co0.1O2) paired with an anode-free cell design, can be a potential solution for this challenge. However, traditional electrolytes have a low potential window range and form a weak and more organic solid-electrolyte interface because of more free solvents. It cannot fulfill the corresponding requirements. Though highly concentrated electrolyte has been reported, the concentrated electrolyte is usually highly viscous and will not quickly soak the separator. It also results in new interfacial issues and poor cycling performance.
    Here, we report a locally concentrated electrolyte, 3 M LiPF6 in ethylene carbonate/ethyl methyl carbonate (3:7 v:v ratio) diluted with 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE). Different percentages of TTE were applied to optimize the electrolyte formulation. The addition of 50v %TTE can give the best performance, which is stable between 2.5 V~4.5 V. It performs good cycle life in the Li∥NMC811 half-cell with the first coulombic efficiency of 93 %, and average coulombic efficiency of 99.6 % comparing with traditional electrolyte, namely 1 M LiPF6 EC/EMC (1:1 v:v ratio) whose first coulombic efficiency is 85.9 %, and average coulombic efficiency of 98.7 % at the current density of 0.2mA/cm. In the anode-free full cell (Cu∥NMC811), the first coulombic efficiency is 91.9 %, and the average coulomb efficiency is 94.5 % after the 20th cycle. The capacity retention is 37.2 % after the 20th cycle, which is better than the traditional electrolyte with 4.26 %. The separator (Celgard 2325) affinity for the electrolyte has been improved by the new formulation with decreased contact angle from 48.19° to 28.51°. It can be attributed to decreasing the amount of the free solvent and improving the composition of the solid-electrolyte interface.
    For improving the performance of locally concentrated electrolytes, this research is about the various amount of lithium difluoro(oxalate)borate (LiDFOB) to modify the locally concentrated electrolyte. In the LiNi0.8Mn0.1Co0.1O2‖Li cell, the coulombic efficiency of 50 cycles is 99.9 % that is better then the BC-1.5M that is 99.6 %, and then, in the LiNi0.8Mn0.1Co0.1O2 ‖Cu half cell, the areal capacity retention at 20th cycle is 41.1 % that is better then BC-1.5M that is 37.2 %. according to the results, LiDFOB can change the composition of SEI layer to raise the cycle life.

    摘要 II 致謝 VII 圖目錄 XI 第1章 緒論 1 1.1 前言 1 1.2 鋰離子電池簡介 2 1.3 鋰離子電池之組成和機制 2 1.4 無陽極鋰金屬電池 5 1.5 電解液 7 1.6 研究動機 9 第2章 文獻回顧 11 2.1 高濃度電解液 11 2.1.1 Solvated-structure 11 2.1.2 耐燃性 17 2.1.3 電化學穩定性 18 2.2 局部高濃度電解液 21 2.3 添加劑 26 第3章 實驗方法與設備 31 3.1 實驗藥品與器材 31 3.2 實驗設備 32 3.3 實驗步驟 33 3.3.1 製備EC/EMC3:7混合溶液 33 3.3.2 製備xMLiPF6(EC/EMC3:7)的電解液 33 3.3.3 製備[xm LiPF6(EC/EMC3:7)]+xv %TTE的電解液 34 3.3.4 無陽極銅箔的製備 35 3.3.5 鈕扣型電池的組裝 35 3.4 樣品清單與命名 37 3.5 材料鑑定與分析 40 3.5.1 拉曼光譜儀(Raman spectroscopy) 40 3.5.2 掃描式電子顯微鏡 (FE-SEM) 41 3.5.3 X射線光電子能譜 (XPS) 43 3.5.4 接觸角儀器 (Contact angle) 43 3.6 電化學測試與計算 44 第4章 結果與討論 49 4.1 商用電解液的電化學表現 49 4.2 不同LiPF6的體積莫爾濃度對EC/EMC3:7混合型電解液之探討 51 4.2.1 導離度之分析 52 4.2.2 電化學表現 55 4.3 不同稀釋劑的量對局部高濃度電解液之探討 59 4.3.1 初步電化學圖譜的驗證 59 4.3.2 導離度之分析 63 4.3.3 電解液對於隔離膜的潤濕性 63 4.3.4 電化學之表現 65 4.4 以添加劑優化局部高濃度電解液 69 4.4.1 電化學表現 69 4.4.2 極化現象分析 74 4.5 拉曼光譜分析 79 4.6 表面結構分析 80 4.7 氧化電位之分析 83 4.8 固態電解質介面組成分析 84 4.9 耐燃性 91 第5章 結論 93 第6章 未來展望 95 第7章 參考文獻 95

    1. D. Liu. "Best products from custom lithium-ion battery manufacturers or customized lithium-ion battery pack suppliers". https://www.lithiumbatterychina.com/blog/2019/04/07/best-products-from-custom-lithium-ion-battery-manufacturers-or-customized-lithium-ion-battery-pack-suppliers/
    2. WHITTIN HAM, M. S., "Electrical Energy Storage and Intercalation Chemistry". Science 1978.
    3. J. Robert Selman, Rajeeva R Agarwal "Electrochemical Intercalation of Lithium in graphite Using a Molten-Salt Cell". The Electrochemical Society 1986.
    4. K. Mizushima, . Wiseman and J.B. Goodenough, "LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density".Materials research bulletin 1980.
    5. 如何在10分鐘內搞懂鋰離子電池及組成? https://kknews.cc/science/gmmprxe.html.
    6. Armand, J.-M. T. M., "Issues and challenges facing rechargeable lithium batteries". 2001.
    7. 鋰離子電池的原理與熱傳模擬方式. https://savepowers.com/principles-of-a-li-ion-battery/.
    8. Jiangfeng Qian , B. D. A., Jianming Zheng , Wu Xu , Wesley A. Henderson , Jun Wang , Mark E. Bowden , Suochang Xu , Jianzhi Hu , and Ji-guang Zhang , "Anode-Free Rechargeable Lithium Metal Batteries". Adv. Funct. Mater 2016.
    9. Pallavi Verma, P. M., Petr Novák, "A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries". Electrochimica Acta 2010.
    10. 呂顯龍, 鋰電池電解液產業在兩岸的發展現況. 工業材料雜誌, vol. 289, 2011.
    11. Roland Jung, M. M., Filippo Maglia, Christoph Stinner, and Hubert A. gasteiger, "Chemical versus Electrochemical Electrolyte Oxidation on NMC111,NMC622, NMC811, LNMO, and Conductive Carbon". J. Phys. Chem. Lett. 2017.
    12. Wang, Y. H. a. H., "Cooperation of Dimethyl and Diethyl Carbonates in Hexafluorophosphate Anion Intercalation into graphite Electrode". Langmuir 2020, 36, 9909−9915 2020.
    13. David S. Hall, J. S., and J. R. Dahn, "Dielectric Constants for Quantum Chemistry and Li-Ion Batteries: Solvent Blends of Ethylene Carbonate and Ethyl Methyl Carbonate". J. Phys. Chem. C 2015, 119, 22322−22330 2015.
    14. Maria grazia giorgini, Kazuma Futamatagawa, Hajime Torii,Maurizio Musso, and Stefano Cerini, "Solvation Structure around the Li+ Ion in Mixed Cyclic/Linear Carbonate Solutions Unveiled by the Raman Noncoincidence Effect". J. Phys. Chem. Lett. 2015, 6, 3296−3302 2015.
    15. Daniel M. Seo, S. R., Mary Kutcher, Kaitlin Redmond, William B. Euler, and Brett L. Lucht, "Role of Mixed Solvation and Ion Pairing in the Solution Structure of Lithium Ion Battery Electrolytes". J. Phys. Chem. C 2015, 119, 14038−14046 2015.
    16. K. D. Fulfer. D. G. Kuroda, "A comparison of the solvation structure and dynamics of the lithium ion in linear organic carbonates with different alkyl chain lengths". Phys. Chem. Chem. Phys., 2017, 19, 25140--25150 2017.
    17. Saul Perez Beltran, X. C., Ji-guang Zhang, and Perla B. Balbuena, "Localized High Concentration Electrolytes for High Voltage Lithium−Metal Batteries: Correlation between the Electrolyte Composition and Its Reductive/Oxidative Stability". Chem. Mater. 2020, 32, 5973−5984 2020.
    18. Tingzheng Hou, K. D. F., Jingyang Wang and Kristin A. Persson "The solvation structure, transport properties and reduction behavior of carbonate-based electrolytes of lithium-ion batteries". Chem. Sci.,2021, 12, 14740–14751 2021.
    19. Lidan Xing, Oleg Borodin,grant D. Smith, and Weishan Li, "Density Functional Theory Study of the Role of Anions on the Oxidative Decomposition Reaction of Propylene Carbonate". Chem. Sci.,2021, 12, 14740–14751 2021.
    20. Yuki Yamada, J. W., Seongjae Ko, Eriko Watanabe and Atsuo Yamada, "Advances and issues in developing saltconcentrated battery electrolytes". nature energy 2019.
    21. Tamene Tadesse Beyene, H. K. B., Misganaw Adigo Weret, Teklay Mezgebe Hagos, Chen-Jui Huang, Chia-Hsin Wang, Wei-Nien Su, Hongjie Dai, and Bing-Joe Hwang, "Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries". Journal ofThe Electrochemical Society, 166 (8) A1501-A1509 (2019) 2019.
    22. Ryoichi Tatara, Y. Y., Pinar Karayaylali, Averey K. Chan, Yirui Zhang, Roland Jung, Filippo Maglia, Livia giordano, and Yang Shao-Horn, "Enhanced Cycling Performance of Ni-Rich Positive Electrodes (NMC) in Li-Ion Batteries by Reducing Electrolyte Free-Solvent Activity". ACS Appl. Mater. Interfaces 2019, 11, 34973−34988 2019
    23. Qi Liu, H. X., Feng Wu, Daobin Mu, Lili Shi, Lei Wang, Jiaying Bi, and Borong Wu, "Effects of a High-Concentration LiPF6‑Based Carbonate Ester Electrolyte for the Electrochemical Performance of a High-Voltage Layered LiNi0.6Co0.2Mn0.2O2 Cathode." ACS Appl. Energy Mater. 2019, 2, 8878−8884 2019.
    24. Wei Liu1, J. L., Wenting Li , Hanying Xu, Chao Zhang & Xinping Qiu , "Inhibition of transition metals dissolution in cobalt-free cathode with ultrathin robust interphase in concentrated electrolyte". NATURE COMMUNICATIONS 2020.
    25. Teklay Mezgebe Hagos, T. T. H., Hailemariam Kassa Bezabh, gebregziabher Brhane Berhe, Ljalem Hadush Abrha, Shuo-Feng Chiu, Chen-Jui Huang, Wei-Nien Su, Hongjie Dai, and Bing Joe Hwang, "Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium
    Metal Battery". ACS Appl. Energy Mater. 2020, 3, 10722−10733 2020.
    26. N. von Aspern, g.-V. R., M. Winter, and I. Cekic-Laskovic, "Fluorine and Lithium: Ideal Partners for High-Performance Rechargeable Battery Electrolytes". Angew.Chem. Int. Ed. 2019, 58,15978 –16000 2019.
    27. Jianhui Wang, Yuki Yamada, Keitaro Sodeyama, Ching Hua Chiang, Yoshitaka Tateyama & Atsuo Yamada, "Superconcentrated electrolytes for a high-voltage lithium-ion battery". NATURE COMMUNICATIONS 2016.
    28. Julian Self, K. D. F., and Kristin A. Persson, "Transport in Superconcentrated LiPF6 and LiBF4/Propylene Carbonate Electrolytes". ACS Energy Lett. 2019, 4, 2843−2849 2019.
    29. Feifei Huang, g. M., Zhaoyin Wen, Jun Jin, Shiqing Xu and Junjie Zhanga, "Enhancing metallic lithium battery performance by tuning the electrolyte solution structure". J. Mater. Chem. A,2018, 6,1612–1620 2018.
    30. Xia Cao, H. J., Wu Xu, and Ji-guang Zhang, "Review—Localized High-Concentration Electrolytes for Lithium Batteries". Journal of The Electrochemical Society, 2021 168 010522 2021.
    31. Shuru Chen, J. Z., Donghai Mei, Kee Sung Han, Mark H. Engelhard, Wengao Zhao, Wu Xu, Jun Liu, and Ji-guang Zhang, "High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes". Adv. Mater. 2018, 30, 1706102 2018.
    32. Jang-Yeon Hwang, S.-J. P., Chong S. Yoon and Yang-Kook Sun, "Customizing a Li–metal battery that survives practical operating conditions for electric vehicle applications". Energy Environ. Sci., 2019, 12, 2174--2184 2019.
    33. Shuangshuang Lin, H. H., Zhisen Li, and Jinbao Zhao, "Functional Localized High-Concentration Ether-Based Electrolyte for Stabilizing High-Voltage Lithium-Metal Battery". ACS Appl. Mater. Interfaces 2020, 12, 33710−33718 2020.
    34. Deng, B., b Sun, Daminga,b Wan, Qi, Wang, Haoa, Chen, Taoa,b Li, Xuana,b Qu, Meizhena Peng, gongchang, "Review of Electrolyte Additives for Ternary Cathode Lithium-ion Battery". Acta Chim. Sinica 2018, 76, 259—277 2018.
    35. Atetegeb Meazah Haregewoin, A. S. W. a. B.-J. H., "Electrolyte additives for lithium ion battery electrodes: progress and perspectives". Energy Environ. Sci., 2016, 9, 1955--1988 2016.
    36. Jia, L. W. S. L. K. Z. J. L. Y. Y. g., "Improving the rate performance and stability of LiNi0.6Co0.2Mn0.2O2 in high voltage lithium-ion battery by using fluoroethylene carbonate as electrolyte additive". Ionics (2018) 24:3337–3346 2018.
    37. Wengao Zhao, L. Z., Jianming Zheng, Haiping Jia,[a] Junhua Song,[a]; Mark H. Engelhard, c. C. W., Wu Xu, Yong Yang, and Ji-guang Zhang, "Simultaneous Stabilization of LiNi0.76Mn0.14Co0.10O2 Cathode and Lithium Metal Anode by Lithium Bis(oxalato)borate as Additive". ChemSusChem 2018, 11,2211– 2220 2018.
    38. Heng Zhang, g. g. E., Xabier Judez, Chunmei Li, Lide M. Rodriguez-Mart&nez, and Michel Armand, "Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives". Angew.Chem. Int. Ed. 2018, 57,15002 –15027 2018.
    39. Mahesh Datt Bhatta, C. O. D., "Solid electrolyte interphases at Li-ion battery graphitic anodes inpropylene carbonate (PC)-based electrolytes containing FEC, LiBOB,and LiDFOB as additives". Angew.Chem. Int. Ed. 2018, 57,15002 –15027 2018.
    40. Jianming Zheng1, M. H. E., Donghai Mei, Shuhong Jiao, Bryant J. Polzin, Ji-guang Zhang andWu Xu, "Electrolyte additive enabled fast charging and stable cycling lithium metal batteries". NATURE ENERgY 2, 17012 (2017) 2017.
    41. Lu Yu, S. C., Hongkyung Lee, Linchao Zhang, Mark H. Engelhard, Qiuyan Li, Shuhong Jiao, Jun Liu, Wu Xu, and Ji-guang Zhang, "A Localized High-Concentration Electrolyte with Optimized Solvents and Lithium Difluoro(oxalate)borate Additive for Stable Lithium Metal Batteries". ACS Energy Lett. 2018, 3, 2059−2067 2018.
    42. Qian Li, Z. C., Wandi Wahyudi, gang Liu, geon-Tae Park, Luigi Cavallo, Thomas D. Anthopoulos, Limin Wang, Yang-Kook Sun, Husam N. Alshareef, and Jun Ming, "Unraveling the New Role of an Ethylene Carbonate Solvation Shell in Rechargeable Metal Ion Batteries". ACS Energy Lett. 2021, 6, 69−78 2021.
    43. Tesfaye Teka Hagos, B. T., Chen-Jui Huang, Ljalem Hadush Abrha, Teklay Mezgebe Hagos, gebregziabher Brhane Berhe, Hailemariam Kassa Bezabh, Jim Cherng, Shuo-Feng Chiu, Wei-Nien Su, and Bing-Joe Hwang, "Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries". ACS Appl. Mater. Interfaces 2019, 11, 9955−9963 2019.
    44. 中國物體技術網, 掃描電子顯微鏡SEM_從基礎出發,一切盡在掌控中. 2016.
    45. 圓的方塊, 盧. 獻給被電化學阻抗譜(EIS)困擾的你. https://kknews.cc/zh-mo/science/vza5ony.html.
    46. Linear Sweep and Cyclic Voltametry: The Principles. https://www.ceb.cam.ac.uk/research/groups/rg-eme/Edu/linear-sweep-and-cyclic-voltametry-the-principles.
    47. Yirui Zhang, Y. K., Ryoichi Tatara, Livia giordano, Yang Yu, Dimitrios Fraggedakis, Jame guangwen Sun, Filippo Maglia, Roland Jung, Martin Z. Bazant and Yang Shao-Horn, "Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy". Energy Environ. Sci., 2020, 13,183--199 2020.
    48. Xiaoling Cui, J. Z., Jie Wang, Peng Wang, Jinlong Sun, Hong Dong, Dongni Zhao, Chunlei Li,; Shuxiang Wen, a. S. L., "Antioxidation Mechanism of Highly Concentrated Electrolytes at High Voltage". ACS Appl. Mater. Interfaces 2021, 13, 59580−59590 2021.
    49. Hee-Woo Rhee, Anji Reddy Polu, Dong Kyu Kim, "Poly(ethylene oxide)-lithium difluoro(oxalato)borate new solid polymer electrolytes: ion–polymer interaction, structural, thermal, and ionic conductivity studies". Ionics (2015) 21:2771–2780 2015.
    50. Mengqing Xua, L. Z., Liansheng Haoa, Lidan Xinga, Weishan Li , Brett L. Luchtb, "Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries". Journal of Power Sources 196 (2011) 6794–6801 2011.
    51. Jiho Cha, J.-g. H., Jaeseong Hwang, Jaephil Cho, Nam-Soon Choi, "Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries". Journal of Power Sources 357 (2017) 97e106 2017.
    52. Sheng S. Zhanga, Xiulin Fanb, Chunsheng Wangb, "An in-situ enabled lithium metal battery by plating lithium on a copper current collector". Electrochemistry Communications 89 (2018) 23–26 2018.
    53. Kazuhiko Mukai, T. I., Yuichi Kato, Soichi Shirai, "Superior Low-Temperature Power and Cycle Performances of Na-Ion Battery over Li-Ion Battery". ACS Omega 2017, 2, 864−872 2017.

    無法下載圖示 全文公開日期 2027/01/26 (校內網路)
    全文公開日期 2027/01/26 (校外網路)
    全文公開日期 2027/01/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE