簡易檢索 / 詳目顯示

研究生: 陳凱銘
Kai-Ming Chen
論文名稱: 結合主樸震盪與疊加波鎖模之摻鉺光纖雷射: 設計與實現
Design and Implementation of MOPA-integrated-Additive-Pulse Mode-locking based Er-doped Fiber Ring Laser
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 陳南光
Nan-Kuang Chen
黃振發
Jen-Fa Huang
戴伯澤
Po-Tse Tai
游易霖
Yi-Lin Yu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 72
中文關鍵詞: 被動鎖模雷射偏振疊加波鎖模雷射鉺鐿共摻光纖模場匹配元件主樸震盪功率放大器
外文關鍵詞: Passively mode-locked laser, Polarization APM Laser, Erbium/Ytterbuim co-doped fiber, Mode field adaptor, Master oscillator power amplifier.
相關次數: 點閱:172下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製一寬頻的高能脈衝雷射,根據傅立葉轉換原理可知道當脈衝寬度越窄的情況下能得到頻寬越大的脈衝輸出,因此本文架設一被動式偏振疊加波鎖模雷射來產生鎖模雷射,並透過不同的架構元件修改後找出一種輸出表現最佳的架構,其脈衝的中心波長約在1560 nm附近,屬於C-Band波段,當泵激雷射電流操作在200 mA下,其輸出功率約為71.75 mW,透過耦合分光器之分光比的參數調整可後得到最佳頻寬輸出,3 dB頻譜寬度為6.24 nm、脈衝寬度427 fs、平均輸出功率為14.96 mW、脈衝能量約1.35 nJ的被動鎖模雷射,而脈衝共振腔長度為18.53 m,脈衝重複率為11.115 MHz。
    最終本論文將上述所提出之被動式偏振疊加波鎖模當作種子雷射,並以不同長度之單模光纖先將種子脈衝展寬後。再經本文所提出之高功率鉺鐿共摻光纖放大器以MOPA的方式提升脈衝的平均功率,由於展寬後能降低脈衝之尖峰功率,藉以得到更有效地放大,最後當脈衝種子雷射功率為14.96 mW且放大器泵激光源操作於3 A時, 能得到平均輸出功率為680.77 mW且脈衝能量為61.25 nJ,有效地將脈衝平均功率提升約45倍。


    In this thesis, a high-power and broadband pulsed laser was designed and implemented. According to the Fourier transform principle, the 3 dB bandwidth of the pulse laser increases when the pulse width becomes narrow. Therefore, the passively mode-locked laser was built up by using the polarization additive-pulse mode-locking (APM) mechanism. Different structures and elements were designed and used to find a better configuration. The central wavelength of mode-locked pulse is at around 1560 nm (C band). Under 200 mW driving current, the obtained 3 dB bandwidth, pulse width, average power and pulse energy are 6.24 nm, 427 fs, 14.96 mW and 1.35 nJ, respectively, for the passively mode locked laser. While the measured repetition rate was approximate 11.115 MHz and the cavity length is 18.53 m.
    Finally, the passively polarization APM laser as mentioned was acted as a seed laser. Then it was broaden by using single-mode fiber, and then amplified by an Er/Yb codoped MOPA. The peak power of the seed laser may be reduced by stretching the pulse width and the pulse could be amplified efficiently. At driving current of 3A for MOPA pump laser diode and 14.96 mW of seed laser power, a 680.77 mW average power and a 61.25 nJ pulse energy were generated which are 45 time scale up of the average pulse power.

    摘要I AbstractII 致謝IV 目錄VI 圖表目錄VIII 第一章緒論1 1.1前言1 1.2研究動機3 1.3論文架構6 第二章原理介紹7 2.1短脈衝雷射產生機制與原理7 2.1.1Q-開關脈衝雷射原理7 2.1.2鎖模脈衝雷射原理8 2.2被動式鎖模光纖雷射11 2.2.1半導體飽和吸收鏡鎖模12 2.2.2偏振疊加波鎖模12 2.3光纖放大器原理與介紹14 2.3.1光纖放大器之泵激方式15 2.4高功率鉺鐿共摻光放大器重要元件介紹16 第三章短脈衝雷射架構分析與量測24 3.1短脈衝雷射架構24 3.2短脈衝雷射之量測設備介紹30 3.3短脈衝雷射輸出結果量測34 3.4耦合分光器之分光比參數量測38 3.5本章小結46 第四章高功率鉺鐿共摻光纖放大器47 4.1高功率放大器架構分析47 4.1.1泵激雷射L-I 圖47 4.1.1前向泵激放大器49 4.1.2後向泵激放大器50 4.2增益介質長度分析51 4.3MFA元件置入54 4.4本章小結57 第五章結合主僕震盪放大器與短脈衝雷射架構58 5.1架構分析58 5.2脈衝啁啾放大59 5.3輸出結果量測60 5.4泵激光源之環境測試64 5.5本章小結65 第六章結論與未來展望66 6.1結論66 6.2未來展望66 參考文獻69

    [1]P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” Journal of the Optical Society of America B, vol. 3, no. 1, pp. 125-133, 1986.
    [2]A. Weiner, “Utrafast optics,” Wiley Series in Pure and Applied Optics, 2009.
    [3]J. Fekete, A. Cserteg and R. Szipocs, “All-fiber, all-normal dispersion ytterbium ring oscillator,” Laser Physics Letters, vol. 6, no. 1, 2008.
    [4]U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, pp. 831-838, 2003.
    [5]C. Barnard, P. Myslinski, J. Chrostowski and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and laser,” IEEE Journal of Quantum Electronics, vol. 30, no. 8, pp. 1817-1830, 1994.
    [6]Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng and J. Weng, “1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber,” IEEE Journal of Lightwave Technology, vol. 32, no. 24, pp. 4077-4084, 2014.
    [7]Y. Shimony, Z. Burshtein, and Y. Kalisky, “Cr4+ : YAG as passive Q-switch and Brewster plate in a pulsed Nd: YAG laser,” IEEE Journal of Quantum Electronics, vol. 31, no. 10, pp. 1738-1741, 1995.
    [8]Y. W. Song, S. Y. Jang, W. S. Han and M. K. Bae, “Q-switched fiber lasers with carbon nanotubes hosted in ceramics,” Applied Optics, vol. 51, no. 3, pp. 290-294, 2010.
    [9]J. Liu, S. Wu, Q. H. Yang and P. Wang, “Stable nanosecond pulse generation from a graphene-based passively Q-switched Yb-doped fiber laser,” Optics Letters, vol. 36, no. 20, pp. 4008-4010, 2011.
    [10]R. I. Woodward, E. J. R. Kelleher, R. C. T. Howe, G. Hu, F. Torrisi, T. Hasan, S. V. Popov and J. R. Taylor, “Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2),” Optics Express, vol. 22, no. 25, pp. 31113-31122, 2014.
    [11]陽洋,“GVD 和 SPM 效應對超高斯脈衝影響的研究”,北京郵電大學,2008年。
    [12]林曉靜,“色散補償技術原理及現有解決方案分析”,北京郵電大學,2007年。
    [13]F. X. Kぴartner and U. Keller, “Stabilization of solitonlike pulses with a slow saturable absorber,” Optics Letters, vol. 20, no. 1, pp. 16-18, 1995.
    [14]H. A. Haus, J. G. Fujimoto and E. P. Ippen, ”Analytic theory of additive-pulse and Kerr lens mode-locking,” IEEE Journal of Quantum Electronics, vol. 28, no. 10, pp. 2086-2096, 1992.
    [15]K. Tamura, E. P. Ippen, H. A. Haus and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Optics Letters, Vol. 18, no. 13, pp. 1080-1082, 1993.
    [16]T. Ennejah and R. Attia, “Mode Locked Fiber Lasers,” 2013.
    [17]H. A. Haus, K. Tamura, L. E. Nelson and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE Journal of Quantum Electronics, vol. 31, no. 3, pp. 591 - 598, 1995.
    [18]甘力行,“藉由長共振腔極大反常色散摻鉺光纖鎖模雷射來產生高能量脈衝”,國立交通大學碩士論文,2011年。
    [19]P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers, fundamentals and technology,” Academic Press, New York, 1999.
    [20]王立康,“高功率光纖雷射簡介”,光學工程,第104期,2008年。
    [21]Q. Han, J. Ning and Z. Sheng, “Numerical investigation of the ASE and power scaling of cladding-pumped Er-Yb codoped fiber amplifiers,” IEEE Journal of Quantum Electronics, vol. 46, no. 11, pp.1535-1541, 2010.
    [22]Y. Hu, S. Jiang, T. luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas and N. Peyghambarian, “Performance of high concentration Er3+-Yb3+-co-doped phosphate fiber amplifier,” IEEE Photon Technology Letter, vol. 13, no. 7, pp. 657-659, 2001.
    [23]林佳妏,“雙級高功率鉺鐿共摻光纖放大器之模擬、設計與應用”,國立台灣科技大學碩士論文,2015年。
    [24]H. R. Chen, C. Y. Tsai, C. Y. Chang, K. H. Lin, C. S. Chang and W. F. Hsieh, “Investigation of graphene dispersion from Kelly sideband in stable mode-locked Erbium-doped fiber laser by few-layer graphene saturable absorbers,” Journal of Lightwave Technology, vol. 33, no. 21, pp. 4406 - 4412, 2015.
    [25]C. Alegria, Y. Jeong, C. Codemard, J. K. Sahu, J. A. Alvarez-Chavez, L. Fu, M. Ibsen and J. Nilsson, “83-W single-frequency narrow-linewidth MOPA using large-core Erbium-Ytterbium co-doped fiber,” IEEE Photonics Technology Letters, vol. 16, no. 8, pp. 1825 - 1827, 2004.
    [26]王智勇,張晶,葛廷武,孫 暢,董繁龍,“高功率高耦合效率光纖模場匹配器”,北京工業大學,2015年。
    [27]K. J. Blow, N. J. Doran and B. P. Nelson, “All-fiber pulse compression at 1.32 um,” Optics Letters, vol. 10, no. 8, pp. 393-395, 1985.
    [28]C. J. S. de Matos and J. R. Taylor, “All-fiber chirped pulse amplification using highly-dispersive air-core photonic band-gap fiber,” Optics Express, vol. 11, no. 22, pp. 2832-2837, 2003.
    [29]彭昶銘,“三級高功率鉺鐿共摻光纖放大器研製與應用”,國立台灣科技大學碩士論文,2015年。
    [30]B. R. Washburn, J. A. Buck and S. E. Ralph, “Transform-limited spectral compression due to self-phase modulation in fibers,” Optics Letters, vol. 25, no. 7, pp. 445-447, 2000.

    無法下載圖示 全文公開日期 2020/08/15 (校內網路)
    全文公開日期 2026/08/15 (校外網路)
    全文公開日期 2026/08/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE