簡易檢索 / 詳目顯示

研究生: 林佳妏
Chia-Wen Lin
論文名稱: 雙級高功率鉺鐿共摻光纖放大器之模擬、設計與應用
Dual-stage, High-power EYDFA: Simulation, Design and Application
指導教授: 廖顯奎
Shien-Kuei, Liaw
口試委員: 游易霖
Yi-Lin, Yu
黃振發
Jen-Fa, Huang
張文彥
Win-Yann, Jang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 71
中文關鍵詞: 鉺鐿共摻光纖高功率光纖放大器OptiSystem無線光通訊
外文關鍵詞: Er/Yb co-doped fiber, high-power fiber amplifier, OptiSystem, optical wireless communication
相關次數: 點閱:809下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究高功率鉺鐿共摻光纖放大器,將其應用在室內無線光通訊系統上,提升傳輸速率與傳輸距離。首先介紹實驗中使用到的鉺鐿共摻光纖、泵激光源以及訊號光源,針對測量的參數作介紹,並使用模擬軟體OptiSystem調製鉺鐿離子的摻雜濃度,使其盡量與實驗用之鉺鐿共摻光纖趨勢擬合。進行單級前向泵激與後向泵激的模擬,當泵激功率提升之後,兩者的增益與雜訊指數會漸趨相近,之後為雙級架構雙前向泵激與雙向泵激的模擬,雙前向泵激架構使用3+5 m的增益光纖,在泵激功率到達2 W時,會達到飽和增益且無殘餘放大自發輻射;雙向泵激部分使用8 m增益光纖,在泵激功率到達2 W時,會有殘餘放大自發輻射,且有飽和增益的情形,此部分為探討增益光纖長度、泵激架構與殘餘放大自發輻射的關係。
    而在高功率光纖放大器實作部分,首先找出單級前向泵激架構的最佳長度為2.5 m,在第二級部分加上前向泵激及後向泵激架構,使用2.5+2.7 m增益光纖,訊號光源為波長1550 nm、輸出功率0 dBm的分佈式回饋雷射,泵激光源波長980 nm、驅動電流6 A時,雙前向泵激架構無內建光隔離器可以得到32.42 dB的增益,且雜訊指數在5.7 dB;雙向泵激架構內建光隔離器的增益為30.73 dB,雜訊指數約在6.3 dB;最後是雙向泵激架構無內建光隔離器,得到的增益表現較差為29.93 dB,雜訊指數為在6.5 dB以上。
    最後將高功率光纖放大器應用於室內視線型無線光通訊系統上,實際傳輸8.5 Gbps的資料,高功率光纖放大器放置在發射端,使功率提升25 dB以補償傳輸與光分歧損耗,且對此架構進行準直誤差實驗,並分析不同的光纖放大器驅動電流對誤碼率及眼圖的影響,在準直且無干擾情況下,誤碼率可達到10-10左右,若驅動電流提高則能使眼圖更為清晰。


    The aim of this thesis is to develop high-power Er/Yb co-doped fiber amplifier and applied it to indoor optical wireless communication to enhance the transmission data rate and extend the receiving area for easy capture the signal. Firstly, the Er/Yb co-doped fiber, pump laser diode(LD), signal source and other related components and devices were introduced. By using the simulation software OptiSystem, the concentration of Erbium ions and Ytterbium ions were simulated based on similar values of the Er/Yb co-doped fiber used in the experiment. Secondly, one-stage forward and backward pump fiber amplifiers were simulated. As the pump power increased, the gain and noise figure(NF) values for both configurations go closer. After then, two-stage forward pump and bidirectional pump were simulated. The lengths of gain fibers used in two-stage forward pump and bidirectional pump fiber amplifiers were 3+5 m and 8 m, respectively. When the pump power was set up to 2W, both of the configurations were gain saturated, but the bidirectional pump configuration still has residual amplified spontaneous emission (ASE). The relation among gain fiber length, pump configuration and residual ASE power were discussed in the thesis.
    For high-power fiber amplifier experiment, the optimum gain fiber length of one-stage forward pump configuration is 2.5 m. The gain fiber length is 2.7 m for the second stage, either in forward and backward pump configurations. The signal source is a distributed feedback laser(DFB) laser at 1550 nm and the pump LD at 980 nm were used. Under the condition of 0 dBm for signal power and 6 A driving current for the pump LD, the gain and NF of double-forward pump configuration without optical isolator were 32.42 dB and 5.7 dB, respectively; the gain and NF of bidirectional pump with optical isolator were 30.73 dB and 6.3 dB, respectively; while the gain and NF of bidirectional pump without optical isolator were 29.93 dB and 8.59 dB, respectively.
    Finally, the high-power fiber amplifier was applied to indoor optical wireless communications as a boost amplifier. Under the data rate of 8.5 Gbps, the output power was set 25 dB to compensate both the splitting and transmission loss. The effects of driving current on the bit-error-rate and eye diagrams were also measured and discussed. As the transmitter and receiver were well-collimated, the bit-error-rate was as good as 10-10. 

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖表索引 VII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與方法 2 1.3 文獻回顧 3 1.4 論文架構 6 第二章 光纖放大器原理與介紹 7 2.1 光纖放大器之介紹 7 2.2 光纖放大器之重要元件介紹 9 2.2.1 泵激光源 9 2.2.2 增益介質 14 2.2.3 訊號光源 17 2.2.4 分波多工元件 18 2.3 光纖放大器之參數 19 2.3.1 放大自發性輻射 19 2.3.2 雜訊指數 19 2.3.3 飽和增益 20 2.3.4 轉換效率 22 2.4 模擬軟體使用參數介紹 22 第三章 光纖放大器模擬與數值分析 23 3.1 模擬參數匹配 23 3.2 單級光纖放大器 24 3.2.1 單級泵激架構 24 3.3 雙級光纖放大器 27 3.3.1 雙級泵激架構 27 3.3.2增益與雜訊指數分析 30 3.3.3 雙級泵激架構模擬結果探討 31 3.4 本章小結 32 第四章 光纖放大器實作分析與比較 33 4.1 單級光纖放大器 34 4.1.1 實驗架構 34 4.1.2 光纖長度選擇 35 4.2 雙級光纖放大器 37 4.2.1 雙前向泵激架構無內建光隔離器 37 4.2.2 雙向泵激架構內建光隔離器 40 4.2.3 雙向泵激架構無內建光隔離器 41 4.2.4 高功率光纖放大器溫控改善方法 42 4.2.5 雙級架構實驗結論 44 4.3 極化相關增益量測 45 4.4 本章小結 47 第五章 高功率光纖放大器於無線光通訊之應用 48 5.1 無線光通訊系統介紹 48 5.1.1 無線光通訊原理 48 5.1.2 系統發射端 49 5.1.3 傳輸通道 50 5.1.3 系統接收端 51 5.1.4 透鏡組 52 5.2 實驗相關元件及原理 55 5.2.1 Mach-Zehnder調變器 55 5.2.2 誤碼率原理 56 5.2.3 眼圖原理 58 5.3 光纖放大器用於無線光通訊系統實驗 59 5.3.1 實驗架構 59 5.3.2 實驗結果 60 5.4 本章小結 64 第六章 結論與未來展望 65 6.1 結論 65 6.2 未來展望 66 參考文獻 68

    [1] 廖顯奎,“光纖通訊”,高立圖書有限公司,新北市,2005年。
    [2] J. C. Dung and S. Chi, “Dispersion compensation and gain flattened for a wavelength division multiplexing system by using chirped fiber gratings in an Erbium-doped fiber amplifier”, Opt. Commun., vol. 162, pp. 219-222, 1999.
    [3] P. F. Wysocki, N. Park and D. DiGiovanni, “Dual-stage Erbium-doped, Erbium/Ytterbium-codoped fiber amplifier with up to +26-dBm output power and a 17-nm flat spectrum”, Optics Letters, vol. 21, pp. 1744-1746, 1996.
    [4] J. K. Sahu, Y. Jeong, D. J. Richardson and J. Nilsson, “A 103 W Erbium-Ytterbium co-doped large-core fiber laser”, Opt. Commun., vol. 227, pp. 159-163, 2003.
    [5] B. Morasse, S. Agger, C. Hovington, S. Chatigny, E. Gagnon, J. de Sandro and C. Poulsen, “10W ASE-free single-mode high-power double-cladding Er3+-Yb3+ amplifier”, Proc. SPIE, vol. 6453, pp. 1-8, 2007.
    [6] G. Sobon, P. Kaczmarek and K. M. Abramski, “Erbium–Ytterbium co-doped fiber amplifier operating at 1550 nm with stimulated lasing at 1064 nm”, Opt. Commun., vol. 285, pp. 1929-1933, 2012.
    [7] B. Zhu, M. Law, J. Rooney, S. Shenk, M. F. Yan and D. J. DiGiovanni, “High-power broadband Yb-free clad-pumped EDFA for L-band DWDM applications”, Optics Letters, vol. 39, pp. 72-75, 2014.
    [8] P. F. Szajowski, G. Nykolak, J. J. Auborn, H. M. Presby, G. E. Tourgee, E.J. Korevaar, J. J. Schuster and I. I. Kim, “2.4 km free-space optical communication 1550 nm transmission link operating at 2.5 Gb/s – Experimental results,” Proc. SPIE, vol. 3532, pp. 29-40, 1999.
    [9] D. Song, Y. Hurh, J. Cho, J. Lim, D. Lee, J. Lee and Y. Chung, “4 x 10 Gb/s terrestrial optical free space transmission over 1.2 km using an EDFA preamplifier with 100 GHz channel spacing,” Opt. Express, vol. 7, pp. 280, 2000.
    [10] G. Nykolak, P. F. Szajowski, A. Cashion, H. M. Presby, G. E. Tourgee, and J. J. Auborn, “A 40 Gb/s DWDM free space optical transmission link over 4.4 km,” Proc. SPIE, vol. 3932, pp. 16-20, 2000.
    [11] F. Marioni, Z. Sodnik and F. E. Zocchi, “2.5-Gb/s free-space optics link over 1.1 km with direct fiber coupling to commercial devices,” Proc. SPIE, vol. 5550, pp. 60-69, 2004.
    [12] P. L. Chen, S. T. Chang, S. T. Ji, S. C. Lin, H. H. Lin, H. L. Tsay, P. H. Huang, W. C. Chiang, W. C. Lin, S. L. Lee, H. W. Tsao, J. P. Wu and J. Wu, “Demonstration of 16 channels 10 Gb/s WDM free space transmission over 2.16 km,” IEEE/LEOS Summer Topical Meetings, pp. 235-236, Acapulco, 2008.
    [13] J. D. Minelly, W. L. Barnes, R. I. Laming, P. R. Morkel, J. E. Townsend, S. G. Grubb and D. N. Payne, “Diode-Array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers”, IEEE Photon. Technol. Lett., vol. 5, pp. 301-303, 1993.
    [14] S. U. Alam, R. Wixey, L. Hickey, K. H. Yla-Jarkko and M. N. Zervas, “High power, single-mode, single-frequency DFB fibre laser at 1550 nm in MOPA configuration”, Lasers and Electro-Optics, San Francisco, 2004.
    [15] S. Z. Muhd-Yassin, M. S. Khairul Anuar, M. I. Zulkifli, S. W. Harun, H. A. Abdul-Rashid and M. K. Abd-Rahman, “56 dB gain EYDFA with improved noise figure with dual-stage partial double pass configuration”, Optik, vol. 123, pp. 1884-1887, 2012.
    [16] D. Derickson, “ Fiber optic test and measurement”, Prentice Hall PTR, New Jersey, 1998.
    [17] M. J. F. Digonnet, “Rare-earth-doped fiber lasers and amplifiers, revised and expanded”, 2nd edition, Marcel Dekker, Inc., New York, 2001.
    [18] P. C. Becker, N. A. Olsson and J. R. Simpson, “Erbium-doped fiber amplifiers, fundamentals and technology”, Academic Press, New York, 1999.
    [19] Y. Sun, J. L. Zyskind and A. K. Srivastava, “Average inversion level, modeling, and physics of Erbium-doped fiber amplifiers,” IEEE J. Sel. Top. Quant. Electron., vol. 3, pp. 991-1007, 1997.
    [20] L. Keigo, “Elements of photonics volume II”, Wiley-Interscience, New York, 2002.
    [21] J. Y. Allain, M. Monerie and H. Poignant, “Ytterbium-doped fluoride fiber laser operating at 1.02 μm”, Electronics Letters, vol. 28, pp. 988-989, 1992.
    [22] Q. Han, J. Ning and Z. Sheng, “Numerical investigation of the ASE and power scaling of cladding-pumped Er-Yb codoped fiber amplifiers”, IEEE J. Quant. Electron., vol. 46, pp. 1535-1541, 2010.
    [23] 王立康,“高功率光纖雷射簡介”,光學工程,第104期,2008年。
    [24] Y. Hu, S. Jiang, T. luo, K. Seneschal, M. Morrell, F. Smektala, S. Honkanen, J. Lucas ,and N. Peyghambarian, “Performance of high concentration Er3+-Yb3+-codoped phosphate fiber amplifier”, IEEE Photon. Technol. Lett., vol. 13, pp. 657-659, 2001.
    [25] R. Hui and M. O’Sullivan, “Fiber optic measurement techniques”, Elsevier Inc., California, 2009.
    [26] 江泳毅,“鉺鐿摻雜光纖放大器模擬與實驗量測”,國立交通大學碩士論文,2013年,6月。
    [27] G. Keiser, “Optical fiber communications”, 3rd edition, McGraw-Hill Education, New York, 2008.
    [28] 林育民,“高容量無線光通訊用於接取網路與橋梁備用路由之設計研究”,國立臺灣科技大學碩士論文,2013年,7月。
    [29] 易成林,“自由空間光通信技術的發展現狀與未來趨勢”,現代商貿工業,第9期,第19卷,263-264頁,2007年。
    [30] I. Kim, B. McArthur and E. J. Korevaar, “Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications,” Proc. of the SPIE, vol. 4214, pp. 26-37, 2001.
    [31] L. Rayleigh, “On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky,” Philosophical Magazine, vol. 47, pp. 375-384, 1899.
    [32] C. F. Bohren and D. Huffman, “Absorption and scattering of light by small particles,” John Wiley, New York, 1983.
    [33] H. C. van de Hulst, “Light scattering by small particles,” Dover, New York, 1981.
    [34] 王懷慶,“無線光通訊系統之擴束設計量測與應用”,國立臺灣科技大學碩士論文,2015年,1月。
    [35] J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. of the IEEE, vol. 85, pp.265-298, 1997.
    [36] C. N. Chen and J. C. Palais, “光纖通信與應用”,新文京開發出版股份有限公司,臺北,2004年。
    [37] 謝鎮安,“光纖通訊用高速-低驅動雙空乏區致電-吸收光調制器”,國立中央大學碩士論文,2005年,7月。
    [38] 李揚漢、許立根、譚昌文、洪鴻文、曹士林、楊淳良、趙亮琳,“光纖通訊網路”,五南圖書出版股份有限公司,臺北,2007年。
    [39] R. Ramaswami and K. N. Sivarajan, “Optical network,” Morgan Kaufmann, New York, pp. 258-263, 2002.
    [40] 董德國、陳萬清,“光纖通訊”,臺灣東華書局股份有限公司,臺北,2005年。

    無法下載圖示 全文公開日期 2020/07/21 (校內網路)
    全文公開日期 2025/07/21 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE