簡易檢索 / 詳目顯示

研究生: 李東暢
Dong-Chang Li
論文名稱: 近紅外光及可見光雷射之研究及其分別於光感測或水下光通訊之應用
Study on near infrared/visible lasers and their applications in optical sensing/underwater optical communication
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 廖顯奎
Shien-Kuei Liaw
王立康
Li-Karn Wang
葉建宏
Chien-Hung Yeh
鄒志偉
Chi-Wai Chow
李偉裕
Wei-Yu Lee
徐世祥
Shih-Hsiang Hsu
黃升龍
Sheng-Lung Huang
宋峻宇
Jiun-Yu Sung
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 117
中文關鍵詞: 環形光纖雷射短脈衝雷射偏振疊加波鎖模光纖放大器布拉格光柵光纖感測水下無線光通訊技術
外文關鍵詞: Fiber Ring Laser, Short Pulse Fiber Laser, Polarization Overlay Wave Mode Locking, Fiber Optical Amplifier, Fiber Bragg Grating, Fiber Sensing, Underwater Wireless Optical Communication
相關次數: 點閱:260下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著科技的日益進步,人們對數據傳輸的需要也隨著提高,在此光互連時代也隨之到來,雷射與光纖技術在此具有重要地位。越來越來的研究人員投入到光學系統的開發當中。其中雷射的開發與直接應用也日益廣泛,光通信網路,生醫檢測,雷射加工,光纖感測和醫療美容等。因此本文將通過建構1550nm光纖雷射,並基於此研發了短脈衝雷射並進行了特性研究。並開發了1064nm光纖雷射感測系統和450nm雷射水下無線光通訊系統。
    本文首先對1550nm環形光纖雷射進行了開發,並以此為基礎進行延伸,構建了1550nm短脈衝光纖雷射,並對所開發之1550nm短脈衝光纖雷射進行性能優化。通過改變輸出功率的光耦合比,雷射共振腔長度達成了脈衝寬度分別為5ns、20ns和400ns的1550nm短脈衝光纖雷射, 平均輸出功率為15.67mW、13.27mW 和13.02 mW, 單發脈衝能量為86.2nJ、3.98nJ 和2.34 nJ。最後通過建置主震荡高功率放大器對輸出雷射功率提升了133倍、152倍和157倍。基於1550nm環形光纖雷射的架構,通過加入半導體光放大器建構了不同波長的1064nm環形光纖雷射。並利用所開發雷射搭配多個光開關與光纖光柵,建立了一套光纖感測系統,具有25km的動態感測範圍。最後針對本系統對水溫和應力參數的感測效果進行了探究, 溫度感測靈敏度為0.0058 nm/ ℃,線性度為0.9953。擠壓力感測靈敏度為0.18 mm/nm,線性度為0.9874。拉伸力感測靈敏度為0.17 mm/nm,線性度為0.9812。本文也針對光通訊系統進行了建構,並選擇了更具挑戰的水下無線光通訊。基於450nm藍光雷射建構了一套可在純水環境下傳輸6米的水下無線光通訊系統。並對本系統在實際應用環境的參數性能進行了研究。在擾流環境下,進行了溫度變化和人工海水實驗,對本系統的應用性能進行了測試。溫度變化對系統的通訊性能造成的影響不大,在水溫10℃和50℃時,傳輸6米的誤碼率小於10 × 10−8。但在海水環境下,系統性能受到嚴重影響,有效通信距離由6m降至3m,這是由於海水中的雜質引起雷射光束發散所導致的。
    透過上述三種典型的雷射技術開發,對雷射技術的廣泛應用進行了介紹,並可為相關領域研究人員提供多方面參考。並期望未來可結合上述三種技術,開發更為多功能之光學系統應用。


    In recent years, with the increasing progress of science and technology, people's need for data transmission has also increased. In this era of optical interconnection, laser and optical technology play an essential role. More and more researchers are investing in the development of optical systems. Among them, lasers' development and direct application are also increasingly widespread, such as optical communication networks, biomedical detection, laser processing, optical fiber sensing, and medical beauty. Therefore, a 1550 nm fiber laser will be constructed in this paper, and based on this; a short-pulse laser will be developed and studied. A 1064nm optical fiber laser sensing system and a 450-nm underwater wireless optical communication system have been developed.
    In this paper, a 1550 nm ring fiber laser is developed and extended on this basis. A 1550 nm short-pulse fiber laser is constructed, and the performance of the 1550 nm short-pulse fiber laser is optimized. By changing the optical coupling ratio of the output power, the laser cavity length achieves 1550 nm short-pulse optical fiber laser with a pulse width of 5 ns, 20 ns, and 400 ns, respectively. The average output power is 15.67 mW, 13.27 mW, and 13.02 mW, and the single-pulse energy is 86.2 nJ, 3.98 nJ, and 2.34 nJ. Finally, the output laser power is 133 times, 152 times, and 157 times higher by building a master oscillator high power amplifier. The 1550 nm ring fiber laser structure, 1064 nm ring fiber laser with different wavelengths was constructed by adding a semiconductor optical amplifier. Optical fiber sensing systems with a dynamic sensing range of 25 km have been established using the developed laser with multiple optical switches and optical grating. Finally, the effect of this system on water temperature and stress parameters is explored. The results show that the Fiber Bragg Grating temperature sensor has a sensitivity of 0.0058 nm/ ℃ and linearity of 0.9953. The extrusion pressure sensor has a sensitivity of 0.18 mm/nm and linearity of 0.9874. The tension sensor has a sensitivity of 0.17 mm/nm and linearity of 0.9812. This paper also constructs the optical communication system and chooses the more challenging underwater wireless optical communication. An underwater wireless optical communication system capable of transmitting 6 meters in a pure water environment is constructed based on a 450 nm blue laser. The parameter performance of the system in the real application environment is also studied. The temperature change and artificial seawater experiments were carried out under a disturbing current environment, and the application performance was tested. Temperature changes have little effect on the communication performance of the system. When the water temperature is 10℃ and 50℃, the bit error rate of transmitting 6m is less than 10 × 10−8. However, in the seawater environment, the system's performance is seriously affected, and the effective communication distance is reduced from 6m to 3m, which is caused by the divergence of the laser beam caused by impurities in seawater.
    Through the development of these three typical laser technology applications, the wide application of laser technology is introduced, and it can provide many references for researchers in related fields. It is expected that future applications of more versatile optical systems will be developed by combining these three technologies.

    中文摘要 II Abstract IV 致謝 VI Contents VIII Acronyms XI List of Figures and Tables 1 Chapter 1 6 Introduction 6 1.1 Overview 6 1.2 Motivation 7 1.3 Organization of Thesis 9 Chapter 2 11 Literature Overview 11 2.1 Short Pulsed Fiber Laser 11 2.2 Optical Fiber Amplifier 13 2.3 Optical Fiber Sensing Technology 15 2.4 Underwater Wireless Optical Communication 18 Chapter 3 20 Theory of Fiber Laser and FBG Sensing and Technology of Underwater Wireless Optical Communication 20 3.1 Theory of Optical Amplifier 20 3.2 Theory of Fiber Laser 26 3.2.1 Theory of Passive Mode-Locked Pulsed Fiber Laser 29 3.3 Theory of Fiber Grating Sensing 34 3.3.1 Fabrication of Fiber Bragg Grating 35 3.3.2 Sensing Method of Fiber Bragg Grating 39 3.4 Technology of Underwater Wireless Optical Communication 42 Chapter 4 46 Development and Characterization of 1550 nm Short Pulse Laser 46 4.1 1550nm Fiber Ring Laser 46 4.2 Polarized overlay mode-locked short pulse laser 47 4.2.1 Experimental Setup of Short Pulse Laser 48 4.2.2 Impact of Optical Coupling Rate on Short-Pulse Laser 51 4.2.3 Impact of Laser Cavity Length on Short Pulse Laser 57 4.3 Main Oscillation High Power Optical Fiber Amplifier 60 Chapter 5 65 Fiber Bragg Grating Sensing System Based on 1064nm Fiber Ring Laser 65 5.1 1064nm Fiber Ring Laser 65 5.2 Laser Stability and Wavelength Adjustability 67 5.3 Stress and Water Temperature Sensing 69 5.4 Ring Fiber Laser Sensing System Setup 73 Chapter 6 75 Underwater Wireless Optical Communication System 75 6.1 Development of UWOC System 75 6.2 Impact of Turbulence Factor on UWOC 78 6.3 Impact of Both Turbulence and Thermal Factors on UWOC 80 6.4 Impact of Artificial Seawater Factor on UWOC 86 Chapter 7 90 Conclusion and Future Work 90 7.1 Conclusion 90 7.2 Future Work 92 References 94 Academic Publications 104

    [1].H. Wu, Y. Guo, L. Xiong, W. Liu, G. Li, and X. Zhou, "Optical fiber-based sensing, measuring, and implementation methods for slope deformation monitoring: a review." IEEE Sensors Journal. 19, no. 8, pp.2786-2800,2019.
    [2].J. Sultana, M. S. Islam, M. R. Islam, and D. Abbott, "High numerical aperture, highly birefringent novel photonic crystal fibre for medical imaging applications." Electronics Letters. 54, no. 2, pp.61-62,2018
    [3].A. Barrias, G. Rodriguez, J. R. Casas, and S. Villalba, "Application of distributed optical fiber sensors for the health monitoring of two real structures in barcelona." Structure and Infrastructure Engineering, vol. 14, no. 7, pp. 967-985,2018.
    [4].Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, "Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser." IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, pp. 1-11, 2019.
    [5].B. Jiang, N. Xia, X. Wang, N. Hu, X. Y. Wu, Y. Zhou, and W. S. Hou, in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 1942. 2, 2017.
    [6].C. L. Chen and R. K. Wang, "Optical coherence tomography-based angiography." Biomedical optics express 8.2: pp.1056-1082. 2017.
    [7].S. Fukuda, G. Kishino, S. Hoshi, S. Beheregaray, Y. Ueno, M. Fukuda, D. Kasaragod, Y. Yasuno, and T. Oshika, Investig. Ophthalmol. Vis. Sci. 56, 3196, 2015.
    [8].Z. He, Q. Liu, J. Chen, and T. Tokunaga, "Ultrahigh resolution fiber Bragg grating sensors for quasi-static crustal deformation measurement." Journal of Lightwave Technology 35.16 pp. 3334-3346,2017.
    [9].A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Structural Control and Health Monitoring, vol. 12, pp. 269-282, 2005.
    [10].Jovanovich, D. Kim, Russell E. Trahan, and Michael S. Benbow. "Fiber optic sensing applications in the electric power industry." Electric Power Systems Research 30.3: 215-221, 1994.
    [11].S. Q. Duntley, “Light in the sea,” J. Opt. Soc. Am., vol. 53, no. 2, pp.214–233, Feb. 1963.
    [12].G. D. Gilbert, T. R. Stoner, and J. L. Jernigan, “Underwater experiments on the polarization, coherence, and scattering properties of a pulsed blue-green laser,” Proc. SPIE, vol. 0007, pp. 07 – 14, Jun. 1966.
    [13].M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1- μm probe,” Opt. Express, vol. 17, no. 15, pp. 12385-12396, 2009.
    [14].M. Fujiwara, H. Hamaguchi, and M. Tasumi. "Measurements of spontaneous Raman scattering with Nd: YAG 1064-nm laser light." Applied spectroscopy, vol. 40, no. 2, pp. 137-139,1986.
    [15].U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, pp. 831-838, 2003.
    [16].A. Weiner, “Utrafast optics” Wiley Series in Pure and Applied Optics, 2009.
    [17].Z. Luo, Y. Huang, M. Zhong, Y. Li, J. Wu, B. Xu, H. Xu, Z. Cai, J. Peng and J.Weng, “1-, 1.5- and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber ,”IEEE Journal of Lightwave Technology, vol. 32, no.24, pp.4077-4084, 2014.
    [18].Grelu, Philippe, and N. Akhmediev. “Dissipative solitons for mode-locked lasers.” Nature Photonics, vol.6, no.2, pp.84-92, 2012.
    [19].H. Xinyu, and X, Xiaosheng. "Harmonic mode-locking of asynchronous dual-wavelength pulses in mode-locked all-fiber lasers." Optics Communications 474: pp. 126079, 2020.
    [20].Z. Zhang, W. Wei, G. Sun, X. Zeng, W. Fan, L. Tang, and Y. Li, "All-fiber short-pulse vortex laser with adjustable pulse width." Laser Physics, 30(5), 055102, 2020.
    [21].廖顯奎,徐桂珠,許光裕,“當代光纖通訊”,高立圖書有限公司,台北, 2012
    [22].B. Pedersen, “The design of erbium-doped fiber amplifiers.” Journal of lightwave technology, pp.1105-1112, 1991.
    [23].D. C. Hanna, “Frequency upconversion in Tm-and Yb: Tm-doped silica fibers.”Optics Communications ,pp.187-194, 1990.
    [24].Chia-Wen Lin, “Dual-stage, High-power EYDFA: Simulation, Design and Application”, National Taiwan University of Science and Technology Master Dissertation, 2015.
    [25].L. Agrawal, A. Bhardwaj, D. Ganotra, and H. Srivastava, “Estimation and Management of Performance Limiting Factors in the Development of 1 kW Peak Power Pulsed Fiber MOPA at 1550 nm”, DSJ, vol. 71, no. 2, pp. 222-230, Mar. 2021.
    [26].L. Wangkuen, G. Jihong, J. Shibin, and Anthony W. Yu, "1.8  mJ, 3.5  kW single-frequency optical pulses at 1572  nm generated from an all-fiber MOPA system," Opt. Lett. 43, pp. 2264-2267, 2018.
    [27].A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Structural Control and Health Monitoring, vol. 12, pp. 269-282, 2005.
    [28].Jovanovich, Kim D., Russell E. Trahan, and Michael S. Benbow. "Fiber optic sensing applications in the electric power industry." Electric Power Systems Research 30.3. pp. 215-221, 1994.
    [29].安毓英、曾小東,“光纖感測與量測”,台北,五南圖書出版股份有限公司,初版,2004/03。
    [30].A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Structural Control and Health Monitoring, vol. 12, pp. 269-282, 2005.
    [31].Liang, Qiaokang, et al. "Multi-component FBG-based force sensing systems by comparison with other sensing technologies: a review." IEEE Sensors Journal 18.18 pp. 7345-7357, 2018.
    [32].H. Yongqiang, H. Chengyu, Z. Yifan, and Li. Guowei, “A Monitoring and Warning System for Expressway Slopes Using FBG Sensing Technology.” International Journal of Distributed Sensor Networks, 2018.
    [33].M. A. Khalighi and M. Uysal, ‘‘Survey on free space optical communication: A communication theory perspective,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 2231–2258, Nov. 2014.
    [34].Z. Ghassemlooy and W. O. Popoola, “Terrestrial Free-Space Optical Communications,” Rijeka, Croatia: InTech, ch. 17, pp. 356–392, 2010.
    [35].X. Zhu and J. M. Kahn, ‘‘Free-space optical communication through atmospheric turbulence channels,’’ IEEE Trans. Commun., vol. 50, no. 8, pp. 1293–1300, Aug. 2002.
    [36].S. Q. Duntley, “Light in the sea,” J. Opt. Soc. Am., vol. 53, no. 2, pp.214–233, Feb. 1963.
    [37].G. D. Gilbert, T. R. Stoner, and J. L. Jernigan, “Underwater experiments on the polarization, coherence, and scattering properties of a pulsed blue-green laser,” Proc. SPIE, vol. 0007, pp. 07 – 14, Jun. 1966.
    [38].H. M. Oubei, J. R. Duran, B. Janjua, H. Y. Wang, T. Cheng Ting, C. Yu Cheih, N. Tien Khee, K. Hao Chung, H. Jr Hau, A. Mohamed Slim, L. Gong Ru, and O. Boon S., “48 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication,” Opt. Express, vol. 23, no. 18, p. 23302, 2015.
    [39].M. P.Aniketh Das, P.Arjun, A. S.Bhaskaran, P. S.Aravind, T. R.Aswin, andV.Sadasivan, “Estimation of maximum range for underwater optical communication using PIN and avalanche photodetectors,” Proc. 2019 Int. Conf. Adv. Comput. Commun. Eng. ICACCE 2019.
    [40].H. Chen, X. Chen, J. Lu, X. Liu, J. Shi, “Toward Long-Distance Underwater Wireless Optical Communication Based on A High-Sensitivity Single Photon Avalanche Diode,” IEEE Photonics J., vol. 12, no. 3, 2020.
    [41].Y. Yang, F. He, Q. Guo, M. Wang, J. Zhang, Z. Duan "Analysis of underwater wireless optical communication system performance." Applied optics 58.36: 9808-9814, 2019.
    [42].B. Pedersen, A. Bjarklev, "The design of erbium-doped fiber amplifiers’’, J. Lightwave Technol., pp. 1105 - 1112, 1991.
    [43].D. C.Hanna, “Frequency upconversion in Tm-and Yb: Tm-doped silica fibers.” Optics Communications, pp.187-194, 1990.
    [44].P.C. Becker, N.A. Olsson and J.R. Simpson, “Erbium-doped fiber amplifiers, fundamentals and technology”, Academic Press, 1990.
    [45].L. Hsieh-Hung, “Study of (C+L)-band Erbium-doped Fiber Amplifier”, National Taiwan University of Science and Technology Master Dissertation, 2004.
    [46].Li, X. Y., Liu, S. L., Liu, M., Luo, A. P., Luo, Z. C., and Xu, W. C."Vector effects of dissipative soliton in all-fiber MOPA system." IEEE Photonics Journal, vol. 11, no. 6, pp. 1-8,2019.
    [47].Y. Chen, J. Leng, H. Xiao, T. Yao, and P. Zhou, "Pure passive fiber enabled highly efficient Raman fiber amplifier with record kilowatt power." IEEE Access, vol. 7, pp. 28334-28339, 2019.
    [48].Y. Wang, Y. Feng, Y. Ma, Z. Chang, W. Peng, Y. Sun, and C. Tang, "2.5 kW narrow linewidth linearly polarized all-fiber MOPA with cascaded phase-modulation to suppress SBS induced self-pulsing." IEEE Photonics Journal, vol. 12, no. 3, pp. 1-15, 2020.
    [49].C. Barnard, P. Myslinski, J. Chrostowski and M. Kavehrad, “Analytical model for rare-earth-doped fiber amplifiers and laser,” IEEE Journal of Quantum Electronics, vol. 30, no. 8, pp. 1817-1830, 1994.
    [50].H. Kuan luen, “Study on Fiber Laser, Fiber Sensing and Monitoring Technologies Based on Fiber Bragg Gratings”, National Taiwan University of Science and Technology Master Dissertation, 2006.
    [51].陽洋,“GVD 和 SPM 效應對超高斯脈衝影響的研究”,北京郵電大學,2008 年。
    [52].H. A. Haus, K. Tamura, L. E. Nelson and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,”IEEE Journal of Quantum Electronics, vol. 31,no. 3, pp. 591 - 598, 1995.
    [53].Wu, Chiming and Niloy K.Dutta. “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser.” IEEE journal of Quantum Electronics, pp.145-150, 2000.
    [54].C. Kai Ming, “Design and Implementation of MOPA-integrated-Additive-Pulse Mode-locking based Er-doped Fiber Ring Laser”, National Taiwan University of Science and Technology Master Dissertation, 2016.
    [55].S. Shakeri, A. Niknafs, H. Rooholamininejad, and A. Bahrampour, "Generation and compression of dissipative soliton using fiber arrays." Optical Fiber Technology, vol. 33, pp. 1-6,2017.
    [56].H. A. Haus, J. G. Fujimoto and E. P. Ippen, “Analytic theory of additive-pulse and Kerr lens mode-locking,” IEEE Journal of Quantum Electronics, vol. 28, no. 10, pp. 2086-2096, 1992.
    [57].K. Tamura, E. P. Ippen, H. A. Haus and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Optics Letters, vol. 18, no. 13, pp. 1080-1082, 1993.
    [58].Q. Liu, T. Tokunaga, K. Mogi, H. Matsui, H. F. Wang, T. Kato, and Z. He, “Ultrahigh resolution multiplexed fiber Bragg grating sensor for crustal strain monitoring,” IEEEPhotonics Journal, vol. 4, no. 3, pp. 996-1002, 2012.
    [59].张自嘉. “光纤光栅理论基础与传感技术.” 科学出版社, 2009.
    [60].K. O. Hill and M. Gerald, “Fiber Bragg grating technology fundamentals and overview,” IEEE/OSA Journal of Lightwave Technology, vol. 15, pp. 1263-1276, 1997.
    [61].L. Shey Cheng, “Investigation of Fiber Bragg Gratings and Their Applications in Optical Network Modules.” National Taiwan University of Science and Technology Master Dissertation, 2002.
    [62].Ming-Hung Chang, “reconfigurable optical add/drop multiplexers with power compensation function.” National Taiwan University of Science and Technology Master Dissertation, 2005.
    [63].A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE Journal of Quantum Electronics, vol. 9, pp. 919-933, 1973.
    [64].畢衛紅, 張闖, “光纖 Bragg 光柵的反射特性研究.” 感測器技術, 2003, 22.8: 18-20.
    [65].K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett., vol.62, no.10, pp. 1035-1037, 1993.
    [66].M. A. Khalighi and M. Uysal, ‘‘Survey on free space optical communication: A communication theory perspective,’’ IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 2231–2258, Nov. 2014.
    [67].Z. Ghassemlooy and W. O. Popoola, “Terrestrial Free-Space Optical Communications.” Rijeka, Croatia: In Tech, ch. 17, pp. 356–392, 2010.
    [68].X. Zhu and J. M. Kahn, ‘‘Free-space optical communication through atmospheric turbulence channels,’’ IEEE Trans. Commun., vol. 50, no. 8, pp. 1293–1300, Aug. 2002.
    [69].J. R. V. Zaneveld, “Light and water: Radiative transfer in natural waters,” 1995.
    [70].R. W. Spinrad, K. L. Carder, and M. J. Perry, Ocean optics. Oxford University Press, vol. 25, 1994.
    [71].C. Mobley, Light and Water: Radiative Transfer in Natural Waters. Academic Press, 1994.
    [72].Z. Xuanfeng, C. Zilun, Z. Hang, and H. Jing, "Mode-field adaptor between large-mode-area fiber and single-mode fiber based on fiber tapering and thermally expanded core technique," Appl. Opt. 53, 5053-5057, 2014.
    [73].S. K. Liaw, Y. W. Lee, H. W. Huang, and W. F. Wu, Multiwavelength linear-cavity SOA-based laser array design for multiparameter and long-haul sensing,” IEEE Sens. J., vol. 15, no. 6, pp. 3353–3358, 2015.
    [74].T. Scholz, "Laser based underwater communication experiments in the Baltic Sea," 2018 Fourth Underwater Communications and Networking Conference (UComms), Lerici, 2018
    [75].E. Akbari, S. K. Alavipanah, M. Jeihouni, M. Hajeb, D. Haase, S. A. Alavipanah, “Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods.” Water, 9, 936, 2017
    [76].Wikipedia, “Sea surface temperature”
    [77].G. Cossu, A. Sturniolo, A. Messa, S. Grechi, D. Costa, A. Bartolini, D. Scaradozzi, A. Caiti, E. Ciaramella, "Sea-trial of optical ethernet modems for underwater wireless communications." Journal of Lightwave Technology 36.23 pp. 5371-5380, 2018.
    [78].H. Yi Zhi, “Design and Measurement of Two Type-Fiber Lasers Operating at 1064 nm.” National Taiwan University of Science and Technology Master Dissertation, 2018.
    [79].C. Hung Wen, “Design and Implementation of High-power and Short-pulse Fiber Laser” National Taiwan University of Science and Technology Master Dissertation, 2015.
    [80].C. Chia Chun, “System Design and Performance Measurement of the Blue-light Based Underwater Communications.” National Taiwan University of Science and Technology Master Dissertation, 2020.
    [81].S. -K. Liaw *, D. C. Li, Y. L. Yu, H. W. Chen, H. C. Lee, H. -H. Tsai “Design and implementation of low-cost and high-efficient 1550nm short-pulse fiber laser”, Journal of Optoelectronics and Advanced Materials (JOAM) iss. 3-4/2021.
    [82].S. K. Liaw*, D. C Li, H. C. Lee, Y. Z. Huang, C. S. Shin, Y. W Lee, “Multiple Parameters Optical Sensing Using Fiber Ring Laser Based on Bragg Gratings and 1064 nm Semiconductor Optical Amplifier”, Optics and Spectroscopy, Vol. 127, No. 6, pp. 1057-1061, 2019.
    [83].D. C. Li, C. C. Chen, S. K. Liaw*, S. Afifah, J. Y. Sung, and C. H. Yeh. "Performance Evaluation of Underwater Wireless Optical Communication System by Varying the Environmental Parameters." In Photonics, vol. 8, no. 3, p. 74. Multidisciplinary Digital Publishing Institute, 2021.

    無法下載圖示 全文公開日期 2026/09/13 (校內網路)
    全文公開日期 2031/09/13 (校外網路)
    全文公開日期 2031/09/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE