簡易檢索 / 詳目顯示

研究生: 彭昶銘
Chang-Ming Peng
論文名稱: 三級高功率鉺鐿共摻光纖放大器研製與應用
Three-stage, High-power EYDFA:Investigation and Application
指導教授: 周錫熙
Hsi-hsir Chou
廖顯奎
Shien-Kuei Liaw
口試委員: 張文彥
Wen-yan Chang
黃振發
Jen-Fa Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 74
中文關鍵詞: 摻鉺光纖放大器高功率鉺鐿共摻光纖放大器被動光網路
外文關鍵詞: Erbium-doped fiber amplifier, high-power, Erbium/Ytterbium co-doped fiber amplifier, Passive optical network.
相關次數: 點閱:257下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光纖放大器在現今光纖通訊中已佔據了舉足輕重的地位,隨著通訊傳輸距離越來越遠,習用摻鉺光纖放大器之功率已不敷使用,因此鉺鐿共摻光纖放大器的崛起在所難免。本論文的主旨是利用雙包層結構之鉺鐿共摻光纖作為主要增益介質,輔以高功率泵激雷射製作出高功率鉺鐿共摻光纖放大器。
    在本論文中,首先利用前向泵激架構建構出第二級泵激鉺鐿共摻光纖放大器,在長度優化後,電流開至3A訊號增益即可達21.09 dB,此階段並沒將驅動電流調整至泵激雷射極限,主要是為了保護泵激雷射避免損壞,泵激雷射轉換效率約0.63 W/A。接著將實驗架構延伸至第二級與第三級泵激架構,同時增加第二顆泵激雷射與第二段增益介質,此階段增加了散熱機制與泵激雷射額定電壓保護機制,最大電流可開至6.4A。首先對第二級與第三級泵激架構進行長度優化,屢經測試後,選用2.5 m + 2.7 m的增益光纖長度組合作為增益介質長度,接著針對雙前向泵激架構與雙向泵激架構作比較分析,雙前向泵激架構在訊號光功率0 dBm、電流6.4A時訊號增益可達32.8 dB,雜訊指數為5.86 dB,而雙向泵激架構在訊號光功率0 dBm、電流6.4 A時訊號增益僅為30.95 dB,雜訊指數為6.27 dB。接著為了降低放大器的雜訊指數,建構出第一級低功率光纖放大器,在訊號光功率0 dBm,泵激光源皆1 A條件下,雜訊指數為4.01 dB,最後將第一級與第二級第三級放大器合而為一得到訊號增益高達33.96 dB,雜訊指數4.54 dB之高功率鉺鐿共摻光纖放大器。
    第五章使用高功率鉺鐿共摻光纖放大器作為分埠傳輸系統中之功率放大器,採用偽隨機二進位制編碼調變,調變速率為10 Gb/s,針對32-port與64-port兩種分埠傳輸系統進行誤碼率量測與觀察其眼圖,兩種傳輸系統誤碼率 10-9時的功率差為0.88 dB。第六章為結論與未來展望。


    Fiber amplifiers have played an important role in fiber optical communication nowadays. The requirement of transmission distance is longer then ever. However, a conventional Erbium-doped fiber amplifiers (EDFAs) has not enough power to compensate the fiber loss. Thence, the invention of Erbium/Ytterbium co-doped fiber amplifier (EYDFA) is very important. In this thesis we investigate a high-power EYDFA by using double cladding Erbium/Ytterbium co-doped fiber and high power pumping laser diode (LD).
    The second-stage fiber amplifier is in forward pumping scheme introduced in Chapter three. After optimizing the gain medium length, 21.09 dB of signal gain could be achieved under 3A driving current. The pump current didn’t push to its limitation in order to protect the pumping LD. Power efficiency of the pumping LD was 0.63 W/A. In Chapter four, the third-stage pumping fiber amplifier was investigated. By appropriate cooling control and protecting mechanism for the pump LD, the maximum current could be pushed to 6.4A. After several times measurement, the optimum length of gain medium was 2.5 m + 2.7 m. Furthermore, two different pumping schemes of double forward pumping scheme and bi-directional pumping scheme were adopted and compared. When the signal power was set 0 dBm and the pumping current was set 6.4A, signal gain of 32.8 dB and noise figure (NF) of 5.86 dB were achieved in the double forward pumping scheme. Under the same condition, the signal gain was 30.95 dB and the NF was 6.27 dB for bi-directional pumping scheme. It is found that no matter signal gain or NF, double forward pumping scheme are better than forward pumping scheme EYDFA, both in signal gain and NF. The first stage pumping fiber amplifier has low NF of 4.01 dB, while the second and third stages were integrated to become a high-power EYDFA. A maximum signal gain of 33.96 dB and noise figure of 4.54 dB were achieved.
    In Chapter five, high power EYDFA to be used as a power amplifier in a multi-port transmission system was proposed and demonstrated. Pseudo-random binary sequence (PRBS) format with 10 Gb/s modulation speed was used. The eye diagrams were observed and bit error rate (BER) performance difference between 32-port and 64-port splitting passive optical network was only 0.88 dB at BER of 10-9. Conclusion and suggested future work are addressed in Chapter six.

    目錄 摘要 I Abstract II 圖表索引 IV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 5 1.4 論文架構 8 第二章 光纖放大器原理介紹 2.1 光纖放大器原理 9 2.1.1 飽和增益 13 2.1.2 雜訊指數 14 2.1.3 轉換效率 16 2.2 泵激光源介紹 17 2.2.1 前向泵激架構與後向泵激架構比較與分析 19 2.3 高功率鉺鐿共摻光纖放大器組建順序 22 第三章 第二級光纖放大器架構與分析 3.1 鉺鐿共摻光纖放大器參數分析 23 3.2 高功率光纖放大器被動元件介紹 28 3.3 高功率光纖放大器第二級泵激架構 30 3.3.1 架構分析 30 3.3.2 泵激架構鉺鐿共摻光纖長度優化 31 3.4 本章小結 33 第四章 多級高功率光纖放大器分析 4.1 第二級與第三級泵激高功率光纖放大器 34 4.1.1 架構分析 34 4.1.2 鉺鐿共摻光纖長度優化 36 4.1.3 雙前向泵激架構與雙向泵激架構比較分析 38 4.1.4 極化相關增益量測 47 4.2 三級泵激架構高功率光纖放大器 48 4.2.1 架構分析 48 4.3 本章小結 53 第五章 高功率光纖放大器應用於多埠傳輸系統 5.1 誤碼率與眼圖介紹 55 5.2 多埠傳輸系統實驗方式一 (使用VOA與Coupler衰減) 59 5.3 多埠傳輸系統實驗方式一 (實際使用SMF與Splitter) 61 5.4 本章小結 65 第六章 結論與未來展望 6.1 結論 66 6.2 未來展望 68 參考文獻 70

    [1] P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-Doped Fiber Amplifiers, Fundamentals and Technology”, Academmic press, 1999.
    [2] L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, “Dispersion Compensating Fibers”, Optical Fiber Technology, vol. 6, pp. 164-180, 2000.
    [3] J. Noda, K. Okamoto and Y. Sasaki, “Polarization-Maintaining Fibers and Their Applications”, Journal of Lightwave Technology, vol. 4, pp. 1071-1089, 1986.
    [4] E. M. Dianov, “Raman Fiber Amplifiers”, Proceedings of SPIE , vol. 4083, 2000.
    [5] J. Mrk, M. L. Nielsen and T. W. Berg, “Semiconductor Optical Amplifiers”, Optics & Photonics News, July 2003.
    [6] P. P. Smyth, D. Wood, S. Ritchie and S. Cassidy, “Optical Wireless: New Enabling Transmitter Technologies,” IEEE International Conference on Communications, Geneva, Switzerland, vol. 1, pp. 562-566, 1993.
    [7] L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode Fiber Resonator”, Opt. Lett., vol. 7, pp. 288-290, 1982.
    [8] L. Zenteno, “High-Power Double-Clad Fiber Lasers”, Journal of Lightwave Technology, vol. 11, pp. 1435-1446, 1993.
    [9] OFS, http://fiber-optic-catalog.ofsoptics.com/item/rare-earth-doped-optical-fibers/Erbium-Ytterbium-doped-optical-fibers/1914#, CLADDING PUMPED FIBERS Specification Sheet, “Erbium-Ytterbium Cladding Pumped Fibers”.
    [10] E. Yahel and A. Hardy, “Efficiency Optimization of High-power, Er3+ Yb3+-codoped Fiber Amplifiers for Wavelength-Division-Multiplexing Applications”, J. Opt. Soc. Am. B/ vol. 20, pp. 1189-1197, 2003.
    [11] Y. Hu, S. Jiang, T. Luo, K. Seneschal, M. Morrell and F. Smektala, “Performance of High-Concentration Er3+–Yb3+- codoped Phosphate Fiber Amplifiers”, IEEE Photon. Technol. Lett., vol. 13, pp. 657-659, 2001.
    [12] W. Zhang, J, Ning, and Q. Han, “Simulation and Experiment of Erbium/Ytterbium Co-dope Double-clad Fiber Amplifier”, Microwave and Opt. Technol. Lett., vol. 54, pp. 1332-1335, 2012.
    [13] G. P. Afrawal, “Fiber-Optical Communication System”, John Wiley & Sons, Inc., New York, USA, 1997.
    [14] Y. Sun, J. L. Zyskind and A. K. Srivastava, “Average Inversion Level, Modeling, and Physics of Erbium-doped Fiber Amplifiers”, IEEE Jorunal on Selected Topics in Quantum Electronics, vol. 3, pp. 991-1007, 1997.
    [15] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burr. “Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect “, Phys. Rev. Lett. vol. 53, pp.2173, 1984.
    [16] 蕭淵隆, “高效益光纖放大器之研製” , 台灣科技大學碩士論文, 2006年 6月.
    [17] J. E. Townsend, W. L. Barnes, K. P. Jedrzejewski, and S. G. Grubb, “Yb3+ Sensitized Er3+ Doped Silica Optical Fibre with Ultrahigh Transfer Efficiency and Gain,” Electron. Lett., vol. 27, pp. 1958-1959, 1991.
    [18] P. K. Cheo and G. G. King, “Clad-pumped Yb, Er Codoped Fiber Lasers,” IEEE Photon. Technol. Lett., vol. 13, pp. 188-190, 2001
    [19] S. Toroghi, A. K. Jafari, and A. H. Golpayegani , “A Model of Lasing Action in a Quasi-Four-Level Thin Active Media”, IEEE Journal of Quantum Electronics, vol. 46, pp. 871-876, 2010.
    [20] M. Karasek, “Optimum Design of Er3+- Yb3+ Codoped Fibers for Large-signal high –pump –power Application,” IEEE J. Quantum Electron., vol. 33, pp. 1699-1705, 1997.
    [21] E. Yahel and A. Hardy, “Efficiency Optimization of High-power, Er3+- Yb3+ Codoped Fiber Amplifiers for Wavelength-division-multiplexing Application,” J. Opt. Soc. Am. B, vol. 20 pp. 1189-1197, 2003.
    [22] C. R. Giles and E. Desuvire, “Modeling Erbium-doped Fiber Amplifiers,” J. Light. Technol., vol. 9, pp. 271-283, 1991.
    [23] Y. Jeong, J. K. Sahu, D. B. S. Soh, C. A. Codemard, and J. Nilsson, “Tunable single-frequency Ytterbium-sensitized Erbium-doped Fiber MOPA Source with 150 W (51.8 dBm) of Output Power at 1563 nm,” in Proc. OFC, Anaheim, CA, no. PDP1, 2005.
    [24] J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode Operation of a Coiled Multimode Fiber Amplifier,” Opt. Lett., vol. 25, pp. 442-444, 2000.
    [25] W. Imajuku, A. Takada and Y. Yamabayashi, “Inline Coherent Optical Amplifier with Noise Figure Lower than 3dB Quantum Limit”, Electron. Lett., vol. 36, pp. 63-64, 2000.
    [26] J. F. Michel, “Rare-Earth-Doped Fiber Lasers and Amplifier”, Marcel Dekker, 2001
    [27] D. Derickson, “Fiber Optical Test and Measurement”, Prentice Hall PTR, New Jersey, USA, 1998.
    [28] R. S. Tucker and D. M. Baney, “Optical Noise Figure:Theory and Measurements”, European Conference on Optical Communications (ECOC2000), OFC, Anaheim, CA, vol. 3, pp. 1176-1184, 2000.
    [29] R. D. Muro, S. J. Wilson, N. E. Jolley, B. S. Farley, A. Robinson, and J. Mun, “Measurement of the Quantum Efficiency of Long Wavelength EDFAs with and without an Idler Signal”, Optical Fiber Communications Conference, Madrid, Spain, vol. 1, pp. 419-420, 1999.
    [30] Fiber Core, http://fibercore.com/product/erbium-ytterbium-doped-fiber, “Dual Clad Erbium/Ytterbium Doped Fiber”.
    [31] M. G. Taylor, “Observation of New Polarization Dependent Effect in Long Haul Optical Amplified System,” IEEE Photon. Technol. Lett., pp. 1244-1246, 1993.
    [32] V. J. Mazurczyk, “Polarization Dependent Gain in Erbium-doped Fibers,” IEEE Photon. Technol. Lett., pp. 616–618, 1994.
    [33] E. Lichtmann, “Performance Degradation Due to Polarization Dependent Gain and Loss in Lightwave Systems with Optical Amplifiers,” Electron. Lett., vol. 29, pp. 1971–1972, 1993.
    [34] I. Kim, S. Xu and Y. Rahmat-Samii, “Generalised correction to the Friis formula: quick determination of the coupling in the Fresnel region”, IET Microwaves, vol. 7, pp. 1092-1101, 2013.
    [35] 王懷慶, “無限光通訊系統之擴束設計量測與應用” , 台灣科技大學碩士論文, 2015年 1月.
    [36] R. Ramaswami and K. N. Sivarajan, “Optical Network,” Morgan Kaufmann, USA, pp. 258-263, 2002.
    [37] D. Derickson, “Fiber Optics Test and Measurement,” 1st, Prentice Hall, New Jersey, USA, 1998.
    [38] W. Freude, R. Schmogrow, B. Nebendah, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer, M. Dreschmann, M. Huebner, C. Koos, J. Becker and J. Leuthold, “Quality Metrics for Optical Signals: Eye Diagram, Q-factor, OSNR, EVM and BER,” IEEE 14th International Conference on Transparent Optical Networks, Coventry, UK, pp. 1-4, 2012.
    [39] G. Qin, H. Sotobayashi, M. Tsuchiya, A. Mori, T. Suzuki, and Y. Ohishi, “Stimulated Brillouin Scattering in a Single-ModeTellurite Fiber for Amplification, Lasing, and Slow Light Generation”, Journal of Lightwave Technology, vol. 26, pp. 492-498, 2008.
    [40] G. Sobon , P. Kaczmarek and K. M. Abramski, “Erbium–Ytterbium co-doped Fiber Amplifier Operating at 1550 nm with Stimulated Lasing at 1064 nm”, Optics Communications 285 , pp. 1929–1933, 2012.

    QR CODE