簡易檢索 / 詳目顯示

研究生: 劉育丞
Yu-Cheng Liu
論文名稱: 含氨酯-丙烯酸丁酯-硫代碳酸酯寡聚物的鋰離子複合電解質及其固態電池長周期充放電
Composite electrolytes based on an ion-conducting oligomer of urethane-acrylate-thiocarbonate and the long cycle performances of solid state battery
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 劉如熹
Ru-Shi Liu
蔡秉均
Ping-Chun Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 127
中文關鍵詞: 聚氨酯丙烯酸丁酯固態鋰離子電池固態聚合物電解質複合電解質可逆加成-斷裂鏈轉移法
外文關鍵詞: polyurethane acrylate, solid-state lithium-ion battery, solid polymer electrolyte, composite electrolyte, reversible addition-fragmentation chain transfer polymerization
相關次數: 點閱:327下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 固態電池普遍存在充放電壽命顯著低於鋰離子電池的問題,我們提出一種新穎的複合電解質,根據此電解質的固態鋰金屬電池,若充放電流0.1C,放電深度100%,圈數壽命(仍保有最高電容量的80%)可望達到575圈,且電容量接近理論值,若電流提高至0.2C – 0.5C,壽命與電容量都低於0.1C的表現,但仍有相當低的電容量充放損失及可觀的電容量。
    複合電解質包括自製的氨酯-丙烯酸丁酯寡聚物(PUA),聚偏二氟乙烯-共-三氯乙烯(PVdF-HFP)長鏈高分子,雙氟磺酼亞胺鋰(LiFSI),石榴石結構鋰鑭鋯鉭氧(LLZTO)粉末,寡聚物乃是電解質的核心,聚合分子量6000 - 7000 g mol1,添加鋰鹽後玻璃轉化溫度低於室溫,21.1 C,因此混合PVdF-HFP後具有黏著劑的特性及充分的機械強度,研究中我們合成兩種複合電解質,自撐形式的膜電解質標示作PUA-FS,另一種電極塗層的電解質標示作PUA-EC。
    PUA-FS及PUA-EC固態電解質的鋰離子遷移數與電位窗口很相似,鋰離子遷移數0.31-0.34,電位窗口為4.6 V,兩者均具有類似三明治的結構,離子導體PUA顆粒聚集成導管並包裹在富PVdF-HFP的表面膜中,兩者的組成不盡相同,PUA-FS需要更高含量的PVdF-HFP才能有充分的機械強度,因此PUA-FS的PUA含量低於PUA-EC,PUA-FS的導電性不如PUA-EC。在30°C時PUA-FS導電率為4.91×10-4 S cm-1,而PUA-EC則為5.7×10-4 S cm-1。
    固態鋰離子電池的組合包括,陰極磷酸鋰鐵LFP,陽極鋰金屬,固態複合電解質PUA-FS或PUA-EC,充放電池窗口2.0 - 4.0 V,並在室溫下,以0.1C、0.2C、0.3C與0.5C進行恆電流充放電測試,充放電深度100%,PUA-FS電池在循環穩定性和C-rate容量方面明顯優於PUA-EC電池,PUA-FS電池0.1C放電電容量最高169.7 mAh g1,單圈電容量損失0.036%,而0.3C放電電容量最高為147.0 mAh g1,單圈電容量損失0.069%,目前0.1C充放電超過250個循環;0.3C充放電超過600個循環。


    A common problem with solid-state battery is its cycle life is much shorter than those of lithium ion batteries. We prepare a novel composite electrolyte, and based on this electrolyte, the solid-state lithium metal battery displays a low capacity loss, an expected 575 cycles at 0.1C and 100% depth of discharge before its capacity drops to 80% of its maximum capacity. When the charging current is raised to 0.2C – 0.5C, the cycle life and capacity are less than those of 0.1C. Nonetheless, the performances as a solid-state battery are still respectable.
    The composite electrolyte contains an in-house oligomer of polyurethane-acrylate-thiocarbonate (PUA), long-chain PVdF-HFP, LiFSI lithium salt, and LLZTO additive. The PUA oligomer is the core of composite electrolyte, 6000 - 7000 g mol1 in molecular weight. Its glass transition temperature is low with 30 wt% LiFSI, 21.1 C. Therefore, its PVdF-HFP mixture exhibits the properties of adhesive and sufficient mechanical strength. In this study, we synthesize two composite electrolytes; the free-standing membrane electrolyte denoted as PUA-FS, and the electrode-coated membrane electrolyte denoted as PUA-EC.
    The two composite electrolytes share high similarities in lithium transference number (tLi+) and potential window (U); tLi+=0.31-0.34, U =4.6 V. Both have a sandwich-like structure with PUA aggregates coated with and wrapped in PVdF-HFP rich surface films. However, PUA-FS has a higher PVdF-HFP content and less PUA content than PUA-EC, since the free-standing membrane requires sufficient mechanical strength. Hence, PUA-FS is less conductive than PUA-EC; 4.9104 S cm1 in contrast to 5.7104 S cm1 at 30 C.
    The solid-state battery is assembled with lithium iron phosphate (LFP) as the cathode, lithium metal foil as the anode, and PUA-FS or PUA-EC as electrolyte. Galvanostatic charge/discharge cycles are performed at room temperature between 2.0 - 4.0 V, with charging current 0.1 C, 0.2C, 0.3C, and 0.5 C at 100% depth of discharge. The PUA-FS battery is evidently superior to the PUA-EC battery in cycle stability and rate capacity. For the PUA-FS battery, the maximum capacity at 0.1C is 169.7 mAh g-1, the capacity loss is 0.036% per cycle, and the current cycle number exceeds 250. The maximum capacity at 0.3C is 147.0 mAh g1, the capacity loss is 0.069% per cycle, and the current cycle number exceeds 600.

    摘 要 I Abstract III 目錄 V 圖目錄 X 表目錄 XV 第一章 緒論 1 1.1前言 1 1.2 研究動機 8 第二章 文獻回顧 11 2.1固態電解質 11 2.2 聚合物電解質簡介 13 2.2.1 固態聚合物電解質 13 2.2.2 膠態聚合物電解質 16 2.2.3 添加陶瓷材料至聚合物電解質的改質 17 2.2.4 聚氨酯丙烯酸丁酯 18 2.3異氰酸酯反應性對聚氨酯影響 20 2.4可逆加成-斷裂鏈轉移聚合法(RAFT) 22 第三章 實驗方法與步驟 24 3.1 實驗耗材藥品與儀器設備 24 3.1.1 實驗藥品 24 3.1.2 實驗儀器與設備 26 3.1.3 材料鑑定與儀器設備 27 3.1.4 電化學測試儀器與設備 27 3.2 實驗流程圖 29 3.2.1 可逆加成斷鏈轉移合成聚合法合成聚氨酯丙烯酸丁酯 29 3.2.2 自撐性電解質 (PUA-FS)與電極塗層電解質 (PUA-EC) 31 3.2.3 電化學量測組裝 32 3.2.4 電化學分析 34 3.3 實驗方法 35 3.3.1以可逆加成斷鏈轉移合成聚合法合成聚氨酯丙烯酸丁酯 35 3.3.2 CR2032電池墊片前處理清洗 36 3.3.3 PUA-EC固態複合電解質離子電導率電池製備 36 3.3.4 PUA-EC固態複合電解質電位窗口電池製備 37 3.3.5 PUA-EC固態複合電解質鋰離子遷移常數電池製備 38 3.3.6 PUA-EC固態鋰離子電池製備 39 3.3.6.1正極置備(LiFePO4) 39 3.3.6.2 PUA-EC固態鋰離子電池 39 3.3.7 PUA-FS固態複合電解質離子電導率電池製備 41 3.3.8 PUA-FS固態複合電解質電位窗口電池製備 41 3.3.9 PUA-FS固態複合電解質鋰離子遷移常數電池製備 42 3.3.10 PUA-FS固態鋰離子電池製備 43 3.4固態複合電解質材料鑑定與分析 44 3.4.1傅立葉紅外線光譜儀(FTIR) 44 3.4.2寡聚物黏度分子量分析 45 3.4.3差示掃描量熱法(DSC) 46 3.4.4高解析度場發射掃描式電子顯微鏡(SEM) 46 3.5固態複合電解質電化學特性分析 47 3.5.1交流阻抗分析(AC Impedance) 47 3.5.2循環伏安法(Cyclic Voltammetry) 49 3.5.3鋰離子遷移數 (T+ Number) 50 3.5.4固態鋰離子電池製備 51 第四章 結果與討論 52 4.1傅立葉紅外線光譜光譜圖 (FTIR) 52 4.2高分子分子量量測 54 4.3玻璃轉化溫度(Tg) 56 4.4複合電解質橫截面與表面SEM分析 58 4.4.1複合電解質PUA-FS橫截面與表面SEM分析 58 4.4.2複合電解質PUA-EC橫截面與表面SEM分析 62 4.5離子電導率 67 4.5.1複合電解質PUA-EC之離子電導率 67 4.5.2複合電解質PUA-FS之離子電導率 69 4.6循環伏安法(Cyclic Voltammetry) 73 4.7鋰離子遷移常數(T+ Number) 76 4.8固態鋰離子電池測試 81 4.8.1 PUA-FS固態鋰離子電池以0.1C充放結果 82 4.8.2 PUA-FS固態鋰離子電池以0.2C充放結果 85 4.8.3 PUA-FS固態鋰離子電池以0.3C充放結果 87 4.8.4 PUA-FS固態鋰離子電池以0.5C充放結果 89 4.8.5 PUA-FS固態鋰離子電池之Rate capacity 91 4.8.6 PUA-EC固態鋰離子電池以0.1C充放結果 93 4.8.7 PUA-EC固態鋰離子電池之Rate capacity 97 第五章 結論 98 參考文獻 100

    1. Long, L.; Wang, S.; Xiao, M.; Meng, Y., Polymer electrolytes for lithium polymer batteries. Journal of Materials Chemistry A 2016, 4 (26), 10038-10069.
    2. Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E., On a theory of the van der Waals adsorption of gases. Journal of the American Chemical society 1940, 62 (7), 1723-1732.
    3. Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N., A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry 2020, 59 (1), 83-99.
    4. Huang, W.; Feng, X.; Han, X.; Zhang, W.; Jiang, F., Questions and Answers Relating to Lithium-Ion Battery Safety Issues. Cell Reports Physical Science 2021, 2 (1), 100285.
    5. Song, J. Y.; Wang, Y. Y.; Wan, C. C., Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of Power Sources 1999, 77 (2), 183-197.
    6. Yi, J.; Guo, S.; He, P.; Zhou, H., Status and prospects of polymer electrolytes for solid-state Li–O2 (air) batteries. Energy & Environmental Science 2017, 10 (4), 860-884.
    7. 孫清華, 最新可充電電池技術大全. 1979.
    8. Fenton, D. E., Complexes of alkali metal ions with poly (ethylene oxide). Polymer 1973, 14, 589.
    9. Wright, P. V., Electrical conductivity in ionic complexes of poly(ethylene oxide). British Polymer Journal 1975, 7 (5), 319-327.
    10. Koksbang, R.; Olsen, I. I.; Shackle, D., Review of hybrid polymer electrolytes and rechargeable lithium batteries. Solid State Ionics 1994, 69 (3), 320-335.
    11. Alarco, P.-J.; Abu-Lebdeh, Y.; Abouimrane, A.; Armand, M., The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors. Nature Materials 2004, 3 (7), 476-481.
    12. Fan, L.-Z.; Hu, Y.-S.; Bhattacharyya, A. J.; Maier, J., Succinonitrile as a Versatile Additive for Polymer Electrolytes. Advanced Functional Materials 2007, 17 (15), 2800-2807.
    13. Ha, H.-J.; Kil, E.-H.; Kwon, Y. H.; Kim, J. Y.; Lee, C. K.; Lee, S.-Y., UV-curable semi-interpenetrating polymer network-integrated, highly bendable plastic crystal composite electrolytes for shape-conformable all-solid-state lithium ion batteries. Energy & Environmental Science 2012, 5 (4), 6491-6499.
    14. Choi, K.-H.; Kim, S.-H.; Ha, H.-J.; Kil, E.-H.; Lee, C. K.; Lee, S. B.; Shim, J. K.; Lee, S.-Y., Compliant polymer network-mediated fabrication of a bendable plastic crystal polymer electrolyte for flexible lithium-ion batteries. Journal of Materials Chemistry A 2013, 1 (17), 5224-5231.
    15. Choi, K.-H.; Cho, S.-J.; Kim, S.-H.; Kwon, Y. H.; Kim, J. Y.; Lee, S.-Y., Thin, Deformable, and Safety-Reinforced Plastic Crystal Polymer Electrolytes for High-Performance Flexible Lithium-Ion Batteries. Advanced Functional Materials 2014, 24 (1), 44-52.
    16. Kim, S.-H.; Choi, K.-H.; Cho, S.-J.; Park, J.-S.; Cho, K. Y.; Lee, C. K.; Lee, S. B.; Shim, J. K.; Lee, S.-Y., A shape-deformable and thermally stable solid-state electrolyte based on a plastic crystal composite polymer electrolyte for flexible/safer lithium-ion batteries. Journal of Materials Chemistry A 2014, 2 (28), 10854-10861.
    17. Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G., Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem 2019, 5 (9), 2326-2352.
    18. Tran, H. K.; Wu, Y.-S.; Chien, W.-C.; Wu, S.-h.; Jose, R.; Lue, S. J.; Yang, C.-C., Composite Polymer Electrolytes Based on PVA/PAN for All-Solid-State Lithium Metal Batteries Operated at Room Temperature. ACS Applied Energy Materials 2020, 3 (11), 11024-11035.
    19. Al-Salih, H.; Huang, A.; Yim, C.-H.; Freytag, A. I.; Goward, G. R.; Baranova, E.; Abu-Lebdeh, Y., A Polymer-Rich Quaternary Composite Solid Electrolyte for Lithium Batteries. Journal of The Electrochemical Society 2020, 167 (7), 070557.
    20. Zha, W.; Chen, F.; Yang, D.; Shen, Q.; Zhang, L., High-performance Li6.4La3Zr1.4Ta0.6O12/Poly(ethylene oxide)/Succinonitrile composite electrolyte for solid-state lithium batteries. Journal of Power Sources 2018, 397, 87-94.
    21. Jiang, T.; He, P.; Wang, G.; Shen, Y.; Nan, C.-W.; Fan, L.-Z., Solvent-Free Synthesis of Thin, Flexible, Nonflammable Garnet-Based Composite Solid Electrolyte for All-Solid-State Lithium Batteries. Advanced Energy Materials 2020, 10 (12), 1903376.
    22. Wei, T.; Zhang, Z.-H.; Wang, Z.-M.; Zhang, Q.; Ye, Y.-s.; Lu, J.-H.; Rahman, Z. u.; Zhang, Z.-W., Ultrathin Solid Composite Electrolyte Based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/Succinonitrile for High-Performance Solid-State Lithium Metal Batteries. ACS Applied Energy Materials 2020, 3 (9), 9428-9435.
    23. Yang, T.; Zheng, J.; Cheng, Q.; Hu, Y.-Y.; Chan, C. K., Composite Polymer Electrolytes with Li7La3Zr2O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology. ACS Applied Materials & Interfaces 2017, 9 (26), 21773-21780.
    24. Yu, R.; Bao, J.-J.; Chen, T.-T.; Zou, B.-K.; Wen, Z.-Y.; Guo, X.-X.; Chen, C.-H., Solid polymer electrolyte based on thermoplastic polyurethane and its application in all-solid-state lithium ion batteries. Solid State Ionics 2017, 309, 15-21.
    25. Li, Y.; Zhang, W.; Dou, Q.; Wong, K. W.; Ng, K. M., Li7La3Zr2O12 ceramic nanofiber-incorporated composite polymer electrolytes for lithium metal batteries. Journal of Materials Chemistry A 2019, 7 (7), 3391-3398.
    26. Xu, H.; Zhang, X.; Jiang, J.; Li, M.; Shen, Y., Ultrathin Li7La3Zr2O12@PAN composite polymer electrolyte with high conductivity for all-solid-state lithium-ion battery. Solid State Ionics 2020, 347, 115227.
    27. Zhang, W.; Wang, X.; Zhang, Q.; Wang, L.; Xu, Z.; Li, Y.; Huang, S., Li7La3Zr2O12 Ceramic Nanofiber-Incorporated Solid Polymer Electrolytes for Flexible Lithium Batteries. ACS Applied Energy Materials 2020, 3 (6), 5238-5246.
    28. Zhang, W.; Yi, Q.; Li, S.; Sun, C., An ion-conductive Li7La3Zr2O12-based composite membrane for dendrite-free lithium metal batteries. Journal of Power Sources 2020, 450, 227710.
    29. Liu, W.; Liu, N.; Sun, J.; Hsu, P.-C.; Li, Y.; Lee, H.-W.; Cui, Y., Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers. Nano Letters 2015, 15 (4), 2740-2745.
    30. Wang, X.; Zhang, Y.; Zhang, X.; Liu, T.; Lin, Y.-H.; Li, L.; Shen, Y.; Nan, C.-W., Lithium-Salt-Rich PEO/Li0.3La0.557TiO3 Interpenetrating Composite Electrolyte with Three-Dimensional Ceramic Nano-Backbone for All-Solid-State Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2018, 10 (29), 24791-24798.
    31. Tu, J.; Wu, K.; Jiang, J.; Wu, M.; Hu, Q.; Xu, G.; Lou, P.; Zhang, W., A novel ceramic/polyurethane composite solid polymer electrolyte for high lithium batteries. Ionics 2021, 27 (2), 569-575.
    32. Zhang, X.; Liu, T.; Zhang, S.; Huang, X.; Xu, B.; Lin, Y.; Xu, B.; Li, L.; Nan, C.-W.; Shen, Y., Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes. Journal of the American Chemical Society 2017, 139 (39), 13779-13785.
    33. Chen, L.; Li, Y.; Li, S.-P.; Fan, L.-Z.; Nan, C.-W.; Goodenough, J. B., PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176-184.
    34. Xie, Z.; Wu, Z.; An, X.; Yue, X.; Xiaokaiti, P.; Yoshida, A.; Abudula, A.; Guan, G., A sandwich-type composite polymer electrolyte for all-solid-state lithium metal batteries with high areal capacity and cycling stability. Journal of Membrane Science 2020, 596, 117739.
    35. Karthik, K.; Murugan, R., Lithium garnet based free-standing solid polymer composite membrane for rechargeable lithium battery. Journal of Solid State Electrochemistry 2018, 22 (10), 2989-2998.
    36. He, K.; Chen, C.; Fan, R.; Liu, C.; Liao, C.; Xu, Y.; Tang, J.; Li, R. K. Y., Polyethylene oxide/garnet-type Li6.4La3Zr1.4Nb0.6O12 composite electrolytes with improved electrochemical performance for solid state lithium rechargeable batteries. Composites Science and Technology 2019, 175, 28-34.
    37. Sun, J.; Li, Y.; Zhang, Q.; Hou, C.; Shi, Q.; Wang, H., A highly ionic conductive poly(methyl methacrylate) composite electrolyte with garnet-typed Li6.75La3Zr1.75Nb0.25O12 nanowires. Chemical Engineering Journal 2019, 375, 121922.
    38. Zhang, Z.; Huang, Y.; Gao, H.; Huang, J.; Li, C.; Liu, P., An all-solid-state lithium battery using the Li7La3Zr2O12 and Li6.7La3Zr1.7Ta0.3O12 ceramic enhanced polyethylene oxide electrolytes with superior electrochemical performance. Ceramics International 2020, 46 (8, Part A), 11397-11405.
    39. Inada, R.; Yasuda, S.; Hosokawa, H.; Saito, M.; Tojo, T.; Sakurai, Y., Formation and Stability of Interface between Garnet-Type Ta-doped Li7La3Zr2O12 Solid Electrolyte and Lithium Metal Electrode. Batteries 2018, 4 (2), 26.
    40. Kuhnert, E.; Ladenstein, L.; Jodlbauer, A.; Slugovc, C.; Trimmel, G.; Wilkening, H. M. R.; Rettenwander, D., Lowering the Interfacial Resistance in Li6.4La3Zr1.4Ta0.6O12|Poly(Ethylene Oxide) Composite Electrolytes. Cell Reports Physical Science 2020, 1 (10), 100214.
    41. Zhao, Y.; Wu, C.; Peng, G.; Chen, X.; Yao, X.; Bai, Y.; Wu, F.; Chen, S.; Xu, X., A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. Journal of Power Sources 2016, 301, 47-53.
    42. Zheng, J.; Wang, P.; Liu, H.; Hu, Y.-Y., Interface-Enabled Ion Conduction in Li10GeP2S12–Poly(ethylene Oxide) Hybrid Electrolytes. ACS Applied Energy Materials 2019, 2 (2), 1452-1459.
    43. Xu, X.; Hou, G.; Nie, X.; Ai, Q.; Liu, Y.; Feng, J.; Zhang, L.; Si, P.; Guo, S.; Ci, L., Li7P3S11/poly(ethylene oxide) hybrid solid electrolytes with excellent interfacial compatibility for all-solid-state batteries. Journal of Power Sources 2018, 400, 212-217.
    44. Li, D.; Cao, L.; Liu, C.; Cao, G.; Hu, J.; Chen, J.; Shao, G., A designer fast Li-ion conductor Li6.25PS5.25Cl0.75 and its contribution to the polyethylene oxide based electrolyte. Applied Surface Science 2019, 493, 1326-1333.
    45. Zhang, J.; Zheng, C.; Lou, J.; Xia, Y.; Liang, C.; Huang, H.; Gan, Y.; Tao, X.; Zhang, W., Poly(ethylene oxide) reinforced Li6PS5Cl composite solid electrolyte for all-solid-state lithium battery: Enhanced electrochemical performance, mechanical property and interfacial stability. Journal of Power Sources 2019, 412, 78-85.
    46. Wang, S.; Zhang, X.; Liu, S.; Xin, C.; Xue, C.; Richter, F.; Li, L.; Fan, L.; Lin, Y.; Shen, Y.; Janek, J.; Nan, C.-W., High-conductivity free-standing Li6PS5Cl/poly(vinylidene difluoride) composite solid electrolyte membranes for lithium-ion batteries. Journal of Materiomics 2020, 6 (1), 70-76.
    47. Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; Liu, X.; Sushko, P. V.; Liu, J.; Zhang, J.-G., Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. Journal of the American Chemical Society 2013, 135 (11), 4450-4456.
    48. Pal, P.; Ghosh, A., Robust Succinonitrile Plastic Crystal-Based Ionogel for All-Solid-State Li-Ion and Dual-Ion Batteries. ACS Applied Energy Materials 2020, 3 (5), 4295-4304.
    49. Manthiram, A.; Yu, X.; Wang, S., Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials 2017, 2 (4), 16103.
    50. Kerman, K.; Luntz, A.; Viswanathan, V.; Chiang, Y.-M.; Chen, Z., Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries. Journal of The Electrochemical Society 2017, 164 (7), A1731-A1744.
    51. Meesala, Y.; Jena, A.; Chang, H.; Liu, R.-S., Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries. ACS Energy Letters 2017, 2 (12), 2734-2751.
    52. Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D., Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Progress in Polymer Science 2018, 81, 114-143.
    53. Park, K. H.; Bai, Q.; Kim, D. H.; Oh, D. Y.; Zhu, Y.; Mo, Y.; Jung, Y. S., Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries. Advanced Energy Materials 2018, 8 (18), 1800035.
    54. Tarascon, J.; Armand, M., Issues and challenges facing rechargeable lithium batteries Nature 414. 2001.
    55. Zalewska, A.; Pruszczyk, I.; Sułek, E.; Wieczorek, W., New poly(acrylamide) based (polymer in salt) electrolytes: preparation and spectroscopic characterization. Solid State Ionics 2003, 157 (1), 233-239.
    56. Fenton, D.; Parker, J., Polymer 14 589;(b) Wright PV 1975 Br. Polym. J 1973, 7, 319.
    57. Armand, M.; Gorecki, W.; Andreani, R.; Scrosati, B., Second International Meeting on Polymer Electrolytes. 1990.
    58. Xue, Z.; He, D.; Xie, X., Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (38), 19218-19253.
    59. Ye, L.; Feng, Z., 14 - Polymer electrolytes as solid solvents and their applications. In Polymer Electrolytes, Sequeira, C.; Santos, D., Eds. Woodhead Publishing: 2010; pp 550-582.
    60. Petersen, G.; Jacobsson, P.; Torell, L. M., A Raman study of ion—polymer and ion—ion interactions in low molecular weight polyether—LiCF3SO3 complexes. Electrochimica Acta 1992, 37 (9), 1495-1497.
    61. Feuillade, G.; Perche, P., Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry 1975, 5 (1), 63-69.
    62. Chen, B.; Huang, Z.; Chen, X.; Zhao, Y.; Xu, Q.; Long, P.; Chen, S.; Xu, X., A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. Electrochimica Acta 2016, 210, 905-914.
    63. Zhao, Y.; Huang, Z.; Chen, S.; Chen, B.; Yang, J.; Zhang, Q.; Ding, F.; Chen, Y.; Xu, X., A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ionics 2016, 295, 65-71.
    64. Jiang, Y.; Yan, X.; Ma, Z.; Mei, P.; Xiao, W.; You, Q.; Zhang, Y., Development of the PEO Based Solid Polymer Electrolytes for All-Solid State Lithium Ion Batteries. Polymers 2018, 10 (11), 1237.
    65. Seidel, S. M.; Jeschke, S.; Vettikuzha, P.; Wiemhöfer, H. D., PVDF-HFP/ether-modified polysiloxane membranes obtained via airbrush spraying as active separators for application in lithium ion batteries. Chemical Communications 2015, 51 (60), 12048-12051.
    66. Yue, L.; Ma, J.; Zhang, J.; Zhao, J.; Dong, S.; Liu, Z.; Cui, G.; Chen, L., All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials 2016, 5, 139-164.
    67. Capuano, F.; Croce, F.; Scrosati, B., Composite Polymer Electrolytes. Journal of The Electrochemical Society 1991, 138 (7), 1918-1922.
    68. Appetecchi, G. B.; Scaccia, S.; Passerini, S., Investigation on the Stability of the Lithium-Polymer Electrolyte Interface. Journal of The Electrochemical Society 2000, 147 (12), 4448.
    69. Bronstein, L. M.; Karlinsey, R. L.; Ritter, K.; Joo, C. G.; Stein, B.; Zwanziger, J. W., Design of organic–inorganic solid polymer electrolytes: synthesis, structure, and properties. Journal of Materials Chemistry 2004, 14 (12), 1812-1820.
    70. Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B., Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394 (6692), 456-458.
    71. Asif, A.; Huang, C.; Shi, W., Structure–property study of waterborne, polyurethane acrylate dispersions based on hyperbranched aliphatic polyester for UV-curable coatings. Colloid and Polymer Science 2004, 283 (2), 200-208.
    72. Low, S. P.; Ahmad, A.; Rahman, M. Y. A., Effect of ethylene carbonate plasticizer and TiO2 nanoparticles on 49% poly(methyl methacrylate) grafted natural rubber-based polymer electrolyte. Ionics 2010, 16 (9), 821-826.
    73. Navaratnam, S.; Ramesh, K.; Ramesh, S.; Sanusi, A.; Basirun, W. J.; Arof, A. K., TRANSPORT MECHANISM STUDIES OF CHITOSAN ELECTROLYTE SYSTEMS. Electrochimica Acta 2015, 175, 68-73.
    74. Lomölder, R.; Plogmann, F.; Speier, P., Selectivity of isophorone diisocyanate in the urethane reaction influence of temperature, catalysis, and reaction partners. Journal of Coatings Technology 1997, 69 (868), 51-57.
    75. KOICHI HATADA, K. U., and KEN-ICHI OKA, Unambiguous 13C-NMR Assignments for Isocyanate Carbons of Isophorone Diisocyanate and Reactivity of Isocyanate Groups in 2 - and E-Stereoisomers. Journal of Polymer Science: Part A Polymer Chemistry 1990, 28, 3019-3027.
    76. R. LomOlder, F. P., P. Speier, Selectivity of Isophorone Diisocyanate in the Urethane Reaction Influence of Temperature, Catalysis, and Reaction Partners. Journal of Coatings Technology 1997, 69 (868).
    77. Sonnenschein, M. F., Polyurethanes-Science-Technology-Marketsand-Trends. The Dow
    Chemical Company: Midland, MI, USA, 2015.
    78. Y. K. Chong, T. P. T. L., Graeme Moad, Ezio Rizzardo, and San H. Thang, A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization: The RAFT Process. American Chemical Society 1999, 32, 2071-2074.
    79. John Chiefari, Y. K. B. C., Frances Ercole, Julia Krstina, Justine Jeffery, Tam P. T. Le, Roshan T. A. Mayadunne, Gordon F. Meijs, Catherine L. Moad, Graeme Moad, Ezio Rizzardo, and San H. Thang, Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process. American Chemical Society 1998, 31, 5559-5562.
    80. Kusuma, R. I.; Lin, C.-T.; Chern, C.-S., Kinetics of reversible addition-fragmentation transfer (RAFT) miniemulsion polymerization of styrene using dibenzyl trithiocarbonate as RAFT reagent and costabilizer. Polymer International 2015, 64 (10), 1389-1398.
    81. Jian-Jun Yuan, R. M., Qing Gao, Yi-Feng Wang, Shi-Yuan Cheng, Lin-Xian Feng, Zhi-Qiang Fan, Lei Jiang, Synthesis and Characterization of Polystyrene/Poly(4vinylpyridine) Triblock Copolymers by Reversible Addition–Fragmentation Chain Transfer Polymerization and Their Self-Assembled Aggregates in Water. Journal of Applied Polymer Science 2003, 89, 1017-1025.
    82. 邱俊榮. 丙烯腈寡聚物膜作為固態鋰電池電解質之合成及量測. 國立臺灣科技大學, 台北市, 2020.
    83. PETERSON, H. C. B. a. J. C., Dilute Solution Properties of a Polyurethane. I. Linear Polymers. JOUltNAL OF POLYMER SCIENCE 1969, 7, 2021-2029.
    84. Evans, J.; Vincent, C. A.; Bruce, P. G., Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28 (13), 2324-2328.
    85. Mashouf, G.; Ebrahimi, M.; Bastani, S., UV curable urethane acrylate coatings formulation: experimental design approach. Pigment & Resin Technology 2014, 43 (2), 61-68.
    86. Rani, M.; Rudhziah, S.; Ahmad, A.; Mohamed, N., Biopolymer Electrolyte Based on Derivatives of Cellulose from Kenaf Bast Fiber. Polymers 2014, 6 (9), 2371-2385.
    87. Kufian, M. Z.; Majid, S. R., Performance of lithium-ion cells using 1 M LiPF6 in EC/DEC (v/v = 1/2) electrolyte with ethyl propionate additive. Ionics 2009, 16 (5), 409-416.
    88. Tuan Naiwi, T. S. R.; Aung, M. M.; Ahmad, A.; Rayung, M.; Su'ait, M. S.; Yusof, N. A.; Wynn Lae, K. Z., Enhancement of Plasticizing Effect on Bio-Based Polyurethane Acrylate Solid Polymer Electrolyte and Its Properties. Polymers (Basel) 2018, 10 (10).
    89. Zhou, D.; He, Y.-B.; Liu, R.; Liu, M.; Du, H.; Li, B.; Cai, Q.; Yang, Q.-H.; Kang, F., In Situ Synthesis of a Hierarchical All-Solid-State Electrolyte Based on Nitrile Materials for High-Performance Lithium-Ion Batteries. Advanced Energy Materials 2015, 5 (15), 1500353.
    90. Zugmann, S.; Fleischmann, M.; Amereller, M.; Gschwind, R. M.; Wiemhöfer, H. D.; Gores, H. J., Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochimica Acta 2011, 56 (11), 3926-3933.
    91. Buriez, O.; Han, Y. B.; Hou, J.; Kerr, J. B.; Qiao, J.; Sloop, S. E.; Tian, M.; Wang, S., Performance limitations of polymer electrolytes based on ethylene oxide polymers. Journal of Power Sources 2000, 89 (2), 149-155.
    92. Hiller, M. M.; Joost, M.; Gores, H. J.; Passerini, S.; Wiemhöfer, H. D., The influence of interface polarization on the determination of lithium transference numbers of salt in polyethylene oxide electrolytes. Electrochimica Acta 2013, 114, 21-29.
    93. Zhang, J.; Huang, X.; Wei, H.; Fu, J.; Liu, W.; Tang, X., Preparation and electrochemical behaviors of composite solid polymer electrolytes based on polyethylene oxide with active inorganic–organic hybrid polyphosphazene nanotubes as fillers. New Journal of Chemistry 2011, 35 (3), 614-621.

    QR CODE