簡易檢索 / 詳目顯示

研究生: 許鈞荃
Chun-Chuan Hsu
論文名稱: 鋰化聚矽氧烷聚合物作為固態電解質之研究開發及其用於富鎳陰極材料介面改質探討
Study of Lithium Polysiloxane As a Solid Electrolyte and Investigation of Its Application for Interface Modification in Nickel-Rich Cathode Materials
指導教授: 王復民
Fu-Ming Wang
口試委員: 張仍奎
Jeng-Kuei Chang
劉偉仁
Wei-Ren Liu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 92
中文關鍵詞: 全固態鋰離子電池聚電解質富鎳陰極表面改質
外文關鍵詞: all-solid-state lithium-ion battery, polyelectrolyte, nickel-rich cathode material surface modification
相關次數: 點閱:45下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 固態電解質在鋰電池技術中扮演關鍵角色,為提高其性能和穩定性。傳統的固態電池因為介面問題難以實際發揮作用,本研究開發的軟固態聚電解質,期望作為下一代固態電解質的前驅者。文中深入探討鋰化聚矽氧烷聚合物作為固態電解質的應用,以及其在富鎳陰極材料介面改質方面的潛在效益。
    首先,通過合成及表徵鋰化聚矽氧烷聚合物,研發出 AAM950/ CEAM950 兩種固體聚電解質,確保其具備理想的化學和物理性質。接著進行了對其機械性能、離子電導率和熱穩定性等深入研究,以確保其在實際應用中能夠滿足高性能電池的需求。AAM950 搭配 1.2 m LiFSI 離子電導率在室溫下 1.44 × 10-4 S cm-1,CEAM950 搭配 1.2 m LiFSI 在室溫下 3.49 × 10-4 S cm-1,達到足以作為電解質之條件。進一步地,探討了鋰化聚矽氧烷聚合物在富鎳陰極材料介面改質中的效果,通過系統性的電化學測試和材料分析,評估了固態電解質與陰極材料之間的相互作用,並分析了改質對電池性能的影響,操作 20 圈之後,電量保持率為 98.0%
    最終,本研究的結果不僅提供了對固態聚電解質方面性能的深刻理解,還為其在富鎳陰極材料介面改質中的應用展現後續延伸開發的可能性。這項研究將有助於推動固態電池技術的發展,提高鋰電池的能量密度、安全性和循環壽命,為能源領域的進展做出些許貢獻。


    Solid-state electrolytes play a crucial role in lithium battery technology, aiming to enhance its performance and stability. Traditional solid-state batteries face challenges in practical applications due to interface issues. This study focuses on developing a soft solid-state polyelectrolyte, aiming to serve as a precursor for the next generation of solid-state electrolytes. The paper delves into the application of lithiated polysiloxane polymers as solid-state electrolytes and explores their potential benefits in modifying the interface of nickel-rich cathode materials.
    Firstly, two solid polyelectrolytes, AAM950 and CEAM950, were synthesized and characterized to ensure ideal chemical and physical properties. Subsequent in-depth studies were conducted on their mechanical properties, ionic conductivity, and thermal stability to ensure they meet the requirements for high-performance batteries in practical applications. Furthermore, the effects of lithiated polysiloxane polymers on modifying the interface of nickel-rich cathode materials were investigated. Through systematic electrochemical testing and material analysis, the interaction between the solid-state electrolyte and cathode material was evaluated, and the impact of the modification on battery performance was analyzed.
    In conclusion, the results of this study not only provide a profound understanding of the performance of solid-state polyelectrolytes and demonstrate the potential for their application in modifying the interface of nickel-rich cathode materials. This research is expected to contribute to the advancement of solid-state battery technology, improving the energy density, safety, and cycle life of lithium batteries, and making a modest contribution to progress in the energy field.

    摘要 2 ABSTRACT 5 致謝 6 目錄 7 圖目錄 10 表目錄 13 第一章 緒論 14 1.1 鋰離子電池的發展背景 14 1.2 鋰離子電池發展方向 15 1.3 鋰離子電池技術的趨勢 16 1.3.1 正極材料 17 1.3.2 負極材料 17 1.3.3 電解質 18 1.3.4 隔離膜 22 1.4 固態鋰離子電池市場展望 23 1.4.1 固態電池業務現狀 23 1.4.2 固態鋰離子電池市場滲透率預測 23 1.5 固態鋰離子電池面臨的挑戰 26 1.5.1 材料的體積和應力變化 26 1.5.2 離子和電子遷移 27 1.5.3 固體電解質/ 電極界面結構 27 第二章 文獻探討 28 2.1 鋰離子電池工作原理 28 2.2 正極材料 31 2.2.1 鈷酸鋰(LiCoO2, LCO)正極材料 32 2.2.2 錳酸鋰(LiMn2O4, LMO)正極材料 33 2.2.3 磷酸鐵鋰(LiFePO4, LFP)正極材料 34 2.2.4 富鎳三元正極材料 35 2.3 負極材料 38 2.3.1 石墨與矽負極材料 38 2.3.2 鋰金屬負極材料 39 2.4 固態電解質 40 2.4.1 無機固態電解質 42 2.4.2 有機固態電解質 42 2.5 固態電解質與活性材料形成的複合式電極 44 2.5.1 表面的效應 44 2.5.2 複合式電極的影響 45 2.6 電極曲折度與空隙度 47 2.7 研究動機與目的 50 第三章 研究與實驗方法 51 3.1 實驗材料介紹 51 3.2 實驗方法 52 3.3.1 以氫矽烷化法(Hydrosilylation)合成高分子聚合物 52 3.3.2 固態電解質製備 54 3.3.3 正極電極極片製備 54 第四章 研究結果與分析 57 4.1 材料鑑定與分析 57 4.1.1 核磁共振光譜儀(Nuclear magnetic resonance spectroscopy, NMR)確認特性峰 57 4.1.2 傅立葉轉換紅外光譜儀(Fourier-transform infrared spectroscopy, FTIR)高分子結構特性 60 4.1.3 熱重量分析儀(Thermogravimetric Analyzer, TGA) 62 4.1.4 熱示差掃描分析儀(Differential Scanning Calorimetry, DSC) 65 4.2 高分子聚電解質電化學特性分析 67 4.2.1 離子電導度 67 4.2.2 離子遷移數 69 4.3 全固態電池應用 70 4.3.1 充放電分析 70 4.3.2 半電池內部加壓 72 4.3.3 以循環伏安法測試固態聚電解質系統之穩定性 73 4.4 聚電解質與活性材料進行披覆之特性分析 76 4.4.1 高分子披覆於活性材料之方法探討 76 4.4.2 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 77 4.4.3 聚焦離子束顯微鏡(Focused Ion Beam, FIB) 78 4.4.4 披覆聚電解質後的電化學分析 79 第五章 結論與建議 82 第六章 未來展望 83 參考資料 84

    [1] Mauger, A., & Julien, C. M. (2020). Tribute to Michel Armand: From Rocking Chair – li-ion to solid-state lithium batteries. Journal of The Electrochemical Society, 167(7), 070507.
    [2] Christian Schlasza, Peter Ostertag. (2014b). Review on the aging mechanisms in Li-ion batteries for electric vehicles based on the FMEA method. IEEE Xplore. https://ieeexplore.ieee.org/document/6861811
    [3] He, X. (2021, June 10). Solid-state and polymer batteries 2021-2031: Technology, forecasts, players. IDTechEx. https://www.idtechex.com/en/research-report/solid-state-and-polymer-batteries-2021-2031-technology-forecasts-players/819
    [4] the Nobel Prize. (2019). Scientific background on The nobel prize in Chemistry. LITHIUM-ION BATTERIES. https://www.nobelprize.org/uploads/2019/10/advanced-chemistryprize2019.pdf
    [5] Tarascon, J-M., and Michel Armand. "Issues and challenges facing rechargeable lithium batteries." Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group (2011): 171-179.
    [6] Famprikis, Theodosios, et al. "Fundamentals of inorganic solid-state electrolytes for batteries." Nature materials 18.12 (2019): 1278-1291.
    [7] Tran, T. D., & Langer, S. H. (1993). Electrochemical measurement of platinum surface areas on particulate conductive supports. Analytical Chemistry, 65(13), 1805-1807.
    [8] Camille Usubelli et al 2020 J. Electrochem. Soc. 167 080514
    [9] Ma, Shuai, et al. "Temperature effect and thermal impact in lithium-ion batteries: A review." Progress in Natural Science: Materials International 28.6 (2018): 653-666.
    [10] Weber, Rochelle, et al. "Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte." Nature Energy 4.8 (2019): 683-689.
    [11] Li, Longjun, Lin Ma, and Brett A. Helms. "Architected Macroporous Polyelectrolytes That Suppress Dendrite Formation during High-Rate Lithium Metal Electrodeposition." Macromolecules 51.19 (2018): 7666-7671.
    [12] Li, Quan, et al. "Homogeneous interface conductivity for lithium dendrite-free anode." ACS Energy Letters 3.9 (2018): 2259-2266.
    [13] Mauger, Alain, et al. "Tribute to Michel Armand: from rocking chair–Li-ion to solid-state lithium batteries." Journal of The Electrochemical Society 167.7 (2019): 070507.
    [14] Durmaz, Elif Nur, et al. "Polyelectrolytes as building blocks for next-generation membranes with advanced functionalities." ACS Applied Polymer Materials 3.9 (2021): 4347-4374.
    [15] An, Seong Jin, et al. "The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling." Carbon 105 (2016): 52-76.
    [16] Pinson, Matthew B., and Martin Z. Bazant. "Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction." Journal of the Electrochemical Society 160.2 (2012): A243.
    [17] Li, Wangda, et al. "Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries." Nature communications 8.1 (2017): 14589.
    [18] Peled, E., Menkin, S., 2017. Review—SEI: Past, Present and Future. Journal of The Electrochemical Society 164, A1703–A1719.
    [19] Wakihara, Masataka, and Osamu Yamamoto, eds. Lithium ion batteries: fundamentals and performance. John Wiley & Sons, 2008.
    [20] Tarascon, J-M., and Michel Armand. "Issues and challenges facing rechargeable lithium batteries." nature 414.6861 (2001): 359-367.
    [21] Manthiram, Arumugam. "A reflection on lithium-ion battery cathode chemistry." Nature communications 11.1 (2020): 1550.
    [22] Kamaya, Noriaki, et al. "A lithium superionic conductor." Nature materials 10.9 (2011): 682-686.
    [23] Y. Kato, S. Shiotani, K. Morita, K. Suzuki, M. Hirayama, R. Kanno, All-Solid-State Batteries with Thick Electrode Configurations. J. Phys. Chem. Lett. 9, 607–613 (2018).
    [24] A. Kubanska, L. Castro, L. Tortet, M. Dollé, R. Bouchet, Effect of composite electrode thickness on the electrochemical performances of all-solid-state li-ion batteries. J. Electroceram. 38, 189–196 (2017).
    [25] Liu, Wen, et al. "Nickel-rich layered lithium transition‐metal oxide for high-energy lithium-ion batteries." Angewandte Chemie International Edition 54.15 (2015): 4440-4457.
    [26] Meng, Kui, et al. "Improving the cycling performance of LiNi0. 8Co0. 1Mn0. 1O2 by surface coating with Li2TiO3." Electrochimica Acta 211 (2016): 822-831.
    [27] Yoon, Chong S., et al. "High-Energy Ni-Rich Li[NixCoyMn1–x–y]O2 Cathodes via Compositional Partitioning for Next-Generation Electric Vehicles." Chemistry of materials 29.24 (2017): 10436-10445.
    [28] Julien, Christian M., and Alain Mauger. "NCA, NCM811, and the route to Ni-richer lithium-ion batteries." Energies 13.23 (2020): 6363.
    [29] Myung, Seung-Taek, et al. "Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives." ACS Energy Letters 2.1 (2017): 196-223.
    [30] MacNeil, D. D., Z. Lu, and Jeff R. Dahn. "Structure and electrochemistry of Li [Ni x Co1− 2x Mn x] O 2 (0⩽ x⩽ 1/2)." Journal of the Electrochemical Society 149.10 (2002): A1332.
    [31] Robert, Rosa, and Petr Novák. "Switch of the charge storage mechanism of Li x Ni0. 80Co0. 15Al0. 05O2 at overdischarge conditions." Chemistry of Materials 30.6 (2018): 1907-1911.
    [32] Sasaki, Tsuyoshi, et al. "Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries: I. Analysis by electrochemical and spectroscopic examination." Journal of the electrochemical society 156.4 (2009): A289.
    [33] Belharouak, I.; Lu, W.; Vissers, D.; Amine, K. Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2. Electrochem. Commun. 2006, 8, 329–335.
    [34] Kim, Byoung Gak, et al. "Polysiloxanes containing alkyl side groups: synthesis and mesomorphic behavior." Macromolecular Research 16 (2008): 36-44.
    [35] Gola, Agnieszka, Maria Kozłowska, and Witold Musiał. "Influence of the Poly (ethylene Glycol) Methyl Ether Methacrylates on the Selected Physicochemical Properties of Thermally Sensitive Polymeric Particles for Controlled Drug Delivery." Polymers 14.21 (2022): 4729.
    [36] Wade, L. G., Jr. Organic Chemistry, 6th edition; Pearson Education International: Upper Saddle River, 2006
    [37] He, Ping, Haijun Yu, and Haoshen Zhou. "Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries." Journal of Materials Chemistry 22.9 (2012): 3680-3695.
    [38] Guilmard, Marianne, Laurence Croguennec, and Claude Delmas. "Thermal stability of lithium nickel oxide derivatives. Part II: Li x Ni0. 70Co0. 15Al0. 15O2 and Li x Ni0. 90Mn0. 10O2 (x= 0.50 and 0.30). Comparison with Li x Ni1. 02O2 and Li x Ni0. 89Al0. 16O2." Chemistry of materials 15.23 (2003): 4484-4493.
    [39] Whittingham, M.S. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 2014, 114, 11414–11443.
    [40] Kim, J.; Ma, H.; Cha, H.; Lee, H.; Sung, J.; Seo, M.; Oh, P.; Park, M.; Cho, J. A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries. Energy Environ. Sci. 2018, 11, 1449–1459.
    [41] Julien, C.M.; Mauger, A.; Groult, H.; Zaghib, K. Surface modification of positive electrode materials for lithium-ion batteries. Thin Solid Films 2014, 572, 200–207.
    [42] Delattre, Benjamin, et al. "Impact of pore tortuosity on electrode kinetics in lithium battery electrodes: Study in directionally freeze-cast LiNi0. 8Co0. 15Al0. 05O2 (NCA)." Journal of The Electrochemical Society 165.2 (2018): A388-A395.
    [43] Dixit, M., Markovsky, B., Aurbach, D. & Major, D. T. Unraveling the effects of Al doping on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 using first principles. J. Electrochem. Soc. 164, A6359–A6365 (2017).
    [44] Croguennec, L. et al. Segregation tendency in layered aluminum-substituted lithium nickel oxides. Chem. Mater. 21, 1051–1059 (2009).
    [45] Dogan, F., Vaughey, J. T., Iddir, H. & Key, B. Direct observation of lattice aluminum environments in Li ion cathodes LiNi1−y−z CoyAlzO2 and Al-doped LiNixMnyCozO2 via 27Al MAS NMR spectroscopy. ACS Appl. Mater. Interfaces 8, 16708–16717 (2016).
    [46] Guilmard, M., Rougier, A., Grüne, M., Croguennec, L. & Delmas, C. Effects of aluminum on the structural and electrochemical properties of LiNiO2. J. Power Sources 115, 305–314 (2003).
    [47] Zhang, Wei-Jun. "A review of the electrochemical performance of alloy anodes for lithium-ion batteries." Journal of Power Sources 196.1 (2011): 13-24.
    [48] Boukamp, B. A., G. C. Lesh, and R. A. Huggins. "All‐solid lithium electrodes with mixed‐conductor matrix." Journal of the Electrochemical Society 128.4 (1981): 725.
    [49] Tzeng, Yonhua, Raycheng Chen, and Jia-Lin He. "Silicon-based anode of lithium ion battery made of nano silicon flakes partially encapsulated by silicon dioxide." Nanomaterials 10.12 (2020): 2467.
    [50] Wang, Renheng, et al. "Lithium metal anodes: Present and future." Journal of Energy Chemistry 48 (2020): 145-159.
    [51] Halocarbon. (2023). Lithium ion battery solution. https://halocarbon.com/electronics-solutions/lithium-ion-battery-solutions/
    [52] Wang, Qingsong, et al. "Progress of enhancing the safety of lithium ion battery from the electrolyte aspect." Nano Energy 55 (2019): 93-114.
    [53] Wang, Qingsong, et al. "Micro calorimeter study on the thermal stability of lithium-ion battery electrolytes." Journal of Loss Prevention in the Process Industries 19.6 (2006): 561-569.
    [54] Morita, Masayuki, et al. "Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries." Electrochimica Acta 47.17 (2002): 2787-2793.
    [55] Lu, Zhenrong, Li Yang, and Yaju Guo. "Thermal behavior and decomposition kinetics of six electrolyte salts by thermal analysis." Journal of power sources 156.2 (2006): 555-559.
    [56] Aravindan, Vanchiappan, et al. "Lithium‐ion conducting electrolyte salts for lithium batteries." Chemistry–A European Journal 17.51 (2011): 14326-14346.
    [57] K. Xu, U. Lee, S.S. Zhang, T.R. Jow, in: 208th ECS Meeting Abstracts, Los Angeles, CA, 16-21, October, 2005, 219.
    [58] Xu, Kang, et al. "Graphite/electrolyte interface formed in LiBOB-based electrolytes: I. Differentiating the roles of EC and LiBOB in SEI formation." Electrochemical and solid-state letters 7.9 (2004): A273.
    [59] Park, Sewon, et al. "Replacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries." Nature communications 12.1 (2021): 838.
    [60] Eshetu, Gebrekidan Gebresilassie, et al. "In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries." Physical chemistry chemical physics 15.23 (2013): 9145-9155.
    [61] Eshetu, Gebrekidan Gebresilassie, et al. "Fire behavior of carbonates-based electrolytes used in Li-ion rechargeable batteries with a focus on the role of the LiPF6 and LiFSI salts." Journal of Power Sources 269 (2014): 804-811.
    [62] Fry, Albert J. Synthetic organic electrochemistry. John Wiley & Sons, 1989.
    [63] Famprikis, Theodosios, et al. "Fundamentals of inorganic solid-state electrolytes for batteries." Nature materials 18.12 (2019): 1278-1291.
    [64] Zhong, Cheng, et al. "A review of electrolyte materials and compositions for electrochemical supercapacitors." Chemical Society Reviews 44.21 (2015): 7484-7539.
    [65] Fan, Xiayue, et al. "Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid electrolytes." Chemical Reviews 122.23 (2022): 17155-17239.
    [66] Famprikis, Theodosios, et al. "Fundamentals of inorganic solid-state electrolytes for batteries." Nature materials 18.12 (2019): 1278-1291.
    [67] Kim, Se Hyun, et al. "Electrolyte‐gated transistors for organic and printed electronics." Advanced Materials 25.13 (2013): 1822-1846.
    [68] 科安知識庫,(2023/09/14),熱分析技術原理及應用:熱塑性塑膠 PET 的 DSC 圖譜解讀,https://reurl.cc/NyW1vn,(2023/11/29)
    [69] Luo, Shuting, et al. "Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes." Nature Communications 12.1 (2021): 6968.
    [70] Porz, Lukas, et al. "Mechanism of lithium metal penetration through inorganic solid electrolytes." Advanced Energy Materials 7.20 (2017): 1701003.
    [71] Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016).
    [72] Hakari, T. et al. Structural and electronic-state changes of a sulfde solid electrolyte during the Li deinsertion–insertion processes. Chem. Mater. 29, 4768–4774 (2017).
    [73] Koerver, Raimund, et al. "Redox-active cathode interphases in solid-state batteries." Journal of Materials Chemistry A 5.43 (2017): 22750-22760.
    [74] Dietrich, Christian, et al. "Spectroscopic characterization of lithium thiophosphates by XPS and XAS–a model to help monitor interfacial reactions in all-solid-state batteries." Physical Chemistry Chemical Physics 20.30 (2018): 20088-20095.
    [75] Wang, M. & Sakamoto, J. Correlating the interface resistance and surface adhesion of the Li metal–solid electrolyte interface. J. Power Sources 377, 7–11 (2018).
    [76] 林意紋(2020)。以聚矽氧烷高導離子軟物質作為鋰離子電池用於固態電解質及負極黏著劑之研究。國立臺灣科技大學,臺北市。
    [77] Sharova, Varvara, et al. "Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries." Journal of Power Sources 375 (2018): 43-52.)
    [78] Xiao, Peitao, et al. "A nonflammable electrolyte for ultrahigh-voltage (4.8 V-class) Li|| NCM811 cells with a wide temperature range of 100 C." Energy & Environmental Science 15.6 (2022): 2435-2444.
    [79] Bielefeld, Anja, Dominik A. Weber, and Jürgen Janek. "Modeling effective ionic conductivity and binder influence in composite cathodes for all-solid-state batteries." ACS applied materials & interfaces 12.11 (2020): 12821-12833.
    [80] Ogihara, Nobuhiro, et al. "Impedance spectroscopy characterization of porous electrodes under different electrode thickness using a symmetric cell for high-performance lithium-ion batteries." The Journal of Physical Chemistry C 119.9 (2015): 4612-4619.
    [81] Landesfeind, Johannes, et al. "Tortuosity determination of battery electrodes and separators by impedance spectroscopy." Journal of The Electrochemical Society 163.7 (2016): A1373.
    [82] Ogihara, Nobuhiro, Yuichi Itou, and Shigehiro Kawauchi. "Ion transport in porous electrodes obtained by impedance using a symmetric cell with predictable low-temperature battery performance." The Journal of Physical Chemistry Letters 10.17 (2019): 5013-5018.
    [83] Li, Tongxin, et al. "Improving fast charging-discharging performances of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by electronic conductor LaNiO3 crystallites." Materials 15.1 (2022): 396.
    [84] Ohtomo, Takamasa, et al. "Suppression of H 2 S gas generation from the 75Li 2 S· 25P 2 S 5 glass electrolyte by additives." Journal of Materials Science 48 (2013): 4137-4142.
    [85] Yao, Xiayin, et al. "All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science." Chinese Physics B 25.1 (2015): 018802.
    [86] Cooper, S. J., et al. "Image based modelling of microstructural heterogeneity in LiFePO4 electrodes for Li-ion batteries." Journal of Power Sources 247 (2014): 1033-1039.
    [87] 新電子,(2023/07/17),強化綠電供電穩定性 儲能產業加速能源轉型,https://reurl.cc/VNzOlR(2024/01/24)
    [88] Dr Xiaoxi He,Solid-State and Polymer Batteries 2023-2033: Technology, Forecasts, Players,https://www.idtechex.com/en/research-report/solid-state-and-polymer-batteries-2023-2033-technology-forecasts-players/917,(2024/01/24)
    [89] 方格子,(2023/08/06),電動車產業加速發展:值得關注的電動車市場,台、美電動車 ETF 懶人包,(2024/01/24)
    [90] Bielefeld, Anja, Dominik A. Weber, and Jürgen Janek. "Modeling effective ionic conductivity and binder influence in composite cathodes for all-solid-state batteries." ACS applied materials & interfaces 12.11 (2020): 12821-12833.

    無法下載圖示 全文公開日期 2026/01/30 (校內網路)
    全文公開日期 2026/01/30 (校外網路)
    全文公開日期 2026/01/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE