簡易檢索 / 詳目顯示

研究生: 蘇優光
Leon Lukhas Santoso
論文名稱: 羥丙基甲基纖維素和糊精合成改質羧甲基纖維素之綠色高介電材料
Synthesis of Modified Carboxymethyl Cellulose-based with Hydroxypropyl Methylcellulose and Dextrin for Green High-k Dielectric Materials
指導教授: 邱昱誠
Yu-Cheng Chiu
口試委員: 何郡軒
Jinn-Hsuan Ho
李文亞
Wen-Ya Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 64
中文關鍵詞: 綠色材料羧甲基纖維素水凝膠薄膜介電材料聚電解質高k表面改性
外文關鍵詞: Green Material, Carboxymethyl cellulose-based Hydrogel, Thin Film Dielectric Material, Polyelectrolyte, High-k, Surface Modification
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了與全球綠色倡議保持一致,在開發介電材料時需要充分考慮尋找替代綠色有機材料的緊迫性。 然而,可持續發展的目標不僅限於元件的表現,還包含製程中使用的所有材料。 羧甲基纖維素(CMC)為一種乙酸基的水溶性材料其結構中含有鈉離子,因此可以藉由檸檬酸作為交聯前驅物來生產聚電解質固體材料。 羧甲基纖維素基水凝膠添加羥丙基甲基纖維素(HPMC)和糊精的楊氏模量分別為2.67 MPa和0.89 MPa,表現出類似橡膠的機械性能。 我們還成功生產了一種應用於綠色介電的羧甲基纖維素基水凝膠薄膜,其介電常數高達78,並可以在低電壓下操作。 同時具有相對穩定且較高的電容值(CMC + HPMC = 1820 nF/cm2,CMC + dextrin = 2090 nF/cm2),可以在 VD = ±3 V 工作。因此聚電解質型之介電層製造水凝膠薄膜,並使用聚(2-乙烯基蒽)(PVAn)進行表面改質,在較薄的介電層(d ≈ 30 nm)可以達到較小的電壓閾值(Vth ≈ -0.8 V)、中等跨導(gM ≈ 65 nS)以及相對較高的開關比(約 105)。 在 Vg = ±3.5V 和100個循環的開關測試後,介電層也表現出穩定的性能。通過使用100納米的二氧化矽作為支撐層,並利用旋轉塗佈技術來製造P3HT的半導體層,PVAn修飾的水凝膠在±30 V操作下,設備中展現出一致的性能特徵。 結果表明,透過PVAn改質後的羧甲基纖維素基水凝膠其電性能可在低電壓條件下操作,並作為綠色介電材料。


    To the extent of aligning with the green global initiative, the urgency for finding an alternative green organic material in developing the dielectric material needs to be considered thoroughly. However, the sustainability goal also extends to all precursors used in the process, not limited only on the final result of dielectric material. Carboxymethyl cellulose (CMC) is a water-soluble material derived from acetic group component which also contains sodium ions in the structure. Hence, it could produce a polyelectrolyte solid material with the help of citric acid as the crosslink precursor. Carboxymethyl cellulose-based hydrogel showed a rubber-like mechanical property with Young’s modulus of 2.67 MPa and 0.89 MPa for additional material of hydroxypropyl methylcellulose (HPMC) and Dextrin, respectively. We also successfully produced a thin film of carboxymethyl cellulose-based hydrogel for green dielectric purposes, which exhibits a high dielectric constant up to 78, so that it can work in a low-voltage operation. They also showed relatively stable, yet high capacitance values (1820 nF/cm2 and 2090 nF/cm2 for HPMC and dextrin hydrogels, respectively), which could operate around ±3 V. Hence, the fabrication of hydrogel dielectric in polyelectrolyte-type approach, with Poly-(2-vinyl anthracene) (PVAn) surface modification can produce a thin dielectric layer (d ≈ 30 nm), small voltage threshold (Vth ≈ -0.8 V) with moderate transconductance (gm ≈ 65 nS), and relatively high ON-OFF ratio (~ 105). The dielectric layer also showed stable performance after being given bias stress of ± 3.5 V and 100 cycles of switching test. By employing a 100 nm layer of silicon dioxide as a support and utilizing a spin-coating technique to fabricate the semiconductor layer of P3HT, the PVAn-modified hydrogel exhibits consistent performance characteristics in the device with ± 30 V operation. Therefore, the electrical merits of modified carboxymethyl cellulose-based hydrogel showed an acceptable result for a green dielectric material in low-voltage operation.

    ACKNOWLEDGEMENT ii ABSTRACT iii 中文摘要 iv TABLE OF CONTENTS v LIST OF FIGURES vii LIST OF TABLES ix CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Research Objective 3 1.3 Research Contributions 3 1.4 Research Hypothesis 3 CHAPTER 2 LITERATURE REVIEW 4 2.1 Hydrogel 4 2.2 The Crosslink Reaction between CMC and Citric Acid 4 2.3 Electrolyte-gated Transistor 5 2.4 Metal-Insulator-Metal Analysis 7 2.5 Surface Modification of Dielectric Layer 9 2.6 Dielectric Performance Analysis 10 CHAPTER 3 RESEARCH METHOD 12 3.1 Research Diagram 12 3.2 Materials and Equipment 14 3.3 Research Variables 15 3.4 Experimental Procedures 16 3.4.1 Hydrogel Sheet Preparation 16 3.4.2 Thin Hydrogel Preparation 16 3.4.3 Metal-Insulator-Metal Analysis 16 3.4.4 Dielectric Layer Fabrication 16 CHAPTER 4 RESEARCH DISCUSSIONS 18 4.1 Hydrogel Thickness Formulation 18 4.1.1 Hydrogel Sheet Formation 18 4.1.2 Preliminary Analysis of Hydrogel on Silicon dioxide wafer 22 4.2 Metal-Insulator-Metal Analysis 24 4.3 Dielectric Device Structure Analysis 26 4.3.1 Hydrogel on Highly-doped silicon wafer 26 4.3.2 Drying and Washing Treatment Result 28 4.3.3 Surface-modified Dielectric Layer 33 CHAPTER 5 CONCLUSIONS AND FUTURE WORKS 47 5.1 Research Conclusions 47 5.2 Future Perspectives 47 REFERENCES 49 APPENDIXES 52

    1. Zschieschang, U. and H. Klauk, Organic transistors on paper: a brief review. Journal of Materials Chemistry C, 2019. 7(19): p. 5522-5533.
    2. Zhou, N. and L. Ma, Smart bioelectronics and biomedical devices. Bio-design and Manufacturing, 2022. 5(1): p. 1-5.
    3. Burkacky, O., J. Dragon, and N. Lehmann. The semiconductor decade: A trillion-dollar industry. 2022 [cited 2022 May 4]; Available from: https://www.mckinsey.com/industries/semiconductors/our-insights/the-semiconductor-decade-a-trillion-dollar-industry.
    4. Bersuker, G., et al., Dielectrics for future transistors. Materials Today, 2004. 7(1): p. 26-33.
    5. Pankratov, D., et al., Tear based bioelectronics. Electroanalysis, 2016. 28(6): p. 1250-1266.
    6. Fedder, G.K., 2. Photolithographic Microfabrication. Micro Mechanical Systems: Principles and Technology, 1998: p. 13.
    7. Ortiz, R.P., A. Facchetti, and T.J. Marks, High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chemical reviews, 2010. 110(1): p. 205-239.
    8. Yang, H., et al., Pentacene Nanostructures on Surface‐Hydrophobicity‐Controlled Polymer/SiO2 Bilayer Gate‐Dielectrics. Advanced Materials, 2007. 19(19): p. 2868-2872.
    9. Georgakopoulos, S., F. Del Pozo, and M. Mas-Torrent, Flexible organic transistors based on a solution-sheared PVDF insulator. Journal of Materials Chemistry C, 2015. 3(47): p. 12199-12202.
    10. Thuau, D., et al., High and Temperature‐Independent Dielectric Constant Dielectrics from PVDF‐Based Terpolymer and Copolymer Blends. Advanced Electronic Materials, 2020. 6(3): p. 1901250.
    11. Yin, Z., et al., Solution‐processed bilayer dielectrics for flexible low‐voltage organic field‐effect transistors in pressure‐sensing applications. Advanced Science, 2018. 5(9): p. 1701041.
    12. Brigham, C., Biopolymers: Biodegradable alternatives to traditional plastics, in Green Chem. 2018, Elsevier. p. 753-770.
    13. Chiu, Y.C., et al., Oligosaccharide Carbohydrate Dielectrics toward High‐Performance Non‐volatile Transistor Memory Devices. Advanced Materials, 2015. 27(40): p. 6257-6264.
    14. Deshmukh, K., et al., Biopolymer composites with high dielectric performance: interface engineering, in Biopolymer composites in electronics. 2017, Elsevier. p. 27-128.
    15. Zhang, S., et al., Fuel ethanol production from lignocellulosic biomass. Progress in Chemistry, 2007. 19(0708): p. 1129.
    16. Cunha, I., et al., Reusable Cellulose‐Based Hydrogel Sticker Film Applied as Gate Dielectric in Paper Electrolyte‐Gated Transistors. Advanced Functional Materials, 2017. 27(16): p. 1606755.
    17. Cai, J., et al., Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules, 2008. 41(23): p. 9345-9351.
    18. Luo, X. and L. Zhang, New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Research International, 2013. 52(1): p. 387-400.
    19. Brodin, F.W. and H. Theliander, High temperature TEMPO oxidation in a heterogeneous reaction system: an investigation of reaction kinetics, pulp properties, and disintegration behavior. BioResources, 2013. 8(4): p. 5925-5946.
    20. Dai, S., et al., Intrinsically ionic conductive cellulose nanopapers applied as all solid dielectrics for low voltage organic transistors. Nature communications, 2018. 9(1): p. 2737.
    21. Heinze, T. and K. Pfeiffer, Studies on the synthesis and characterization of carboxymethylcellulose. Die Angewandte Makromolekulare Chemie, 1999. 266(1): p. 37-45.
    22. Das, D., et al., Synthesis and Characterization of Superabsorbent Cellulose‐Based Hydrogel for Agriculture Application. Starch‐Stärke, 2021. 73(1-2): p. 1900284.
    23. Huang, W., et al., Dielectric materials for electrolyte gated transistor applications. Journal of Materials Chemistry C, 2021. 9(30): p. 9348-9376.
    24. Torricelli, F., et al., Electrolyte-gated transistors for enhanced performance bioelectronics. Nature Reviews Methods Primers, 2021. 1(1): p. 1-24.
    25. Aswathy, S., U. Narendrakumar, and I. Manjubala, Commercial hydrogels for biomedical applications. Heliyon, 2020. 6(4): p. e03719.
    26. Deng, Z., et al., Injectable biomimetic hydrogels encapsulating Gold/metal–organic frameworks nanocomposites for enhanced antibacterial and wound healing activity under visible light actuation. Chemical Engineering Journal, 2021. 420: p. 129668.
    27. Kishibe, K. and K. Tanabe, Hydrogel-mediated semiconductor wafer bonding. Applied Physics Letters, 2019. 115(8): p. 081601.
    28. Raucci, M., et al., Effect of citric acid crosslinking cellulose‐based hydrogels on osteogenic differentiation. Journal of Biomedical Materials Research Part A, 2015. 103(6): p. 2045-2056.
    29. Lai, Y.C., et al., Entirely, intrinsically, and autonomously self‐healable, highly transparent, and superstretchable triboelectric nanogenerator for personal power sources and self‐powered electronic skins. Advanced Functional Materials, 2019. 29(40): p. 1904626.
    30. Halliday, D., R. Resnick, and J. Walker, Fundamentals of physics. 2013: John Wiley & Sons.
    31. Wang, Y., et al., Polymer-based gate dielectrics for organic field-effect transistors. Chemistry of Materials, 2019. 31(7): p. 2212-2240.
    32. Nakajima, A., K. Hashimoto, and T. Watanabe, Recent studies on super-hydrophobic films. 2001: Springer.
    33. Yang, S.Y., K. Shin, and C.E. Park, The effect of gate‐dielectric surface energy on pentacene morphology and organic field‐effect transistor characteristics. Advanced functional materials, 2005. 15(11): p. 1806-1814.
    34. He, Y., et al., Electrolyte-gated neuromorphic transistors for brain-like dynamic computing. Journal of Applied Physics, 2021. 130(19): p. 190904.
    35. Ling, H., et al., Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing. Applied Physics Reviews, 2020. 7(1): p. 011307.
    36. Katsouras, I., et al., Controlling the on/off current ratio of ferroelectric field-effect transistors. Scientific Reports, 2015. 5(1): p. 1-8.
    37. Orgiu, E., et al., Analysis of the hysteresis in organic thin-film transistors with polymeric gate dielectric. Organic Electronics, 2011. 12(3): p. 477-485.
    38. Liu, Z., et al., A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte. Nano Energy, 2019. 58: p. 732-742.
    39. Johari, N., L. Moroni, and A. Samadikuchaksaraei, Tuning the conformation and mechanical properties of silk fibroin hydrogels. European Polymer Journal, 2020. 134: p. 109842.
    40. Li, G., et al., Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly (vinyl alcohol) physical hydrogel. ACS applied materials & interfaces, 2015. 7(22): p. 12067-12073.
    41. Chaplin, M.F., Water’s hydrogen bond strength. Water and Life: The unique properties of H2O, 2010. 1.
    42. Robertson, J., High dielectric constant oxides. The European Physical Journal-Applied Physics, 2004. 28(3): p. 265-291.
    43. Usui, T., et al., Approaching the limits of dielectric breakdown for SiO2 films deposited by plasma-enhanced atomic layer deposition. Acta materialia, 2013. 61(20): p. 7660-7670.
    44. Wang, C., et al., Adsorption of water on carbon materials: The formation of “water bridge” and its effect on water adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. 631: p. 127719.
    45. Chami Khazraji, A. and S. Robert, Interaction effects between cellulose and water in nanocrystalline and amorphous regions: A novel approach using molecular modeling. Journal of Nanomaterials, 2013. 2013: p. 1-10.
    46. Berthomieu, C. and R. Hienerwadel, Fourier transform infrared (FTIR) spectroscopy. Photosynthesis research, 2009. 101: p. 157-170.
    47. Azimi, M., et al., Electrical and mechanical stability of flexible, organic electrolyte-gated transistors based on iongel and hydrogels. Journal of Materials Chemistry C, 2023. 11(14): p. 4623-4633.
    48. Tiwari, S.P., et al., Performance comparison of pentacene organic field-effect transistors with SiO2 modified with octyltrichlorosilane or octadecyltrichlorosilane. Organic Electronics, 2012. 13(1): p. 18-22.
    49. Alley, O.J., et al., Synthesis, fabrication, and heterostructure of charged, substituted polystyrene multilayer dielectrics and their effects in pentacene transistors. Macromolecules, 2016. 49(9): p. 3478-3489.
    50. Liu, Z., et al., Dielectric interface passivation of polyelectrolyte-gated organic field-effect transistors for ultrasensitive low-voltage pressure sensors in wearable applications. Materials Today Electronics, 2022. 1: p. 100001.
    51. Yin, Z., et al., Solution-Processed Bilayer Dielectrics for Flexible Low-Voltage Organic Field-Effect Transistors in Pressure-Sensing Applications. Advanced Science, 2018. 5(9): p. 1701041.
    52. Wei, P., et al., Organic-semiconductor: Polymer-electret blends for high-performance transistors. Nano Research, 2018. 11: p. 5835-5848.
    53. Chang, H., et al., Solvent vapor assisted spin-coating: A simple method to directly achieve high mobility from P3HT based thin film transistors. Synth. Met., 2013. 184: p. 1-4.
    54. Ho, J.-C., et al., Hydrogel-based sustainable and stretchable field-effect transistors. Organic Electronics, 2022. 100: p. 106358.
    55. Arkles, B., Y. Pan, and Y.M. Kim, The role of polarity in the structure of silanes employed in surface modification. Silanes and other coupling agents, 2009. 5: p. 51-64.

    無法下載圖示 全文公開日期 2033/08/09 (校內網路)
    全文公開日期 2033/08/09 (校外網路)
    全文公開日期 2033/08/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE