簡易檢索 / 詳目顯示

研究生: 卓靖強
CHING-CHIANG CHO
論文名稱: 以聚電解質絮凝半導體廠廢水氟化鈣之研究
A Study on Flocculation of Calcium Fluoride Precipitates from Semiconductor Wastewater
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 顧 洋
Young Ku
黃志彬
Chih-Pin Huang
李篤中
Duu-Jung Lee
楊金鐘
Gordon C. C. Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 105
中文關鍵詞: 氟化鈣含氟廢水半導體絮凝雙重絮凝聚電解質膠羽破碎膠羽回復
外文關鍵詞: calcium fluoride, floc breakage, floc reformation
相關次數: 點閱:179下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的在於探討以實廠半導體含氟廢水以固定鈣氟比為0.7,酸鹼值為7.5下將氟離子沉澱,形成氟化鈣懸浮液後,加入單一聚電解質或雙重聚電解質絮凝。比較不同分子量、加藥量及不同搭配下的絮凝系統其殘餘濁度的差異,並在絮凝時以光學散射分析儀PDA2000或小角度光散射儀線上監控膠羽的成長、破碎及再回復。
    結果顯示以較低分子量的聚丙烯酸(PAA)絮凝有較低的殘餘濁度,但分子量為400萬的高分子量聚丙烯酸對於濁度的移除效果不佳。以雙重絮凝,發現加入較高劑量分子量9萬的聚丙烯酸搭配低劑量較高分子量之聚電解質,較可有效達到濁度去除的效果。其中以分子量9萬的聚丙烯酸搭配分子量為400萬的兩性聚電解質T204下有較佳的固液分離效果,且對於增加T204加藥量下也不易使濁度惡化。
    以小角度光散射儀線上監控絮凝動態,可發現在雙重絮凝下,增加較高分子量聚電解質的劑量比例,可使膠羽長得較大,較不易破碎,但破碎後也較不易回復。而利用聚丙烯酸搭配T204形成的膠羽會比聚丙烯酸搭配陽離子性聚電解質KP1200B較易碎但有較好的回復性。在加快慢混轉速下可限制膠羽成長的大小,增加膠羽與細小顆粒的碰撞,使細小微粒有較佳的補捉效過,因此與一般轉速慢混下相比有更低的殘餘濁度。


    ABSTRACT
    The major objective of this study was to investigate flocculation and dual flocculation of calcium fluoride suspension from fluoride-containing wastewater of semiconductor manufacturer. This experiment utilized calcium chloride(CaCl2) and molar ratio, [Ca2+/F-] , was 0.7 at pH of 7.5. Residual turbidity was the major parameter after flocculated by polyelectrolytes of different molecular weight、dosage and combinations. The growth, breakage, and reformation of flocs was recorded on-line by PDA2000 or Small-angle light scattering instrument.
    Better flocculaion was found when using low molecular weight PAA(polyacrylic acid). Turbidity removal was not as effective when using high molecular weight PAA. In the dual flocculation systems, better results were found when using PAA with low molecular weight (90K) combined with amphoteric polyelectrolyte ,T204.
    In dual flocculation systems, both flocs size and strength increased, but the recovery decreased with increasing ratio of high to low molecular weight polyelectrolytes. The flocs formed by using PAA combined with T204 were easier to be broken and reformed than those by PAA combined with cationic polyelectrolyte KP1200B. Efficiency of fine particles capture increased with decreasing flocs size , and resulted in lower residual turbidity.

    目 錄 摘要..........................................................................I Abstract.....................................................................II 致謝........................................................................III 目錄.........................................................................IV 圖目錄.......................................................................VI 表目錄.......................................................................IX 第一章 緒 論..................................................................1 第二章 理論基礎與文獻回顧.....................................................2 2.1半導體產業廢水.............................................................2 2.2國內外對於含氟廢水處理技術之發展...........................................3 2.3聚電解質絮凝劑.............................................................8 2.3.1聚電解質的特性...........................................................9 2.4絮凝機制..................................................................10 2.5絮凝程序..................................................................14 2.6雙重絮凝..................................................................16 2.7膠羽破碎與再回復..........................................................19 2.8光學散射分析儀(PDA2000)...................................................20 2.9利用線上絮凝監控系統量測膠羽強度與回復性..................................21 第三章 實驗設備與方法........................................................23 3.1實驗材料..................................................................23 3.2實驗藥品..................................................................23 3.3實驗設備與裝置............................................................25 3.4實驗項目與步驟............................................................27 3.4.1實驗流程................................................................27 3.4.2瓶杯試驗................................................................28 3.4.3線上監控絮凝試驗........................................................29 3.5分析測定方法..............................................................31 3.5.1濁度分析................................................................31 3.5.2介達電位分析............................................................31 3.5.3膠羽粒徑分析............................................................31 3.6樣品分析..................................................................32 3.6.1殘餘氟離子濃度分析......................................................32 3.6.2濁度測定................................................................32 3.6.3界達電位測定............................................................33 3.6.4膠羽粒徑分佈分析........................................................33 3.6.5電子顯微照相............................................................33 3.6.7結晶型態分析............................................................34 第四章 結果與討論............................................................35 4.1原水性質..................................................................35 4.2氟化鈣懸浮液性質..........................................................35 4.3以陰離子聚電解質絮凝實驗..................................................42 4.3.1不同分子量陰離子聚電解質絮凝的影響......................................42 4.4聚電解質雙重絮凝實驗......................................................50 4.5 PDA2000光散射分析儀系統線上監控絮凝實驗..................................61 4.6以小角度光散射儀系統線上監控絮凝實驗......................................67 4.6.2膠羽的破碎及回復性...................................................68 第五章 結論與建議............................................................77 附錄.........................................................................80 參考文獻.....................................................................89 作者簡介....................................................................105 圖 目 錄 圖2-1 表示聚電解質會因為離子強度增加而捲曲圖................................10 圖2-2 聚電解質鏈的吸附模式圖................................................11 圖2-3 (a)聚電解質藉由架橋方式絮凝 (b)顆粒因為吸附過多的聚電解質而達穩態.....13 圖2-4 聚電解質電性補綴於顆粒表面圖..........................................14 圖2-5 單一聚電解質的混凝程序圖..............................................15 圖2-6 雙重聚電解質加藥絮凝程序圖............................................18 圖2-7 不同階段膠羽的大小代表的參數..........................................22 圖3-1 PDA2000/Mastersizer2000 線上監控絮凝程序..............................26 圖3-3 實驗流程圖............................................................37 圖4-1 氟化鈣顆粒以X光散射儀分析圖...........................................39 圖4-2 氟化鈣顆粒以FESEM/EDS分析圖...........................................40 圖4-3 鈣氟比0.7、pH=7.5±0.02,以小角度光散射儀測量氟化鈣懸浮液粒徑圖........41 圖4-4 利用不同分子量的PAA絮凝氟化鈣懸浮液之介達電位圖.......................46 圖4-5 鈣氟比0.7、pH=7.5±0.02,以PAA(M.W.=90,000)絮凝氟化鈣顆粒之膠羽體積與數 量百分率粒徑分佈圖...........................................................47 圖4-6 鈣氟比0.7、pH=7.5±0.02,以PAA(M.W.=450,000)絮凝氟化鈣顆粒之膠羽體積與數量百分率粒徑分佈圖...........................................................48 圖4-7 鈣氟比0.7、pH=7.5±0.02,以PAA(M.W.=4,000,000)絮凝氟化鈣顆粒之膠羽體積與數量百分率粒徑分佈圖.........................................................49 圖4-8 利用PAA(M.W.=90,000)搭配KP1200B雙重絮凝氟化鈣懸浮液之殘餘濁度圖.......55 圖4-9 利用PAA(M.W.=90,000)搭配KP1200B雙重絮凝氟化鈣懸浮液之介達電位圖.......55 圖4-10 利用PAA(M.W.=90,000)搭配T204雙重絮凝氟化鈣懸浮液之殘餘濁度圖..........56 圖4-11 利用PAA(M.W.=90,000)搭配T204雙重絮凝氟化鈣懸浮液之介達電位圖..........56 圖4-12 利用PAA(M.W.=90,000)搭配PAM雙重絮凝氟化鈣懸浮液之殘餘濁度圖...........57 圖4-13 利用PAA(M.W.=90,000)搭配PAM雙重絮凝氟化鈣懸浮液之介達電位圖...........57 圖4-14 利用PAA(M.W.=90,000)搭配KP1200B雙重絮凝氟化鈣懸浮液之體積百分率中位數粒 徑圖.........................................................................58 圖4-15 利用PAA(M.W.=90,000)搭配KP1200B雙重絮凝氟化鈣懸浮液之數量百分率中位數粒徑圖.........................................................................58 圖4-16 利用PAA(M.W.=90,000)搭配T204雙重絮凝氟化鈣懸浮液之體積百分率中位數粒徑圖...........................................................................59 圖4-17 利用PAA(M.W.=90,000)搭配T204雙重絮凝氟化鈣懸浮液之數量百分率中位數粒徑圖...........................................................................59 圖4-18 利用PAA(M.W.=90,000)搭配PAM雙重絮凝氟化鈣懸浮液之體積百分率中位數粒徑圖...........................................................................60 圖4-19 利用PAA(M.W.=90,000)搭配KP1200B雙重絮凝氟化鈣懸浮液之數量百分率中位數粒徑圖.........................................................................60 圖4-20 在PDA2000系統以較低加藥量之單一絮凝動態圖.............................63 圖4-21 在PDA2000系統以較高加藥量之PAA(M.W.=90,000)單一絮凝動態圖.............64 圖4-22 在PDA2000系統以較高加藥量之PAA(M.W.=450,000)單一絮凝動態圖............64 圖4-23 在PDA2000系統以較高加藥量之PAA(M.W.=4,000,000)單一絮凝動態圖..........65 圖4-24 在PDA2000系統以較低加藥量之雙重絮凝動態圖.............................65 圖4-25 在PDA2000系統以較高加藥量之雙重絮凝動態圖.............................66 圖4-26 以20mg/L之PAA搭配3mg/L KP1200B在慢混150rpm及破碎轉速400rpm的PDA2000絮凝動態圖.......................................................................66 圖4-27 在小角度光散射儀係統以單一高分子絮凝之粒徑對時間關係圖................71 圖4-28 在小角度光散射儀係統以20mg/L分子量9萬PAA搭配KP1200B雙重絮凝之粒徑對時間關係圖.......................................................................72 圖4-29 在小角度光散射儀係統以30mg/L分子量9萬PAA搭配KP1200B雙重絮凝之粒徑對時間關係圖.......................................................................72 圖4-30 在小角度光散射儀係統以20mg/L分子量9萬PAA搭配T204雙重絮凝之粒徑對時間關係圖...........................................................................73 圖4-31 在小角度光散射儀係統以30mg/L分子量9萬PAA搭配T204雙重絮凝之粒徑對時間關係圖...........................................................................73 圖5-1 慢混以100rpm,破碎300rpm剪力下的PDA2000系統絮凝動態圖.................79 圖5-2 慢混以100rpm,破碎300rpm剪力下的小角度光散射儀系統絮凝動態圖..........78 表 目 錄 表3-1 表3-1聚電解質特性.....................................................24 表4-1 由ICP測量實廠含氟廢水溶液中元素表.....................................38 表4-2 實廠含氟廢水基本性質..................................................38 表4-3 氟化鈣懸浮水樣基本性質................................................38 表4-4 含氟溶液以鈣鹽及不同濃度 PAA(M.W.=90,000)之處理效果...................45 表4-5 含氟溶液以鈣鹽及不同濃度 PAA(M.W.=450,000)之處理效果..................45 表4-6 含氟溶液以鈣鹽及不同濃度 PAA(M.W.=4,000,000)之處理效果................46 表4-7 含氟溶液以鈣鹽及固定濃度PAA(M.W.=90,000) 搭配不同濃度KP-1200B之處理效果...........................................................................52 表4-8 含氟溶液以鈣鹽及固定濃度PAA(M.W.=90,000) 搭配不同濃度T-204之處理效果...53 表4-9 含氟溶液以鈣鹽及固定濃度PAA(M.W.=90,000)搭配不同濃度PAM之處理效果.....54 表4-10 在PDA2000系統以較低加藥量之單一絮凝之破碎與回復率.....................63 表4-11 由小角度光散射儀系統動態絮凝圖所得破碎率與回復率表....................74 表4-12 由PDA2000系統在一般絮凝及小角度光散射儀系統在加快慢混轉速絮凝後濁度比較表...........................................................................76

    參 考 文 獻
    中文文獻
    經濟部工業局,「半導體製造業污染防治技術」,第28-36頁 (1995)
    李茂松,「半導體工業中含氟廢水處理技術發展」,化工技術,第81期,第230-239頁 (1999)。

    劉覲銘,「逆滲透與離子交換法處理半導體氫氟酸廢水之研究」,碩士論文,私立元智大學化學工程系,桃園 (2001)。

    黃志彬、邵信、江萬豪、邱顯盛、烏春梅、李谷蘭,「新竹科學園區半導體及光電製造業廢水處理設施績效提昇輔導計畫」,國立交通大學環境工程研究所,新竹市 (2001)。

    經濟部工業局,「半導體業廢棄物資源化技術手冊」,第9-19頁 (2001)。

    劉志成,「以溶解空氣浮除法處理半導體業含氟廢水」,工程科技通訊,第61期,第133-137頁 (2002)。

    黃志彬,「高科技工業廢水處理操作效能提升研析」,第一屆高科技工業環保技術及安全衛生學術及實務研討會,第23-35頁 (2002)。

    莊達人,「VLSI製造技術」,高立圖書,台北 (2002)。

    何宜佳,「IC製造業迎接2003的緩步復甦」,新電子科技期刊,第206期,第105-110頁 (2003)。

    施延熙等,「積體電路及彩色影像產業發展與用水需求」,節約用水季刊,第29期,(2003)。

    張明發,「半導體業含氟廢水處理之研究」,碩士論文,國立台灣科技大學化學工程系,台北 (2003)。

    賴志彥,「污泥雙重調理及共調理之研究」,碩士論文,國立台灣科技大學化學工程系,台北 (2002)。

    經濟部工業局半導體產業推動辦公室http://www.sipo.org.tw/Board/BoardShow.asp?act=edit&ID=67 (2007)

    英文文獻
    Aldaco, R., Garea, A. and Irabien, A., “Fluoride recovery in a fluidized bed: Crystallization of calcium fluoride on silica sand”, Industrial and Engineering Chemistry Research, 45(2), 796-802 (2006).

    Aldaco, R., Irabien, A. and Luis. P., “Fluidized bed reactor for fluoride removal”, Chemical Engineering Journal, 107(1-3), 113-117 (2005).

    Ayol, A., Dentel, S. K. and Filibeli, A., “Dual polymer conditioning of water treatment residuals”, Journal of Environmental Engineering, 131(8), 1132-1138 (2005).

    Biggs S., Habgood M., Jameson G.J. and Yan Y. “Aggregate structures formed vis a bridging flocculation mechanism”, Chemical Engineering Journal, 80(1-3), 13-22 (2000)

    Bolto, B. and Gregory, J., “Organic polyelectrolytes in water treatment”, Water Research, 41(11), 2301-2324 (2007).

    Bolto, B. A., “Soluble polymers in water-purification,” Progress in Polymer Science (Oxford), 20(6), 987-1041 (1995).

    Brakalov, L. B., “A connection between the orthokinetic coagulation capture efficiency of aggregates and their maximum size”, Chemical Engineering Science, 42(10), 2373-2383 (1987).

    Broeck, K. V., Hoornick, N. V., Hoeymissen, J. V., Boer, R., Giesen, A. and Wilms, D. “Sustainable treatment of HF wastewater from semiconductor industry with a fluided bed reactor”, IEEE Transations on Semiconductor Manufacturing, 16(3), 423-428 (2003).

    Brother, R., “Photometric Dispersion Analyser PDA2000: Operating Manual” (2002).

    Castel, C., Schweizer, M., Simonnot, M. O. and Sardin, M. “Selective removal of fluoride ions by a two-way ion-exchange cyclic process”, Chemical Engineering Science, 55(17), 3341-3352 (2000).

    Cengeloglu, Y., Kir, E. and Ersoz, M., “Removal of fluoride from aqueous solution by using red mud”, Separation and Purification Technology, 28(1), 81-86 (2002).

    Chang, G. K., Tai, I. Y. and Myung, J. L. “Characterization and control of foulants occurring from RO disc-tube-type, membrane treating, fluorine manufacturing, process wastewater”, Desalination, 151(3), 283-292 (2002).

    Chang, M. F. and Liu, J. C. “Precipitation Removal of Fluoride from Semiconductor Wastewater”, Journal of Environmental Engineering, 133(4), 419-425 (2007)

    Chen, W. and Berg, J. C., “The effect of polyelectrolyte dosage on floc formation in protein precipitation by polyelectrolytes”, Chemical Engineering Science, 48(10), 1775-1784 (1993).

    Chuang, T. C., Huang, C. J. and Liu, J. C., “Treatment of Semiconductor Wastewater by Dissolved Air Flotation”, Journal of Environmental Engineering, ASCE, 128(10), 974-980 (2002).

    Diawara, C. K., Paugam, L., Pontie, M., Schlumpf, J. P., Jaouen, P. and Quemeneur, F., “Influence of chloride, nitrate, and sulphate on the removal of fluoride ions by using nanofiltration membranes”, Separation Science and Technology, 40(16), 3339-3347 (2005).

    Fan, A., Turro, N. J., and Somasundaran, P., “A study of dual polymer flocculation”, Colloids and Surfaces A: Physicochemical and Engineering Aspects , 162(1-3), 141-148 (2000).

    Fitzpatrick, C. S. B., Fradin, E. and Gregory, J., “Temperature effects on flocculation, using different coagulants”, Water Science and Technology, 50(12), 171-175 (2004).

    Glasgow, L. A., “Effects of the physiochemical environment on floc properties”, Chemical Engineering Progress, 85(8), 51-55 (1989).
    Gregory, J., “Rates of flocculation of latex particles by cationic polymers”, Journal of Colloid and Interface Science, 42(2), 448-456 (1973).

    Gregory, D., and Carlson, K., “Relationship of pH and floc formation kinetics to granular media filtration performance”, Environmental Science and Techonology, 37(7), 1398-1403 (2003).

    Gregory, J., “The effect of cationic colymers on the colloidal stability of latex particles”, Journal of Colloid and Interface Science, 55(1), 35-44 (1976).

    Gregory, J., “Monitoring floc formation and breakage”, Water Science and Technology, 50(12), 163-170 (2004).

    Gregory, J. and Nelson, D. W., “Monitoring of aggregates in flowing suspensions”, Colloids and Surfaces, 18(2-4), 175-188 (1986).

    Gregory, J. and Rossi, L., "Dynamic testing of water treatment coagulants", Water Science and Technology: Water Supply, 1(4), 65-72 (2001).

    Grzmil, B. and Wronkowski, J., “Removal of phosphates and fluorides from industrial wastewater”, Desalination, 189(1-3), 261-268 (2006).

    Hichour, M., Persin, F., Molenat, J., Sandeaux, J. and Gavach, C., “Fluoride removal from diluted solution by donnan dialysis with anion-exchange membranes”, Desalination, 122(1), 53-62 (1999)

    Hogg, R., "The role of polymer adsorption kinetics in flocculation", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 146(1-3), 253-263 (1999).

    Hu, C. Y., Lo, S. L., Kuan, W. H. and Lee, Y. D., “Removal of fluoride from semiconductor wastewater by electrocoagulation- flotation” Water Research, 39(5), 895-901 (2005).

    Huang, C. and Liu, C. B., “Automatic control for chemical dosing in laboratory scale coagulation process by using an optical monitor”, Water Research, 30(11), 1924-1929 (1996).

    Huang, C. J. and Liu, J. C., “Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer”, Water Research, 33(16), 3403-3412 (1999).

    Itakura, T. and Sasai, R., Itoh, H., “A novel recovery method for treating wastewater containing fluoride and fluoroboric acid”, Bulletin of the Chemical Society of Japan, 79(8), 1303-1307 (2006).

    Jarvis, P., Jefferson, B., Gregory, J. and Parsons, S.A. “A review of floc strength and breakage”, Water Research, 39(14), 3121-3137 (2005)

    Kam, S. K. and Gregory, J., “Charge determination of synthetic cationic polyelectrolytes by colloid titration”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 159(1), 165-179 (1999).

    Kan, C., Huang, C. and Pan, J. R., “Time requirement for rapid-mixing in coagulation”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 203(1-3), 1-9 (2002).

    Kang, W. H., Kim, E. I. and Park, J. Y., “Fluoride removal capacity of cement paste” Desalination, 202(1-3), 38-44 (2007).

    Kawamura, S., “Considerations on improving flocculation”, Journal of the American Water Works Association, 68(6), 328-336 (1976).

    Kawase, Y., Kusaka, T., Kondoh, K. and Nozaki, T., “The recycling activities by NEC electron devices”, Proceedings of the ISESH 8th Annual Conference, June 18-20, Taiwan, 2D1-2D4 (2001).

    Van den Broeck, K., Van Hoornick, N., Van Hoeymissen, J., De Boer, R., Giesen, A. and Wilms, D.,“Sustainable treatment of HF wastewaters from semiconductor industry with a fluidized bed reactor”, IEEE Transactions on Semiconductor Manufacturing, 16(3), 243-438 (2003).

    Ku, Y., Chiou, H. M. and Wang, W. “The removal of fluoride ion from aqueous solution by a cation synthetic resin”, Separation Science and Technology, 37(1), 89-103 (2002).

    Li, Y. H., Wang, S., Cao, A., Zhao, D., Zhang, X., Xu, C., Luan, Z., Ruan, D., Liang, J., Wu, D. and Wei, B. “Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes”, Chemical Physics Letters, 350(5-6), 412-416 (2001).

    Lin, S. H. and Liu, J. M. “Hydrofluoric acid recovery from waste semiconductor acid solution by ion exchange”, Journal of Environmental Engineering, 129(5), 472-478 (2003).

    Liu, R., Guo, J. and Tang H., “Adsorption of fluoride, phosphate, and arsenate ions on a new type of ion exchange fiber”, Journal of Colloid and Interface Science, 248(2), 268-274 (2002).

    Lee, C. H. and Liu, J. C., “Enhanced sludge dewatering by dual polyelectrolytes conditioning”, Water Research, 34(18), 4430-4436 (2000).

    Lee, C. H. and Liu, J. C., “Sludge dewaterability and floc structure in dual polymer conditioning”, Advances in Environmental Research, 5(2), 129-136 (2001).

    Luttinger, L. B., The use of polyelectrolytes in filtration processes. In: Schwoyer,W.L.K. (Ed.), Polyelectrolytes for Water and Wastewater Treatment. CRC Press, Boca Raton, FL, pp. 211–244. 1981

    McCurdy, K., Carlson, K. and Gregory, D., “Floc morphology and cyclic shearing recovery: comparison of alum and polyaluminum chloride coagulants”, Water Research, 38(2), 486–494 (2004).

    Mikkelsen, L. H. and Keiding, K., “The shear sensitivity of activated sludge: an evaluation of the possibility for a standardised floc strength test”, Water Research, 36(12), 2931-2940 (2002).

    Moges, G., Zewge, F. and Socher, M., “Preliminary investigations on the defluroridation of water using fired clay chips”, Journal of African Earth Science, 21(4), 479-482 (1996).

    Mahramanlioglu, M., Kizilcikli, I. and Bicer I. O., “Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth”, Journal of Fluorine Chemistry, 115(1), 41-47 (2002).

    Miki, N., Maeno, M., Fukudome, T. and Ohmi, T., “Advanced fluorite regeneration techology to recover spent fluoride chemicals drained from semiconductor manufacturing process”, IEICE Transactions on Electronics, E79-C(3), 363-373 (1996).

    Műhle, K.,.Floc stability in laminar and turbulent flow. In: Dobia´ s, B. (Ed.), Coagulation and Flocculation. Marcel Dekker, New York, 355-390 (1993).

    Mukherjee, D., Kulkarni, A. and Gill, W. N., “Membrane based system for ultrapure hydrofluoric acid etching solutions”, Journal of Membrane Science, 109(2), 205-217 (1996).

    Napper, D. H., “Polymeric Stabilization of Colloidal Dispersions”, Academic Press, London, (1983).

    Nozaic, D. J., Freese, S. D. and Thompson, P., “Long term experience in the use of polymeric coagulants at Umgeni Water”, Water Science and Technology: Water Supply, 1(1), 43-50 (2001).

    Ono, H. and Deng, Y., “Flocculation and retention of precipitated calcium carbonate by cationic polymeric microparticle flocculants”, Journal of Colloid and Interface Science, 188(1), 183-192 (1997).

    Palmer, T. S. and Campbell, N., Bowman, J. L., Dewar, P., “Flocculation behavior of some cationic polyelectrolytes”, Journal of Applied Polymer Science, 52(9), 1317-1325 (1994).

    Pelton, R. H., “Electrolyte effects in the adsorption and desorption of a cationic polyacrylamide on cellulose fibers”, Jonual of Colloid Interface Science, 111(2), 475-485 (1986).

    Petzold, G., Berwald, S. and Buchhammer, H. M., “The influence of shear forces on clay modification with oppositely charged polyelectrolytes”, Macromolecular Materials and Engineering, 279(1), 10-18 (2000).

    Petzold, G., Buchhammer, H. M. and Lunkwitz, K., “The use of oppositely charged polyelectrolytes as flocculants and retention aids”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 119(1), 87-92 (1996).

    Petzold, G., Geissler, U., Smolka, N. and Schwarz, S., “Influence of humic acid on the flocculation of clay”, Colloid Polymer Science, 282(7), 670-676 (2004).

    Petzold, G., Mende, M., Lunkwitz, K., Schwarz, S. and Buchhammer, H. M., “Higher efficiency in the flocculation of clay suspensions by using combinations of oppositely charged polyelectrolytes,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, 218(1-3), 47-57 (2003).

    Petzold, G., Nebel, A., Buchhammer, H. M. and Lunkwitz, K., “Preparation and characterization of different polyelectrolyte complexes and their application as flocculants”, Colloid Polymer Science, 276(2), 125-130 (1998).

    Petzold, G., Schwarz, S. and Lunkwitz, k., “Higher efficiency in particle flocculation by using combinations of oppositely charged polyelectrolytes”, Chemical Engineering Technology, 26(1), 48-53 (2003).

    Povorov, A. A., Pavlova, V. F., Nacheva, I. I., Erokhina, L. V. and Kolomiytseva, O. N. “Hydrofluoric acid recovery integrated membrane technology from glass production concentrated washing waters”, Desalination, 149(1-3), 115-120 (2002).

    Rawlings, M. M., Fitzpatrick, C. S. B., Gregory, J. and Wetherill, A., “The effect of polymeric flocculants on floc strength and filter performance”, Water Science and Technology, 53(7), 77-85 (2006).

    Reardon, E. J. and Wang, Y., “A limestone reactor for fluoride removal from wastewaters”, Environmental Science and Technology, 34(15), 3247-3253 (2000).

    Rossi, L., Lubello, C., Poggiali, E. and Griffini, O., “Analysis of a clariflocculation process with a photometric dispersion analyser (PDA2000),” Water Science and Technology: Water Supply, 2(5-6), 57-63 (2002).

    Rout, D., Verma, R. and Agarwal, S. K., “Polyelectrolyte treatment-an approach for water quality improvement”, Water Science and Technology, 40(2), 137-141 (1999).

    Rubio, J. and Kitchener, J. A., “Mechanism of adsorption of poly(ethylene oxide) flocculant on silica”, Jonunal of Colloid Interface and Science, 57(1), 132-142 (1976).

    Runkana, V., Somasundaran, P. and Kapur, P. C., “A population balance model for flocculation of colloidal suspensions by polymer bridging”, Chemical Engineering Science, 61(1), 182-191 (2006).

    Scott, J. P., Fawell, P. D., Ralph, D. E. and Farrow, J. B., “The shear degradation of high-molecular-weight flocculant solutions”, Journal of Applied Polymer Science, 62(12), 2097-2106 (1996).

    Shen, F., Chen, X., Gao, P. and Chen, G., “Electrochemical removal of fluoride ions from industrial wastewater”, Chemical Engineering Science, 58(3-6), 987–993 (2003).

    Sikora, M. D. and Stratton, R. A., “The shear stability of flocculated colloids”, Tappi, 64(11), 97-101(1981).

    Singh, G., Kumar, B., Sen, P. K. and Majumdar, J. “Removal of fluoride from spent pot liner leachate using ion exchange”, Water Environment Research, 71(1), 36-42 (1999).

    Spicer, P. T. and Pratsinis, S. E., “Shear-induced flocculation: The evolution of floc structure and the shape of the size distribution at steady state”, Water Research, 30(5), 1049-1056 (1996).

    Stemme, S., Odberg, L. and Malmsten, M., “Effect of colloidal silica and electrolyte on the structure of an adsorbed cationic polyelectrolyte layer”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 155(2-3), 145-154 (1999).

    Sujana M. G., Thakur R. S. and Rao S. B., “Removal of fluoride from aqueous solution by using alum sludge”, Journal of Colloid and Interface Science, 206(1), 94-101 (1998).

    Toyoda, A. and Taira, T., “A new method for treating fluorine wastewater to reduce sludge and running costs”, IEEE Transactions on Semiconductor Manufacturing, 13(3), 305-309 (2000).

    Turner, B. D., Binning, P. and Stipp, S. L. S., “Fluoride removal by calcite: evidence for fluorite precipitation and surface adsorption Source”, Environmental Science and Technology, 39(24), 9561-9568 (2005).

    Wagberg, L. and Asell, I., “The action of cationic polymers in the fixation of dissolved and colloidal substances Part 2”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 104(2-3), 169-184 (1995).

    Wang, J. S., Liu, J. C. and Lee, D. J., “Dual conditioning of sludge utilizing polyampholyte”, Journal of Environmental Engineering, 131(12), 1659-1666 (2005).

    Wang, L. K. and Shuster, W. W., “Polyelectrolyte determination at low concentration”, Industrial and Engineering Chemistry, Product Research and Development , 14(4), 312-314 (1975).

    Wang, T. K. and Audebert, R. “Flocculation mechanisms of silica suspension by some weakly cationic polyelectrolytes” Journal of Colloid and Interface Science, 199(2), 459-464 (1987).

    Yang, M., Hashimoto, T., Hoshi, N. and Myoga, H., “Fluoride removal in a fixed bed packed with granular calcite”, Water Research, 33(16), p3395-3402 (1999).

    Yang, M., Zhang, Y., Shao, B., Qi, R. and Myoga, H. “Precipitative removal of fluoride from electronics wastewater”, Journal of Environmental Engineering, 127(10), 902-907 (2001).

    Yang, C. L. and Dluhy, R. “Electrochemical generation of aluminum sorbent for fluoride adsorption", Journal of Hazardous Materials, 94(3), p239-252 (2002).

    Yeung, A. K. C. and Pelton, R., “Micromechanics: a new approach to studying the strength and breakup of flocs”, Journal of Colloid and Interface Science, 184(2), 579-585(1996).

    Yoon, S. Y. and Deng, Y., “Flocculation and reflocculation of clay suspension by different polymer systems under turbulent conditions”, Journal of Colloid and Interface Science, 278(1), 139-145 (2004).

    Yu, X. and Somasundaran, P., “Enhanced flocculation with double flocculants”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 81(1), 17-23 (1993).

    Yu, X. and Somasundaran, P., “Role of polymer conformation in interparticle-bridging dominated flocculation”, Journal of Colloid and Interface Science, 177(2), 283-287 (1996).

    Yukselen, M. A. and Gregory, J., “Breakage and re-formation of alum flocs”, Environmental Engineering Science, 19(4), 229-236 (2002).

    Yukselen, M. A. and Gregory, J., “Properties of flocs formed using different coagulants”, Water Science and Technology: Water Supply, 2(5-6), 95-101 (2002).

    Yukselen, M. A. and Gregory, J., “The effect of rapid mixing on the break-up and re-formation of flocs”, Journal of Chemical Technology and Biotechnology, 79(7), 782-788 (2004).

    Yukselen, M. A. and Gregory, J., “The reversibility of floc breakage”, International Journal of Mineral Processing, 73(2-4), 251-259 (2004).

    Yukselen, M. A., Gregory, J. and Soyer, E., “Formation and breakage of flocs using dual polymers”, Water Science and Technology, 53(7), 217-223 (2006)

    無法下載圖示 全文公開日期 2012/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE