簡易檢索 / 詳目顯示

研究生: 林意紋
Yi-Wen Lin
論文名稱: 以聚矽氧烷高導離子軟物質作為鋰離子電池用於固態電解質及負極黏著劑之研究
Polysiloxane based modified in AA / CEA with high ion conductivity soft mater as the solid polymer electrolyte and anode binder in lithium ion battery
指導教授: 王復民
Fu-Ming Wang
口試委員: 劉如熹
Ru-Shi Liu
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 99
中文關鍵詞: 聚合物電解質離子電導率鋰離子傳輸網絡水性黏著劑添加劑鈍性膜矽負極鋰離子電池
外文關鍵詞: polymer electrolyte, Ionic conductivity, Lithium ion transport network, Aqueous binder, Additive, Solid electrolyte interphase, Silicon anode material, Lithium ion battery
相關次數: 點閱:349下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 固態聚合物電解質(SPE)由於其與鋰金屬的良好相容性、高柔韌性和安全性,是下一代固態電池中最有希望的固態電解質之一。為了在能量密度上與當前使用的常規鋰離子電池競爭,SPE必須與LiNixMnyCozO2(x+y+z = 1, 0.5 < x < 1)(NMC)的高能量密度陰極集成在一起。在研究工作中,已生研發出AAM950 / CEAM950和雙(氟磺酰基)酰亞胺鋰(LiFSI)作為固體聚合物電解質(SPE)。通過熱重分析和差示掃描量熱法(TGA-DSC)、核磁共振(NMR)、傅立葉轉移紅外光譜(FT-IR)和充電/放電測試研究了固態聚合物電解質的形態、化學和結構特徵。
    CEAM950在25°C時具有2.04×10-4 S cm-1的高離子電導率,在90℃時具有2.41×10-3 S cm-1的高離子電導率。AAM950/CEAM950具有良好的機械性能、高離子電導率、高電化學和熱穩定性。此外,包含性能最佳的SPE的Li / LiNi0.6Mn0.2Co0.2O2電池具有高放電容量和出色的循環性能。
    當用作為鋰存儲材料時,矽以高電容量但體積變化大的特性而聞名,而聚合物黏著劑基本上有助於改善循環壽命和增加矽陽極的面積容量。本研究提出了一種藉由氫化矽烷化反應而形成穩固的網狀黏著劑,以達到具有穩定循環性能的高面積電容量的矽陽極。再加入的丙烯酸/丙烯酸2-羧乙酯(AA / CEA)進一步增強了聚合物鏈的局部連接,AA / CEA含有豐富的羥基和羧基,這些羥基和羧基通常可確保它們與矽之間的牢固結合親和力。因此所合成的AAM950 / CEAM950具有持久的界面黏著力,可穩定矽陽極的結構完整性。


    The solid polymer electrolyte (SPE) is one type of the most promising solid-state electrolytes for next-generation solid-state batteries, due to its good compatibility with Li-metal, high flexibility, and safety. To compete with currently used conventional Li-ion batteries in energy density, SPEs must be integrated with high energy density cathode of LiNixMnyCozO2(x+y+z = 1, 0.5 < x < 1)(NMC). In this work, AAM950/CEAM950 and lithium bis(fluorosulfonyl)imide (LiFSI) have been produced as solid polymer electrolytes (SPEs). Morphological, chemical and structural characterizations of the solid-state composite electrolytes are studied by thermogravimetric analysis and differential scanning calorimetry (TGA-DSC), Nuclear Magnetic Resonance (NMR), Fourier transfer-infrared spectrometry (FT-IR) and charge/discharge tests.
    CEAM950 shows high ionic conductivities of 2.04 ×10-4 S cm-1 at 25 °C and above2.41×10-3 S cm-1 at 90 ℃. The AAM950/CEAM950 provide good mechanical property, high ionic conductivity, high electrochemical and thermal stability. Moreover, Li/ LiNi0.6Mn0.2Co0.2O2 cells containing the best-performing SPE exhibit high discharge capacity and excellent cycling performance.
    Silicon is known for high capacity and large volume change properties when used as lithium storage material. Polymeric binders substantially contribute to improving the cycling life and increasing areal capacity of silicon anode. Herein, a robust network binder via linking by Hydrosilylation is proposed to achieve stable cycling performance of silicon anode with high areal capacity. The Acrylic acid/ 2-Carboxyethyl acrylate (AA/CEA) introduced further enhances the localized linking for the polymer chains. Because AA/CEA is rich in abundant hydroxyl and carboxyl groups that conventionally ensure a strong binding affinity between the AA/CEA and Si. The resultant AAM950/CEAM950 owns durable interfacial adhesion and outstanding mechanical properties to stabilize the structural integrity of Si anode.

    摘要 I ABSTRACT II 目錄 IV 圖目錄 VII 表目錄 XI 第1章 緒論 1 1.1 研究背景 1 1.1.1 鋰離子電池工作原理 1 1.1.2 電池材料 4 1.1.2.1 正極 (陰極)材料 4 1.1.2.2 負極 (陽極)材料 6 1.1.2.3 電解質 8 1.1.2.4 隔離膜 12 1.2 研究動機與目的 13 第2章 文獻探討 14 2.1 固態電解質 14 2.2 負極黏著劑 18 2.3 矽負極 20 2.4 多功能聚合物高分子設計 22 2.4.1 聚矽氧烷基聚合物應用在固態解質 22 2.4.2 聚矽氧烷基聚合物應用在負極黏著劑 26 第3章 研究方法與儀器設備 29 3.1 實驗藥品 29 3.2 實驗儀器 30 3.3 實驗方法 31 3.3.1 以Hydrosilylation法合成AAM950、CEAM950聚合物 32 3.3.2 正極電極極片製備 33 3.3.3 固態電解質製備 33 3.3.4 負極電極極片製備 33 3.3.5 鈕扣型電池(coin cell) 34 3.4 材料合成鑑定分析 34 3.4.1 核磁共振儀分析(NMR) 34 3.4.2 傅立葉轉換紅外光光譜儀-調減全反射(ATR-FTIR) 36 3.4.3 熱重分析儀(Thermogravimetric Analyzer,TGA) 40 3.4.4 微示差掃描熱卡分析儀(Differential Scanning Calorimeters,DSC) 41 3.4.5 離子電導率(Ionic conductivity) 42 3.4.6 離子遷移數(Transference number) 43 3.5 電化學性能測試 43 3.5.1 電池性能測試(Battery test) 43 3.5.2 循環伏安法(Cyclic Voltammetry,CV) 45 3.5.3 交流阻抗分析(Electrochemical impedance spectroscopy,EIS) 46 3.6 電極表面分析 48 3.6.1 臨場交流阻抗分析(In-operando Electrochemical impedance spectroscopy,In-operando EIS) 48 第4章 研究結果與分析 49 4.1 材料的合成鑑定與熱性分析 49 4.1.1 Nuclear magnetic resonance spectroscopy(NMR)確認特性峰 49 4.1.2 ATR-Fourier transform infrared spectroscopy(FTIR)高分子結構特性 51 4.1.3 熱重分析儀(Thermogravimetric Analyzer,TGA) 53 4.1.4 微示差掃描熱卡分析儀(Differential Scanning Calorimeters,DSC) 55 4.1.5 固態電解質的電導度 57 4.1.6 鋰子遷移率及擴散係數 58 4.2 固態電解質電化學特性分析 61 4.2.1 常溫第一圈充放電曲線分析 61 4.2.2 常溫充放電循環測試 62 4.2.3 高溫(55 ℃)第一圈充放電曲線分析 63 4.2.4 高溫(55 ℃)充放電循環測試 64 4.2.5 循環伏安法(Cycle voltammetry,CV) 65 4.3 黏著劑電化學特性分析 68 4.3.1 第一圈充放電曲線分析 68 4.3.2 常溫充放電循環測試 70 4.3.3 循環伏安法(Cycle voltammetry,CV) 71 4.3.4 交流阻抗分析(Electrochemical impedance spectroscopy,EIS) 73 4.4 臨場電化學分析 75 4.4.1 臨場交流阻抗分析(In-operendo EIS) 75 第5章 結論與建議 79 參考資料 80

    [1] Mizushima, K., et al. "LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density." Materials Research Bulletin 15.6 (1980): 783-789.
    [2] Winter, Martin, et al. "Insertion electrode materials for rechargeable lithium batteries." Advanced materials 10.10 (1998): 725-763.
    [3] Goodenough, John B., and Youngsik Kim. "Challenges for rechargeable Li batteries." Chemistry of materials 22.3 (2010): 587-603.
    [4] Whittingham, M. Stanley. "Lithium batteries and cathode materials." Chemical reviews 104.10 (2004): 4271-4302.
    [5] Dahn, J. R., Ulrich von Sacken, and C. A. Michal. "Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure." Solid State Ionics 44.1-2 (1990): 87-97.
    [6] Tarascon, J. M., et al. "Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4." Journal of The Electrochemical Society 141.6 (1994): 1421.
    [7] Yoshio, Masaki, et al. "Preparation and properties of LiCoyMnxNi1− x− yO2 as a cathode for lithium ion batteries." Journal of Power Sources 90.2 (2000): 176-181.
    [8] Huang, Yun-Hui, and John B. Goodenough. "High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers." Chemistry of Materials 20.23 (2008): 7237-7241.
    [9] Zaghib, K., et al. "Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries." Journal of Power Sources 81 (1999): 300-305.
    [10] Ellis, Brian L., Kyu Tae Lee, and Linda F. Nazar. "Positive electrode materials for Li-ion and Li-batteries." Chemistry of materials 22.3 (2010): 691-714.
    [11] Armand, Michel, et al. "Conjugated dicarboxylate anodes for Li-ion batteries." Nature materials 8.2 (2009): 120-125.
    [12] Cao, Q., et al. "A novel carbon-coated LiCoO2 as cathode material for lithium ion battery." Electrochemistry Communications 9.5 (2007): 1228-1232.
    [13] Yuan, Li-Xia, et al. "Development and challenges of LiFePO4 cathode material for lithium-ion batteries." Energy & Environmental Science 4.2 (2011): 269-284.
    [14] Li, Zhihua, Duanming Zhang, and Fengxia Yang. "Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material." Journal of materials science 44.10 (2009): 2435-2443.
    [15] Noh, Hyung-Joo, et al. "Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz]O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries." Journal of power sources 233 (2013): 121-130.
    [16] Endo, M., et al. "Recent development of carbon materials for Li ion batteries." Carbon 38.2 (2000): 183-197.
    [17] Kanno, R., et al. "Carbon fiber as a negative electrode in lithium secondary cells." Journal of the Electrochemical Society 139.12 (1992): 3397.
    [18] Wu, Hui, and Yi Cui. "Designing nanostructured Si anodes for high energy lithium ion batteries." Nano today 7.5 (2012): 414-429.
    [19] Zhao, Bing, et al. "Supercapacitor performances of thermally reduced graphene oxide." Journal of power sources 198 (2012): 423-427.
    [20] Chu, Iek-Heng, et al. "Battery Electrodes, Electrolytes, and Their Interfaces." Handbook of Materials Modeling: Applications: Current and Emerging Materials (2020): 1231-1254.
    [21] Song, J. Y., Y. Y. Wang, and C. Cv Wan. "Review of gel-type polymer electrolytes for lithium-ion batteries." Journal of power sources 77.2 (1999): 183-197.
    [22] Arora, Pankaj, and Zhengming Zhang. "Battery separators." Chemical reviews 104.10 (2004): 4419-4462.
    [23] Armand, Michel, and J-M. Tarascon. "Building better batteries." nature 451.7179 (2008): 652-657.
    [24] Thackeray, Michael M., Christopher Wolverton, and Eric D. Isaacs. "Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries." Energy & Environmental Science 5.7 (2012): 7854-7863.
    [25] Li, Jin-Yi, et al. "Research progress regarding Si-based anode materials towards practical application in high energy density Li-ion batteries." Materials Chemistry Frontiers 1.9 (2017): 1691-1708.
    [26] Obrovac, M. N., and V. L. Chevrier. "Alloy negative electrodes for Li-ion batteries." Chemical reviews 114.23 (2014): 11444-11502.
    [27] Du, Fei-Hu, Kai-Xue Wang, and Jie-Sheng Chen. "Strategies to succeed in improving the lithium-ion storage properties of silicon nanomaterials." Journal of Materials Chemistry A 4.1 (2016): 32-50.
    [28] Nie, Ping, et al. "Mesoporous silicon anodes by using polybenzimidazole derived pyrrolic N-enriched carbon toward high-energy Li-ion batteries." ACS Energy Letters 2.6 (2017): 1279-1287.
    [29] Chen, Yanjing, et al. "All-aqueous directed assembly strategy for forming high-capacity, stable silicon/carbon anodes for lithium-ion batteries." ACS applied materials & interfaces 7.38 (2015): 21391-21397.
    [30] Wu, Hui, et al. "Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control." Nature nanotechnology 7.5 (2012): 310-315.
    [31] Sun, Yongming, Nian Liu, and Yi Cui. "Promises and challenges of nanomaterials for lithium-based rechargeable batteries." Nature Energy 1.7 (2016): 1-12.
    [32] Higgins, Thomas M., et al. "A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes." Acs Nano 10.3 (2016): 3702-3713.
    [33] Kim, Sang-Mo, et al. "Poly (phenanthrenequinone) as a conductive binder for nano-sized silicon negative electrodes." Energy & Environmental Science 8.5 (2015): 1538-1543.
    [34] Jeena, M. T., et al. "A siloxane-incorporated copolymer as an in situ cross-linkable binder for high performance silicon anodes in Li-ion batteries." Nanoscale 8.17 (2016): 9245-9253.
    [35] Liu, Jie, et al. "A robust ion‐conductive biopolymer as a binder for Si anodes of lithium‐ion batteries." Advanced Functional Materials 25.23 (2015): 3599-3605.
    [36] Quartarone, Eliana, and Piercarlo Mustarelli. "Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives." Chemical Society Reviews 40.5 (2011): 2525-2540.
    [37] Hallinan Jr, Daniel T., and Nitash P. Balsara. "Polymer electrolytes." Annual review of materials research 43 (2013): 503-525.
    [38] MacCallum, James R., and Colin Angus Vincent, eds. Polymer electrolyte reviews. Vol. 2. Springer Science & Business Media, 1989.
    [39] PLoS ONE 9(7): e101659
    [40] Feuillade, G., and Ph Perche. "Ion-conductive macromolecular gels and membranes for solid lithium cells." Journal of Applied Electrochemistry 5.1 (1975): 63-69.
    [41] Saikia, D., et al. "Investigation of ionic conductivity of composite gel polymer electrolyte membranes based on P (VDF-HFP), LiClO4 and silica aerogel for lithium ion battery." Desalination 234.1-3 (2008): 24-32.
    [42] Zhang, P., et al. "Enhanced electrochemical and mechanical properties of P (VDF-HFP)-based composite polymer electrolytes with SiO2 nanowires." Journal of membrane science 379.1-2 (2011): 80-85.
    [43] Wright, Peter V. "Electrical conductivity in ionic complexes of poly (ethylene oxide)." British polymer journal 7.5 (1975): 319-327.
    [44] Ramesh, S., et al. "Effect of PVC on ionic conductivity, crystallographic structural, morphological and thermal characterizations in PMMA–PVC blend-based polymer electrolytes." Thermochimica Acta 511.1-2 (2010): 140-146.
    [45] Yang, Xi, et al. "A high‐performance graphene oxide‐doped ion gel as gel polymer electrolyte for all‐solid‐state supercapacitor applications." Advanced Functional Materials 23.26 (2013): 3353-3360.
    [46] Jeong, You Kyeong, et al. "Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries." Nano letters 14.2 (2014): 864-870.
    [47] Song, Jiangxuan, et al. "Interpenetrated gel polymer binder for high‐performance silicon anodes in lithium‐ion batteries." Advanced functional materials 24.37 (2014): 5904-5910.
    [48] Chen, Chao, et al. "Cross-linked chitosan as an efficient binder for Si anode of Li-ion batteries." ACS Applied Materials & Interfaces 8.4 (2016): 2658-2665.
    [49] Anani, A., and R. A. Huggins. "Multinary alloy electrodes for solid state batteries II. A new Li Si Mg alloy negative electrode material for use in high energy density rechargeable lithium cells." Journal of power sources 38.3 (1992): 363-372.
    [50] Kasavajjula, Uday, Chunsheng Wang, and A. John Appleby. "Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells." Journal of power sources 163.2 (2007): 1003-1039.
    [51] Zhang, Wei-Jun. "A review of the electrochemical performance of alloy anodes for lithium-ion batteries." Journal of Power Sources 196.1 (2011): 13-24.
    [52] McDowell, Matthew T., et al. "25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium‐ion batteries." Advanced Materials 25.36 (2013): 4966-4985.
    [53] Su, Liwei, Yu Jing, and Zhen Zhou. "Li ion battery materials with core–shell nanostructures." Nanoscale 3.10 (2011): 3967-3983.
    [54] Bruce, Peter G., Bruno Scrosati, and Jean‐Marie Tarascon. "Nanomaterials for rechargeable lithium batteries." Angewandte Chemie International Edition 47.16 (2008): 2930-2946.
    [55] Li, Hong, et al. "A high capacity nano Si composite anode material for lithium rechargeable batteries." Electrochemical and Solid State Letters 2.11 (1999): 547.
    [56] Kim, Hyejung, et al. "A critical size of silicon nano‐anodes for lithium rechargeable batteries." Angewandte Chemie International Edition 49.12 (2010): 2146-2149.
    [57] Chan, Candace K., et al. "High-performance lithium battery anodes using silicon nanowires." Nature nanotechnology 3.1 (2008): 31-35.
    [58] Ohara, Shigeki, et al. "A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life." Journal of Power Sources 136.2 (2004): 303-306.
    [59] Lee, Ki-Lyoung, et al. "Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries." Journal of power sources 129.2 (2004): 270-274.
    [60] Park, M. S., et al. "Electrochemical properties of Si thin film prepared by pulsed laser deposition for lithium ion micro-batteries." Electrochimica acta 51.25 (2006): 5246-5249.
    [61] Maranchi, J. P., A. F. Hepp, and P. N. Kumta. "High capacity, reversible silicon thin-film anodes for lithium-ion batteries." Electrochemical and Solid State Letters 6.9 (2003): A198.
    [62] Kim, Hyunjung, et al. "Three‐dimensional porous silicon particles for use in high‐performance lithium secondary batteries." Angewandte Chemie 120.52 (2008): 10305-10308.
    [63] Ma, De-long, et al. "Three-dimensionally ordered macroporous FeF 3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries." Energy & Environmental Science 5.9 (2012): 8538-8542.
    [64] Zhang, Huigang, Xindi Yu, and Paul V. Braun. "Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes." Nature nanotechnology 6.5 (2011): 277-281.
    [65] Zhao, Yong, et al. "Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation." Nature communications 4.1 (2013): 1-7.
    [66] Jia, Haiping, et al. "Novel three‐dimensional mesoporous silicon for high power lithium‐ion battery anode material." Advanced Energy Materials 1.6 (2011): 1036-1039.
    [67] Esmanski, Alexei, and Geoffrey A. Ozin. "Silicon inverse‐opal‐based macroporous materials as negative electrodes for lithium ion batteries." Advanced Functional Materials 19.12 (2009): 1999-2010.
    [68] Rossi, Nicholas AA, and Robert West. "Silicon‐containing liquid polymer electrolytes for application in lithium ion batteries." Polymer international 58.3 (2009): 267-272.
    [69] Zhang, Zhengcheng, et al. "Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo (oxyethylene) side chains: synthesis and conductivity." Macromolecules 36.24 (2003): 9176-9180.
    [70] Zhang, Zhengcheng, et al. "Synthesis and ionic conductivity of cyclosiloxanes with ethyleneoxy-containing substituents." Chemistry of materials 17.23 (2005): 5646-5650.
    [71] Hooper, Richard, et al. "Highly conductive siloxane polymers." Macromolecules 34.4 (2001): 931-936.
    [72] Fish, Daryle, Ishrat M. Khan, and Johannes Smid. "Conductivity of solid complexes of lithium perchlorate with poly {[ω‐methoxyhexa (oxyethylene) ethoxy] methylsiloxane}." Die Makromolekulare Chemie, Rapid Communications 7.3 (1986): 115-120.
    [73] Fish, Daryle, et al. "Polymer electrolyte complexes of LiCIO4 and comb polymers of siloxane with oligo‐oxyethylene side chains." British polymer journal 20.3 (1988): 281-288.
    [74] Khan, Ishrat M., et al. "Comblike polysiloxanes with oligo (oxyethylene) side chains. Synthesis and properties." Macromolecules 21.9 (1988): 2684-2689.
    [75] Oh, B., et al. "New interpenetrating network type poly (siloxane-g-ethylene oxide) polymer electrolyte for lithium battery." Journal of power sources 119 (2003): 442-447.
    [76] Morales, E., and J. L. Acosta. "Synthesis and characterisation of poly (methylalkoxysiloxane) solid polymer electrolytes incorporating different lithium salts." Electrochimica acta 45.7 (1999): 1049-1056.
    [77] Hooper, Richard, et al. "A highly conductive solid-state polymer electrolyte based on a double-comb polysiloxane polymer with oligo (ethylene oxide) side chains." Organometallics 18.17 (1999): 3249-3251.
    [78] Wu, Jihuai, et al. "Synthesis and properties of starch‐graft‐polyacrylamide/clay superabsorbent composite." Macromolecular Rapid Communications 21.15 (2000): 1032-1034.
    [79] Lin, Jianming, et al. "Synthesis and properties of poly (acrylic acid)/mica superabsorbent nanocomposite." Macromolecular Rapid Communications 22.6 (2001): 422-424.
    [80] Lee, Wen-Fu, and Yung-Chu Chen. "Effect of intercalated reactive mica on water absorbency for poly (sodium acrylate) composite superabsorbents." European Polymer Journal 41.7 (2005): 1605-1612.
    [81] Wu, J. H., et al. "A novel thermosetting gel electrolyte for stable quasi‐solid‐state dye‐sensitized solar cells." Advanced materials 19.22 (2007): 4006-4011.
    [82] Kovalenko, Igor, et al. "A major constituent of brown algae for use in high-capacity Li-ion batteries." Science 334.6052 (2011): 75-79.
    [83] Ramesh, S., Soon-Chien Lu, and Ezra Morris. "Towards magnesium ion conducting poly (vinylidenefluoride-hexafluoropropylene)-based solid polymer electrolytes with great prospects: Ionic conductivity and dielectric behaviours." Journal of the Taiwan Institute of Chemical Engineers 43.5 (2012): 806-812.
    [84] Zhang, Heng, et al. "Lithium bis (fluorosulfonyl) imide/poly (ethylene oxide) polymer electrolyte." Electrochimica Acta 133 (2014): 529-538.
    [85] Yue, Liping, et al. "All solid-state polymer electrolytes for high-performance lithium ion batteries." Energy Storage Materials 5 (2016): 139-164.
    [86] Borghini, Maria Chiara, et al. "Electrochemical Properties of Polyethylene Oxide‐Li [(CF 3 SO 2) 2 N]‐Gamma‐LiAlO2 Composite Polymer Electrolytes." Journal of the Electrochemical Society 142.7 (1995): 2118.
    [87] Lascaud, S., et al. "Phase diagrams and conductivity behavior of poly (ethylene oxide)-molten salt rubbery electrolytes." Macromolecules 27.25 (1994): 7469-7477.
    [88] Chen, Zonghai, L. Christensen, and J. R. Dahn. "Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers." Electrochemistry communications 5.11 (2003): 919-923.
    [89] Yoo, Mikyong, Curtis W. Frank, and Shoichiro Mori. "Interaction of poly (vinylidene fluoride) with graphite particles. 1. Surface morphology of a composite film and its relation to processing parameters." Chemistry of materials 15.4 (2003): 850-861.
    [90] Hochgatterer, Nikolaus S., et al. "Silicon/graphite composite electrodes for high-capacity anodes: influence of binder chemistry on cycling stability." Electrochemical and Solid State Letters 11.5 (2008): A76.
    [91] Shao, Hongyuan, et al. "Improved electrochemical performance of sulphur cathodes with acylated gelatine as a binder." RSC Advances 5.59 (2015): 47757-47761.
    [92] Xu, Zhong, et al. "Strong Lewis Acid–Base and Weak Hydrogen Bond Synergistically Enhancing Ionic Conductivity of Poly (ethylene oxide)@ SiO2 Electrolytes for a High Rate Capability Li-Metal Battery." ACS Applied Materials & Interfaces 12.9 (2020): 10341-10349.
    [93] Marcinek, Marek, et al. "Electrolytes for Li-ion transport–Review." Solid State Ionics 276 (2015): 107-126.
    [94] Wang, Qinglei, et al. "Siloxane-based polymer electrolytes for solid-state lithium batteries." Energy Storage Materials 23 (2019): 466-490.
    [95] Wang, Ying, et al. "Fabrication of a copper nanoparticle/chitosan/carbon nanotube-modified glassy carbon electrode for electrochemical sensing of hydrogen peroxide and glucose." Microchimica Acta 160.1-2 (2008): 253-260.
    [96] Mazouzi, D., et al. "Critical roles of binders and formulation at multiscales of silicon-based composite electrodes." Journal of Power Sources 280 (2015): 533-549.
    [97] Buqa, Hilmi, et al. "Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries." Journal of Power Sources 161.1 (2006): 617-622.
    [98] Gaberšček, Miran, et al. "Improved carbon anode properties: pretreatment of particles in polyelectrolyte solution." Journal of power sources 97 (2001): 67-69.
    [99] Bele, Marjan, et al. "Gelatin-pretreated carbon particles for potential use in lithium ion batteries." Carbon 40.7 (2002): 1117-1122.
    [100] Song, Jiangxuan, et al. "Interpenetrated gel polymer binder for high‐performance silicon anodes in lithium‐ion batteries." Advanced functional materials 24.37 (2014): 5904-5910.
    [101] Choi, Sunghun, et al. "Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries." Science 357.6348 (2017): 279-283.
    [102] Skoog, Douglas A., F. James Holler, and Stanley R. Crouch. Principles of instrumental analysis. Cengage learning, 2017.
    [103] Smith, Brian C. Fundamentals of Fourier transform infrared spectroscopy. CRC press, 2011.
    [104] Nicolet, Thermo. "Introduction to Fourier Transform Infrared Spectrometry, Thermo Nicolet Corporation." (2001).
    [105] Birkelbach, Felix. Non-parametric kinetic modeling of gas-solid reactions for thermochemical energy storage. Diss. Wien, 2020.
    [106] Allen, J. Bard, and R. Faulkner Larry. Electrochemical methods fundamentals and applications. John Wiley & Sons, 2001.
    [107] Schnell, Joscha, et al. "All-solid-state lithium-ion and lithium metal batteries–paving the way to large-scale production." Journal of Power Sources 382 (2018): 160-175.
    [108] Seki, Shiro, et al. "Fabrication of high-voltage, high-capacity all-solid-state lithium polymer secondary batteries by application of the polymer electrolyte/inorganic electrolyte composite concept." Chemistry of materials 17.8 (2005): 2041-2045.
    [109] Miyashiro, Hajime, et al. "Fabrication of all-solid-state lithium polymer secondary batteries using Al2O3-coated LiCoO2." Chemistry of materials 17.23 (2005): 5603-5605.
    [110] Xu, Kang. "Nonaqueous liquid electrolytes for lithium-based rechargeable batteries." Chemical reviews 104.10 (2004): 4303-4418.
    [111] Mindemark, Jonas, et al. "Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes." Progress in Polymer Science 81 (2018): 114-143.
    [112] Kim, Na Yeon, et al. "Microstructural study on degradation mechanism of layered LiNi0. 6Co0. 2Mn0. 2O2 cathode materials by analytical transmission electron microscopy." Journal of power sources 307 (2016): 641-648.
    [113] Kasnatscheew, J., et al. "Determining oxidative stability of battery electrolytes: validity of common electrochemical stability window (ESW) data and alternative strategies." Physical Chemistry Chemical Physics 19.24 (2017): 16078-16086.
    [114] Obrovac, M. N., and Leif Christensen. "Structural changes in silicon anodes during lithium insertion/extraction." Electrochemical and Solid State Letters 7.5 (2004): A93.
    [115] Zhao, Yan, et al. "Conductive binder for Si anode with boosted charge transfer capability via n-type doping." ACS applied materials & interfaces 10.33 (2018): 27795-27800.
    [116] Luo, Chao, et al. "Novel lignin-derived water-soluble binder for micro silicon anode in lithium-ion batteries." ACS Sustainable Chemistry & Engineering 6.10 (2018): 12621-12629.
    [117] Ji, Junyi, et al. "Graphene‐encapsulated Si on ultrathin‐graphite foam as anode for high capacity lithium‐ion batteries." Advanced Materials 25.33 (2013): 4673-4677.
    [118] Shao, Dan, Haoxiang Zhong, and Lingzhi Zhang. "Water‐soluble conductive composite binder containing PEDOT: PSS as conduction promoting agent for Si anode of lithium‐ion batteries." ChemElectroChem 1.10 (2014): 1679-1687.
    [119] Gantenbein, Sophia, Michael Weiss, and Ellen Ivers-Tiffée. "Impedance based time-domain modeling of lithium-ion batteries: Part I." Journal of Power Sources 379 (2018): 317-327.
    [120] Paloukis, Fotis, et al. "Electrochemical Impedance Spectroscopy study in micro-grain structured amorphous silicon anodes for lithium-ion batteries." Journal of Power Sources 331 (2016): 285-292.
    [121] Peled, E., and S. Menkin. "SEI: past, present and future." Journal of The Electrochemical Society 164.7 (2017): A1703.
    [122] Zhang, Xuerong, et al. "Electrochemical and infrared studies of the reduction of organic carbonates." Journal of The Electrochemical Society 148.12 (2001): A1341.

    無法下載圖示 全文公開日期 2025/12/02 (校內網路)
    全文公開日期 2030/12/02 (校外網路)
    全文公開日期 2030/12/02 (國家圖書館:臺灣博碩士論文系統)
    QR CODE