簡易檢索 / 詳目顯示

研究生: 吳亮廷
Liang-Ting Wu
論文名稱: 全固態與無陽極鋰金屬電池中固態聚合物電解質設計及界面反應之理論計算研究
A Computational Study on Design and Interfacial Degradation of Solid-State Polymer Electrolytes for All-Solid-State/Anode-Free Lithium Metal Batteries
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 黃炳照
Bing-Joe Hwang
蔡明剛
Ming-Kang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 262
中文關鍵詞: 聚合物電解質無陽極鋰金屬電池密度泛函理論第一原理分子動力學
外文關鍵詞: Polymer Electrolyte, Anode-Free Li Metal Batteries, Density Functional Theory, Ab initio Molecular Dynamics
相關次數: 點閱:412下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑑於將鋰電池應用於儲能系統和電動車的需求逐年攀升,發展具高能量密度的高效能鋰電池如全固態鋰金屬電池及無陽極鋰金屬電池,對於進一步提升鋰電池的能量密度及安全性至關重要。然而學界對於固態聚合物電解質與鋰金屬陽極之間的界面反應仍缺乏瞭解,同時也缺少材料設計的方針。現今高分子電解質仍需面對如導離度低及於陽極上不可逆的分解等問題,同時無陽極鋰金屬電池也需克服嚴重的活性鋰損失。為了解決上述難題,設計具有適當導離度且能形成有效鈍化電極表面之固態電解質介面層的新型聚合物電解質極其重要。
    此研究使用了密度泛函理論與第一原理分子動力學研究固態聚合物電解質與陽極表面的界面反應。主要專注於各種聚合物 (PEO、PCL、PEC、PTMC、PTeMC、POHM) 及鋰鹽 (LiTFSI、LiBF4、LiBOB、LiDFOB) 於鋰金屬陽極上的分解反應以建立完整的分解反應網絡,計算結果可用於釐清和解釋實驗中觀察到的現象及預測該電解質之分解產物,經由監測各種電解質所產生的降解產物,並可分析其在固態電解質介面層的作用,可用於進一步評估此電解質的電化學性能。另外無陽極鋰金屬電池中常以銅金屬作為集電器材料,因此,研究銅金屬於電解質分解中扮演的角色及鋰金屬於銅集電器上之電沉積作用,也為本研究之重點。根據計算結果發現,當銅作為集電器時,可誘導出聚合物與鋰金屬之間獨特的協同作用力,可加速聚合物上羰基的分解。最後,本研究也針對一現有的自修復聚合物電解質進行分子間作用力與鋰離子傳導路徑之計算,同時也模擬該電解質於鋰-銅陽極表面的分解現象,此一結果對於設計新型電解質提供了重要的見解。具體來說,本研究提出了數種新型的自修復單離子傳導聚合物,可望其具有適當的導離度、能於陽極表面形成穩定的鈍化層,同時可引導鋰離子於陽極表面均勻的沉積,如此一來預期可提高鋰電池之循環性能。整體來說,本研究旨在透過理論計算與分子模擬,增進讀者對於聚合物電解質與陽極之間界面反應的理解,同時也期望為未來的實驗研究者於聚合物設計提供指導,促進高效能聚合物電解質之研發。


    Given the increasing demand for lithium batteries in energy storage systems and electric vehicles, there is a need to develop high-performance lithium batteries, such as all-solid-state lithium metal batteries (ASSLMBs) and anode-free lithium metal batteries (AFLMBs). These advancements are crucial for improving the energy density and safety of lithium batteries. However, there is still a lack of knowledge regarding the interfacial reactions of solid-state polymer electrolytes (SPEs) on the Li-metal anode surface, and a comprehensive guideline for materials design is yet to be established. Currently, SPEs face challenges including low ionic conductivity and irreversible electrolyte degradation on the reactive Li-metal anode. AFLMBs, on the other hand, suffer from significant active Li loss. To address these issues, it is crucial to design polymers with suitable ionic conductivity and the ability to form an effective passivation layer, known as the solid electrolyte interphase (SEI) layer.
    This work has employed density functional theory (DFT) calculations and ab initio molecular dynamics (AIMD) simulations to investigate the interfacial reactions between SPEs, composed of polymers (PEO, PCL, PEC, PTMC, PTeMC, and POHM) and Li salts (LiTFSI, LiBF4, LiBOB, and LiDFOB), with a Li-metal anode. The focus is on understanding the decomposition mechanisms of different polymers and Li salts, and establishing a reaction network. The computational results have demonstrated their utility in clarifying experimental observations and predicting the degradation products. The resulting degradation products of each system were monitored to analyze their role in the SEI layer, and further evaluate the electrochemical performance of SPEs. On the other hand, the role of Cu as an anodic current collector in AFLMBs and the Li-plating process on the Cu surface is investigated in this study. It is observed that the presence of Cu on the Li/Cu surface influenced the reactivity of carbonyl-containing polymers due to unique cooperative interactions between the polymer and Li induced by the Cu substrate. Additionally, the study delved into the driving force behind the self-healing property, the Li diffusion pathway, and the interfacial degradation of self-healing polymer electrolytes. These investigations provided useful computational insights for the design of novel polymer materials. Specifically, this study has proposed several self-healing single-ion conducting polymer electrolytes, which hold promise for the application of Li-metal batteries. These electrolytes are expected to exhibit suitable ionic conductivity, promote the formation of a stable SEI layer on the Li surface, and facilitate uniform Li plating during the plating process, which helps to enhance the battery's cycling stability. Overall, the computational results play a crucial role in enhancing the understanding of the SPE-anode interfacial reactions. They provide guidance for future experimental investigations and facilitate the design of more efficient SPE materials.

    Abstract I 摘要 III Acknowledgements V Contents VI List of Figures IX List of Tables XVII Chapter 1. Introduction 1 1.1 Lithium Battery 1 1.1.1 Importance of Battery 1 1.1.2 The Working Principle of Lithium Battery 9 1.2 Electrode Materials 11 1.2.1 Anode Materials 12 1.2.2 Cathode Materials 19 1.3 Anode-Free Lithium-Metal Batteries (AFLMB) 35 1.4 Electrolytes 39 1.4.1 Liquid Electrolyte (LE) 40 1.4.2 Inorganic Solid Electrolyte (ISE) 49 1.4.3 Solid-State Polymer Electrolyte (SPE) 55 1.4.4 Gel Polymer Electrolyte (GPE) 69 1.4.5 Composite Polymer Electrolyte (CPE) 72 1.5 Solid Electrolyte Interphase (SEI) 75 1.6 Present Study 81 Chapter 2. Theoretical Methodology 83 2.1 Density Functional Theory (DFT) Calculations 83 2.2 Climbing Image-Nudged Elastic Band (CI-NEB) 85 2.3 Ab initio Molecular Dynamics (AIMD) Simulations 86 2.4 Core-Electron Binding Energy Calculations in XPS 87 2.5 Bader Charge Analysis and Charge Distributions 89 2.6 Models 90 2.6.1 Metal Bulk and Anode Surface 90 2.6.2 SPE and SPE | Anode Interface Model 93 Chapter 3. SPE | Li-Anode Interfacial Phenomena 94 3.1 Interfacial Reaction on Polymer Host/Electrode Interfaces 94 3.1.1 Complexation of Li-ion and PEO 94 3.1.2 PEO Decomposition on the Li Surface during the Li-Plating 99 3.1.3 Atomic Charge Analysis 104 3.2 Effect of Li Salt on Electrolyte Degradation 107 3.2.1 Degradation Mechanism of Boron-Containing Li Salts 107 3.2.2 Bader Charge Distribution Analysis 117 3.2.3 The Hypothesis of Ethylene Polymerization 126 3.3 Effect of Polymeric Host on Electrolyte Degradation 128 3.3.1 Polyester: PCL 128 3.3.2 Polycarbonates: PEC, PTMC, and PTeMC 134 3.3.3 Polyketone: POHM 142 3.4 Conclusions 150 Chapter 4. Role of Cu on SPEs | Electrode Interfacial Phenomena 151 4.1 Activation of Oxygen-Based Polymers on Li/Cu Surface 151 4.1.1 Polymer adsorption on Li/Cu surface 152 4.1.2 Reductive stability of the polymers on the Li/Cu surface 161 4.1.3 Bader Charge Analysis 163 4.2 Li-Plating Process in AFLMB 170 4.2.1 Li-Plating Process in AFLMB 170 4.2.2 Decomposition of PEO-Based SPE on the Cu during Li-Plating 174 4.3 Self-Healing Polymer Electrolyte in AFLMB 176 4.3.1 Interchain Interactions in P(AMPS-co-BA)-Based SPE 176 4.3.2 SEI Component Predictions 182 4.3.3 Computational Insights for Polymer Designing 192 4.4 Conclusions 195 Chapter 5. Summary 196 References 198 Appendix 218

    1. Ritchie, H.; Roser, M.; Rosado, P. CO₂ and Greenhouse Gas Emissions. Our World in Data 2020, https://ourworldindata.org/co2-and-greenhouse-gas-emissions.
    2. Monthly Energy Review; U.S. Energy Information Administration: Washington, DC 20585, January 2023.
    3. Tong, D.; Farnham, D. J.; Duan, L.; Zhang, Q.; Lewis, N. S.; Caldeira, K.; Davis, S. J. Geophysical constraints on the reliability of solar and wind power worldwide. Nat. Commun. 2021, 12 (1), 6146.
    4. Operator, C. I. S. Today's Outlook. https://www.caiso.com/TodaysOutlook.
    5. Zhu, Z.; Jiang, T.; Ali, M.; Meng, Y.; Jin, Y.; Cui, Y.; Chen, W. Rechargeable Batteries for Grid Scale Energy Storage. Chem. Rev. 2022, 122 (22), 16610-16751.
    6. Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511-536.
    7. Electric car registrations and sales share in selected countries; IEA: IEA, Paris, 2016-2021.
    8. INKWOOD RESEARCH. https://inkwoodresearch.com.
    9. Statista. https://www.statista.com.
    10. BloombergNEF. https://about.bnef.com.
    11. U.S. Department of Energy. https://www.energy.gov.
    12. Web of Science. https://webofscience.com.
    13. Amici, J.; Asinari, P.; Ayerbe, E.; Barboux, P.; Bayle-Guillemaud, P.; Behm, R. J.; Berecibar, M.; Berg, E.; Bhowmik, A.; Bodoardo, S.; Castelli, I. E.; Cekic-Laskovic, I.; Christensen, R.; Clark, S.; Diehm, R.; Dominko, R.; Fichtner, M.; Franco, A. A.; Grimaud, A.; Guillet, N.; Hahlin, M.; Hartmann, S.; Heiries, V.; Hermansson, K.; Heuer, A.; Jana, S.; Jabbour, L.; Kallo, J.; Latz, A.; Lorrmann, H.; Løvvik, O. M.; Lyonnard, S.; Meeus, M.; Paillard, E.; Perraud, S.; Placke, T.; Punckt, C.; Raccurt, O.; Ruhland, J.; Sheridan, E.; Stein, H.; Tarascon, J.-M.; Trapp, V.; Vegge, T.; Weil, M.; Wenzel, W.; Winter, M.; Wolf, A.; Edström, K. A Roadmap for Transforming Research to Invent the Batteries of the Future Designed within the European Large Scale Research Initiative BATTERY 2030+. Adv. Energy Mater. 2022, 12 (17), 2102785.
    14. Landi, B. J.; Ganter, M. J.; Cress, C. D.; DiLeo, R. A.; Raffaelle, R. P. Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2009, 2 (6), 638-654.
    15. Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J. Solid State Electrochem. 2017, 21 (7), 1939-1964.
    16. Besenhard, J. O.; Winter, M.; Yang, J.; Biberacher, W. Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes. J. Power Sources 1995, 54 (2), 228-231.
    17. Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104 (10), 4303-4418.
    18. Okamoto, H. The Li-Si (Lithium-Silicon) system. Bull. alloy phase diagr. 1990, 11 (3), 306-312.
    19. Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7 (5), 414-429.
    20. Gu, M.; He, Y.; Zheng, J.; Wang, C. Nanoscale silicon as anode for Li-ion batteries: The fundamentals, promises, and challenges. Nano Energy 2015, 17, 366-383.
    21. Wang, F.; Chen, G.; Zhang, N.; Liu, X.; Ma, R. Engineering of carbon and other protective coating layers for stabilizing silicon anode materials. Carbon Energy 2019, 1 (2), 219-245.
    22. Ohzuku, T.; Ueda, A.; Yamamoto, N. Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ]  O 4 for Rechargeable Lithium Cells. J. Electrochem. Soc. 1995, 142 (5), 1431.
    23. Ferg, E.; Gummow, R. J.; de Kock, A.; Thackeray, M. M. Spinel Anodes for Lithium‐Ion Batteries. J. Electrochem. Soc. 1994, 141 (11), L147.
    24. Jung, H.-G.; Jang, M. W.; Hassoun, J.; Sun, Y.-K.; Scrosati, B. A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. Nat. Commun. 2011, 2 (1), 516.
    25. Sun, X.; Radovanovic, P. V.; Cui, B. Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries. New J. Chem. 2015, 39 (1), 38-63.
    26. Vikram Babu, B.; Vijaya Babu, K.; Tewodros Aregai, G.; Seeta Devi, L.; Madhavi Latha, B.; Sushma Reddi, M.; Samatha, K.; Veeraiah, V. Structural and electrical properties of Li4Ti5O12 anode material for lithium-ion batteries. Results Phys. 2018, 9, 284-289.
    27. Whittingham, M. S. Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192 (4244), 1126-1127.
    28. Liu, F.; Xu, R.; Wu, Y.; Boyle, D. T.; Yang, A.; Xu, J.; Zhu, Y.; Ye, Y.; Yu, Z.; Zhang, Z.; Xiao, X.; Huang, W.; Wang, H.; Chen, H.; Cui, Y. Dynamic spatial progression of isolated lithium during battery operations. Nature 2021, 600 (7890), 659-663.
    29. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rev. 2017, 117 (15), 10403-10473.
    30. Zhang, R.; Shen, X.; Zhang, Y.-T.; Zhong, X.-L.; Ju, H.-T.; Huang, T.-X.; Chen, X.; Zhang, J.-D.; Huang, J.-Q. Dead lithium formation in lithium metal batteries: A phase field model. J. Energy Chem. 2022, 71, 29-35.
    31. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11 (1), 1550.
    32. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15 (6), 783-789.
    33. Deng, D. Li-ion batteries: basics, progress, and challenges. Energy Sci. Eng. 2015, 3 (5), 385-418.
    34. Liu, W.; Oh, P.; Liu, X.; Lee, M.-J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Nickel-Rich Layered Lithium Transition-Metal Oxide for High-Energy Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2015, 54 (15), 4440-4457.
    35. Armstrong, A. R.; Bruce, P. G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 1996, 381 (6582), 499-500.
    36. Reed, J.; Ceder, G.; Van Der Ven, A. Layered-to-Spinel Phase Transition in Lix MnO2. Electrochem. solid-state lett. 2001, 4 (6), A78.
    37. Xie, H.; Du, K.; Hu, G.; Peng, Z.; Cao, Y. The Role of Sodium in LiNi0.8Co0.15Al0.05O2 Cathode Material and Its Electrochemical Behaviors. J. Phys. Chem. C 2016, 120 (6), 3235-3241.
    38. Asl, H. Y.; Manthiram, A. Reining in dissolved transition-metal ions. Science 2020, 369 (6500), 140-141.
    39. Xia, Y.; Zheng, J.; Wang, C.; Gu, M. Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy 2018, 49, 434-452.
    40. Maleki Kheimeh Sari, H.; Li, X. Controllable Cathode–Electrolyte Interface of Li[Ni0.8Co0.1Mn0.1]O2 for Lithium Ion Batteries: A Review. Adv. Energy Mater. 2019, 9 (39), 1901597.
    41. Madhavi, S.; Subba Rao, G. V.; Chowdari, B. V. R.; Li, S. F. Y. Effect of aluminium doping on cathodic behaviour of LiNi0.7Co0.3O2. J. Power Sources 2001, 93 (1), 156-162.
    42. Chen, C. H.; Liu, J.; Stoll, M. E.; Henriksen, G.; Vissers, D. R.; Amine, K. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries. J. Power Sources 2004, 128 (2), 278-285.
    43. Itou, Y.; Ukyo, Y. Performance of LiNiCoO2 materials for advanced lithium-ion batteries. J. Power Sources 2005, 146 (1), 39-44.
    44. Yoon, C. S.; Park, K.-J.; Kim, U.-H.; Kang, K. H.; Ryu, H.-H.; Sun, Y.-K. High-Energy Ni-Rich Li[NixCoyMn1–x–y]O2 Cathodes via Compositional Partitioning for Next-Generation Electric Vehicles. Chem. Mater. 2017, 29 (24), 10436-10445.
    45. Lu, Z.; MacNeil, D. D.; Dahn, J. R. Layered Cathode Materials Li [ Nix Li ( 1 / 3 − 2x / 3 ) Mn ( 2 / 3 − x / 3 )  ]  O 2 for Lithium-Ion Batteries. Electrochem. solid-state lett. 2001, 4 (11), A191.
    46. Gu, M.; Genc, A.; Belharouak, I.; Wang, D.; Amine, K.; Thevuthasan, S.; Baer, D. R.; Zhang, J.-G.; Browning, N. D.; Liu, J.; Wang, C. Nanoscale Phase Separation, Cation Ordering, and Surface Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries. Chem. Mater. 2013, 25 (11), 2319-2326.
    47. Li, Q.; Ning, D.; Wong, D.; An, K.; Tang, Y.; Zhou, D.; Schuck, G.; Chen, Z.; Zhang, N.; Liu, X. Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy. Nat. Commun. 2022, 13 (1), 1123.
    48. Lo, W.-T.; Yu, C.; Leggesse, E. G.; Nachimuthu, S.; Jiang, J.-C. Understanding the Role of Dopant Metal Atoms on the Structural and Electronic Properties of Lithium-Rich Li1.2Ni0.2Mn0.6O2 Cathode Material for Lithium-Ion Batteries. J. Phys. Chem. Lett. 2019, 10 (17), 4842-4850.
    49. Nayak, P. K.; Grinblat, J.; Levi, M.; Levi, E.; Kim, S.; Choi, J. W.; Aurbach, D. Al Doping for Mitigating the Capacity Fading and Voltage Decay of Layered Li and Mn-Rich Cathodes for Li-Ion Batteries. Adv. Energy Mater. 2016, 6 (8), 1502398.
    50. An, J.; Shi, L.; Chen, G.; Li, M.; Liu, H.; Yuan, S.; Chen, S.; Zhang, D. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries. J. Mater. Chem. A 2017, 5 (37), 19738-19744.
    51. Lin, K.-Y.; Nachimuthu, S.; Huang, H.-W.; Jiang, J.-C. Theoretical insights on alleviating lattice-oxygen evolution by sulfur substitution in Li1.2Ni0.6Mn0.2O2 cathode material. Npj Comput. Mater. 2022, 8 (1), 210.
    52. Thackeray, M. M.; Johnson, P. J.; de Picciotto, L. A.; Bruce, P. G.; Goodenough, J. B. Electrochemical extraction of lithium from LiMn2O4. Mater. Res. Bull. 1984, 19 (2), 179-187.
    53. Zhang, Y.; Xie, H.; Jin, H.; Zhang, Q.; Li, Y.; Li, X.; Li, K.; Bao, C. Research Status of Spinel LiMn2O4 Cathode Materials for Lithium Ion Batteries. IOP Conf. Ser.: Earth Environ. Sci. 2020, 603 (1), 012051.
    54. Hunter, J. C. Preparation of a new crystal form of manganese dioxide: λ-MnO2. J. Solid State Chem. 1981, 39 (2), 142-147.
    55. Choi, W.; Manthiram, A. Comparison of Metal Ion Dissolutions from Lithium Ion Battery Cathodes. J. Electrochem. Soc. 2006, 153 (9), A1760.
    56. Terada, Y.; Nishiwaki, Y.; Nakai, I.; Nishikawa, F. Study of Mn dissolution from LiMn2O4 spinel electrodes using in situ total reflection X-ray fluorescence analysis and fluorescence XAFS technique. J. Power Sources 2001, 97-98, 420-422.
    57. Harris, O. C.; Lee, S. E.; Lees, C.; Tang, M. Review: mechanisms and consequences of chemical cross-talk in advanced Li-ion batteries. JPhys Energy 2020, 2 (3), 032002.
    58. Klein, S.; Haneke, L.; Harte, P.; Stolz, L.; van Wickeren, S.; Borzutzki, K.; Nowak, S.; Winter, M.; Placke, T.; Kasnatscheew, J. Suppressing Electrode Crosstalk and Prolonging Cycle Life in High-Voltage Li Ion Batteries: Pivotal Role of Fluorophosphates in Electrolytes. ChemElectroChem 2022, 9 (13), e202200469.
    59. Klein, S.; Harte, P.; van Wickeren, S.; Borzutzki, K.; Röser, S.; Bärmann, P.; Nowak, S.; Winter, M.; Placke, T.; Kasnatscheew, J. Re-evaluating common electrolyte additives for high-voltage lithium ion batteries. Cell Rep. Phys. Sci. 2021, 2 (8), 100521.
    60. Zhong, Q.; Bonakdarpour, A.; Zhang, M.; Gao, Y.; Dahn, J. R. Synthesis and Electrochemistry of LiNix Mn2 − x  O 4. J. Electrochem. Soc. 1997, 144 (1), 205.
    61. Manthiram, A.; Chemelewski, K.; Lee, E.-S. A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries. Energy Environ. Sci. 2014, 7 (4), 1339-1350.
    62. Amine, K.; Tukamoto, H.; Yasuda, H.; Fujita, Y. Preparation and electrochemical investigation of LiMn2 − xMexO4 (Me: Ni, Fe, and x = 0.5, 1) cathode materials for secondary lithium batteries. J. Power Sources 1997, 68 (2), 604-608.
    63. Fehse, M.; Etxebarria, N.; Otaegui, L.; Cabello, M.; Martín-Fuentes, S.; Cabañero, M. A.; Monterrubio, I.; Elkjær, C. F.; Fabelo, O.; Enkubari, N. A.; López del Amo, J. M.; Casas-Cabanas, M.; Reynaud, M. Influence of Transition-Metal Order on the Reaction Mechanism of LNMO Cathode Spinel: An Operando X-ray Absorption Spectroscopy Study. Chem. Mater. 2022, 34 (14), 6529-6540.
    64. Huang, D.; Engtrakul, C.; Nanayakkara, S.; Mulder, D. W.; Han, S.-D.; Zhou, M.; Luo, H.; Tenent, R. C. Understanding Degradation at the Lithium-Ion Battery Cathode/Electrolyte Interface: Connecting Transition-Metal Dissolution Mechanisms to Electrolyte Composition. ACS Appl. Mater. Interfaces 2021, 13 (10), 11930-11939.
    65. Klein, S.; Bärmann, P.; Stolz, L.; Borzutzki, K.; Schmiegel, J.-P.; Börner, M.; Winter, M.; Placke, T.; Kasnatscheew, J. Demonstrating Apparently Inconspicuous but Sensitive Impacts on the Rollover Failure of Lithium-Ion Batteries at a High Voltage. ACS Appl. Mater. Interfaces 2021, 13 (48), 57241-57251.
    66. Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144 (4), 1188.
    67. Hu, J.; Huang, W.; Yang, L.; Pan, F. Structure and performance of the LiFePO4 cathode material: from the bulk to the surface. Nanoscale 2020, 12 (28), 15036-15044.
    68. Manthiram, A.; Goodenough, J. B. Lithium-based polyanion oxide cathodes. Nat. Energy 2021, 6 (8), 844-845.
    69. Gong, C.; Xue, Z.; Wen, S.; Ye, Y.; Xie, X. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries. J. Power Sources 2016, 318, 93-112.
    70. Wang, J.; Sun, X. Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ. Sci. 2015, 8 (4), 1110-1138.
    71. Gao, Y.; Zhang, H.; Liu, X.-H.; Yang, Z.; He, X.-X.; Li, L.; Qiao, Y.; Chou, S.-L. Low-Cost Polyanion-Type Sulfate Cathode for Sodium-Ion Battery. Adv. Energy Mater. 2021, 11 (42), 2101751.
    72. Lyu, H.; Sun, X.-G.; Dai, S. Organic Cathode Materials for Lithium-Ion Batteries: Past, Present, and Future. Adv. Energy Sustainability Res. 2021, 2 (1), 2000044.
    73. Lu, Y.; Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 2020, 4 (3), 127-142.
    74. Rauh, R. D.; Abraham, K. M.; Pearson, G. F.; Surprenant, J. K.; Brummer, S. B. A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte. J. Electrochem. Soc. 1979, 126 (4), 523.
    75. Shim, J.; Striebel, K. A.; Cairns, E. J. The Lithium/Sulfur Rechargeable Cell : Effects of Electrode Composition and Solvent on Cell Performance. J. Electrochem. Soc. 2002, 149 (10), A1321.
    76. Ji, X.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 2009, 8 (6), 500-506.
    77. Yang, Y.; Yu, G.; Cha, J. J.; Wu, H.; Vosgueritchian, M.; Yao, Y.; Bao, Z.; Cui, Y. Improving the Performance of Lithium–Sulfur Batteries by Conductive Polymer Coating. ACS Nano 2011, 5 (11), 9187-9193.
    78. Mikhaylik, Y. V.; Akridge, J. R. Polysulfide Shuttle Study in the Li/S Battery System. J. Electrochem. Soc. 2004, 151 (11), A1969.
    79. Li, T.; Guo, R.; Sun, X.; Li, F.; Zhao, X.; Wang, S.; Meng, L.; Luo, H.; Wan, Y. Chemisorption of polysulfides by keto groups modified Li4Ti5O12 nanofibers with 3D interwove network structure for LSBs. Chem. Eng. J. 2022, 429, 132202.
    80. Zak, J. J.; Kim, S. S.; Laskowski, F. A. L.; See, K. A. An Exploration of Sulfur Redox in Lithium Battery Cathodes. J. Am. Chem. Soc. 2022, 144 (23), 10119-10132.
    81. Li, B.; Xu, H.; Ma, Y.; Yang, S. Harnessing the unique properties of 2D materials for advanced lithium–sulfur batteries. Nanoscale Horiz. 2019, 4 (1), 77-98.
    82. Bieker, G.; Küpers, V.; Kolek, M.; Winter, M. Intrinsic differences and realistic perspectives of lithium-sulfur and magnesium-sulfur batteries. Commun. Mater. 2021, 2 (1), 37.
    83. Yang, L.; Wang, Y.; Li, Q.; Li, Y.; Chen, Y.; Liu, Y.; Wu, Z.; Wang, G.; Zhong, B.; Song, Y.; Xiang, W.; Zhong, Y.; Guo, X. Inhibition of the shuttle effect of lithium–sulfur batteries via a tannic acid-metal one-step in situ chemical film-forming modified separator. Nanoscale 2021, 13 (9), 5058-5068.
    84. Lu, Z. W.; Wang, Y. H.; Dai, Z.; Li, X. P.; Zhang, C. Y.; Sun, G. Z.; Gong, C. S.; Pan, X. J.; Lan, W.; Zhou, J. Y.; Xie, E. Q. One-pot sulfur-containing ion assisted microwave synthesis of reduced graphene oxide@nano-sulfur fibrous hybrids for high-performance lithium-sulfur batteries. Electrochim. Acta 2019, 325, 134920.
    85. Huang, C.-J.; Lin, K.-Y.; Hsieh, Y.-C.; Su, W.-N.; Wang, C.-H.; Brunklaus, G.; Winter, M.; Jiang, J.-C.; Hwang, B. J. New Insights into the N–S Bond Formation of a Sulfurized-Polyacrylonitrile Cathode Material for Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2021, 13 (12), 14230-14238.
    86. Demir-Cakan, R.; Morcrette, M.; Nouar, F.; Davoisne, C.; Devic, T.; Gonbeau, D.; Dominko, R.; Serre, C.; Férey, G.; Tarascon, J.-M. Cathode Composites for Li–S Batteries via the Use of Oxygenated Porous Architectures. J. Am. Chem. Soc. 2011, 133 (40), 16154-16160.
    87. Capková, D.; Almáši, M.; Kazda, T.; Čech, O.; Király, N.; Čudek, P.; Fedorková, A. S.; Hornebecq, V. Metal-organic framework MIL-101(Fe)–NH2 as an efficient host for sulphur storage in long-cycle Li–S batteries. Electrochim. Acta 2020, 354, 136640.
    88. Abraham, K. M.; Jiang, Z. A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery. J. Electrochem. Soc. 1996, 143 (1), 1.
    89. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11 (1), 19-29.
    90. Zhang, J.-G.; Wang, D.; Xu, W.; Xiao, J.; Williford, R. E. Ambient operation of Li/Air batteries. J. Power Sources 2010, 195 (13), 4332-4337.
    91. Zhang, J.; Xu, W.; Li, X.; Liu, W. Air Dehydration Membranes for Nonaqueous Lithium–Air Batteries. J. Electrochem. Soc. 2010, 157 (8), A940.
    92. Zhang, J.; Xu, W.; Liu, W. Oxygen-selective immobilized liquid membranes for operation of lithium-air batteries in ambient air. J. Power Sources 2010, 195 (21), 7438-7444.
    93. Lu, Y.-C.; Gasteiger, H. A.; Parent, M. C.; Chiloyan, V.; Shao-Horn, Y. The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li–Oxygen Batteries. Electrochem. solid-state lett. 2010, 13 (6), A69.
    94. Aurbach, D.; McCloskey, B. D.; Nazar, L. F.; Bruce, P. G. Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 2016, 1 (9), 16128.
    95. Houache, M. S. E.; Yim, C.-H.; Karkar, Z.; Abu-Lebdeh, Y. On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review. Batteries 2022, 8 (7), 70.
    96. Neudecker, B. J.; Dudney, N. J.; Bates, J. B. “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode. J. Electrochem. Soc. 2000, 147 (2), 517.
    97. Weber, R.; Genovese, M.; Louli, A. J.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J. R. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 2019, 4 (8), 683-689.
    98. Nanda, S.; Gupta, A.; Manthiram, A. Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries. Adv. Energy Mater. 2021, 11 (2), 2000804.
    99. Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J.-G. Anode-Free Rechargeable Lithium Metal Batteries. Adv. Funct. Mater. 2016, 26 (39), 7094-7102.
    100. Huang, C.-J.; Thirumalraj, B.; Tao, H.-C.; Shitaw, K. N.; Sutiono, H.; Hagos, T. T.; Beyene, T. T.; Kuo, L.-M.; Wang, C.-C.; Wu, S.-H.; Su, W.-N.; Hwang, B. J. Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nat. Commun. 2021, 12 (1), 1452.
    101. Hagos, T. M.; Bezabh, H. K.; Huang, C.-J.; Jiang, S.-K.; Su, W.-N.; Hwang, B. J. A Powerful Protocol Based on Anode-Free Cells Combined with Various Analytical Techniques. Acc. Chem. Res. 2021, 54 (24), 4474-4485.
    102. Huang, W.-Z.; Zhao, C.-Z.; Wu, P.; Yuan, H.; Feng, W.-E.; Liu, Z.-Y.; Lu, Y.; Sun, S.; Fu, Z.-H.; Hu, J.-K.; Yang, S.-J.; Huang, J.-Q.; Zhang, Q. Anode-Free Solid-State Lithium Batteries: A Review. Adv. Energy Mater. 2022, 12 (26), 2201044.
    103. Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y. Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ. 2016, 1 (1), 18-42.
    104. Fong, R.; von Sacken, U.; Dahn, J. R. Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells. J. Electrochem. Soc. 1990, 137 (7), 2009.
    105. Guyomard, D.; Tarascon, J. M. Rechargeable Li1 + x Mn2 O 4 / Carbon Cells with a New Electrolyte Composition: Potentiostatic Studies and Application to Practical Cells. J. Electrochem. Soc. 1993, 140 (11), 3071.
    106. Tarascon, J. M.; Guyomard, D. New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells. Solid State Ion. 1994, 69 (3), 293-305.
    107. Xu, K.; Zhang, S.; Jow, T. R.; Xu, W.; Angell, C. A. LiBOB as Salt for Lithium-Ion Batteries:A Possible Solution for High Temperature Operation. Electrochem. solid-state lett. 2002, 5 (1), A26.
    108. Xu, K.; Zhang, S. S.; Lee, U.; Allen, J. L.; Jow, T. R. LiBOB: Is it an alternative salt for lithium ion chemistry? J. Power Sources 2005, 146 (1), 79-85.
    109. Shui Zhang, S. An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem. commun. 2006, 8 (9), 1423-1428.
    110. Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4 (1), 1481.
    111. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6 (1), 6362.
    112. Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries. J. Am. Chem. Soc. 2014, 136 (13), 5039-5046.
    113. Wang, J.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 2016, 7 (1), 12032.
    114. Jeong, S.-K.; Seo, H.-Y.; Kim, D.-H.; Han, H.-K.; Kim, J.-G.; Lee, Y. B.; Iriyama, Y.; Abe, T.; Ogumi, Z. Suppression of dendritic lithium formation by using concentrated electrolyte solutions. Electrochem. commun. 2008, 10 (4), 635-638.
    115. Beyene, T. T.; Bezabh, H. K.; Weret, M. A.; Hagos, T. M.; Huang, C.-J.; Wang, C.-H.; Su, W.-N.; Dai, H.; Hwang, B.-J. Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries. J. Electrochem. Soc. 2019, 166 (8), A1501.
    116. Chen, S.; Zheng, J.; Yu, L.; Ren, X.; Engelhard, M. H.; Niu, C.; Lee, H.; Xu, W.; Xiao, J.; Liu, J.; Zhang, J.-G. High-Efficiency Lithium Metal Batteries with Fire-Retardant Electrolytes. Joule 2018, 2 (8), 1548-1558.
    117. Chen, S.; Zheng, J.; Mei, D.; Han, K. S.; Engelhard, M. H.; Zhao, W.; Xu, W.; Liu, J.; Zhang, J.-G. High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes. Adv. Mater. 2018, 30 (21), 1706102.
    118. Cao, X.; Jia, H.; Xu, W.; Zhang, J.-G. Review—Localized High-Concentration Electrolytes for Lithium Batteries. J. Electrochem. Soc. 2021, 168 (1), 010522.
    119. Perez Beltran, S.; Cao, X.; Zhang, J.-G.; Balbuena, P. B. Localized High Concentration Electrolytes for High Voltage Lithium–Metal Batteries: Correlation between the Electrolyte Composition and Its Reductive/Oxidative Stability. Chem. Mater. 2020, 32 (14), 5973-5984.
    120. Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 2019, 4 (4), 269-280.
    121. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem. Rev. 2016, 116 (1), 140-162.
    122. Kravchyk, K. V.; Karabay, D. T.; Kovalenko, M. V. On the feasibility of all-solid-state batteries with LLZO as a single electrolyte. Sci. Rep. 2022, 12 (1), 1177.
    123. Sakakura, M.; Mitsuishi, K.; Okumura, T.; Ishigaki, N.; Iriyama, Y. Fabrication of Oxide-Based All-Solid-State Batteries by a Sintering Process Based on Function Sharing of Solid Electrolytes. ACS Appl. Mater. Interfaces 2022, 14 (43), 48547-48557.
    124. Stramare, S.; Thangadurai, V.; Weppner, W. Lithium Lanthanum Titanates:  A Review. Chem. Mater. 2003, 15 (21), 3974-3990.
    125. Lu, J.; Li, Y. Perovskite‐type Li‐ion solid electrolytes: a review. J. Mater. Sci.: Mater. Electron. 2021, 32 (8), 9736-9754.
    126. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A. A lithium superionic conductor. Nat. Mater. 2011, 10 (9), 682-686.
    127. Liu, G.; Weng, W.; Zhang, Z.; Wu, L.; Yang, J.; Yao, X. Densified Li6PS5Cl Nanorods with High Ionic Conductivity and Improved Critical Current Density for All-Solid-State Lithium Batteries. Nano Lett. 2020, 20 (9), 6660-6665.
    128. Nikodimos, Y.; Huang, C.-J.; Taklu, B. W.; Su, W.-N.; Hwang, B. J. Chemical stability of sulfide solid-state electrolytes: stability toward humid air and compatibility with solvents and binders. Energy Environ. Sci. 2022, 15 (3), 991-1033.
    129. Nikodimos, Y.; Su, W.-N.; Hwang, B. J. Halide Solid-State Electrolytes: Stability and Application for High Voltage All-Solid-State Li Batteries. Adv. Energy Mater. 2023, 13 (3), 2202854.
    130. Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S. Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries. Adv. Mater. 2018, 30 (44), 1803075.
    131. Li, X.; Liang, J.; Chen, N.; Luo, J.; Adair, K. R.; Wang, C.; Banis, M. N.; Sham, T.-K.; Zhang, L.; Zhao, S.; Lu, S.; Huang, H.; Li, R.; Sun, X. Water-Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angew. Chem. Int. Ed. 2019, 58 (46), 16427-16432.
    132. Matsuo, M.; Nakamori, Y.; Orimo, S.-i.; Maekawa, H.; Takamura, H. Lithium superionic conduction in lithium borohydride accompanied by structural transition. Appl. Phys. Lett. 2007, 91 (22), 224103.
    133. de Jongh, P. E.; Blanchard, D.; Matsuo, M.; Udovic, T. J.; Orimo, S. Complex hydrides as room-temperature solid electrolytes for rechargeable batteries. Appl. Phys. A 2016, 122 (3), 251.
    134. Unemoto, A.; Ikeshoji, T.; Yasaku, S.; Matsuo, M.; Stavila, V.; Udovic, T. J.; Orimo, S.-i. Stable Interface Formation between TiS2 and LiBH4 in Bulk-Type All-Solid-State Lithium Batteries. Chem. Mater. 2015, 27 (15), 5407-5416.
    135. Kim, S.; Oguchi, H.; Toyama, N.; Sato, T.; Takagi, S.; Otomo, T.; Arunkumar, D.; Kuwata, N.; Kawamura, J.; Orimo, S.-i. A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries. Nat. Commun. 2019, 10 (1), 1081.
    136. Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Interface Stability in Solid-State Batteries. Chem. Mater. 2016, 28 (1), 266-273.
    137. Fenton, D. E.; Parker, J. M.; Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polym. 1973, 14 (11), 589.
    138. Wright, P. V. Electrical conductivity in ionic complexes of poly(ethylene oxide). Br. Polym. J. 1975, 7 (5), 319-327.
    139. MacGlashan, G. S.; Andreev, Y. G.; Bruce, P. G. Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6. Nature 1999, 398 (6730), 792-794.
    140. Gadjourova, Z.; Andreev, Y. G.; Tunstall, D. P.; Bruce, P. G. Ionic conductivity in crystalline polymer electrolytes. Nature 2001, 412 (6846), 520-523.
    141. Smith, M. J.; Silva, M. M.; Cerqueira, S.; MacCallum, J. R. Preparation and characterization of a lithium ion conducting electrolyte based on poly(trimethylene carbonate). Solid State Ion. 2001, 140 (3), 345-351.
    142. Fonseca, C. P.; Rosa, D. S.; Gaboardi, F.; Neves, S. Development of a biodegradable polymer electrolyte for rechargeable batteries. J. Power Sources 2006, 155 (2), 381-384.
    143. Polo Fonseca, C.; Neves, S. Electrochemical properties of a biodegradable polymer electrolyte applied to a rechargeable lithium battery. J. Power Sources 2006, 159 (1), 712-716.
    144. Mindemark, J.; Törmä, E.; Sun, B.; Brandell, D. Copolymers of trimethylene carbonate and ε-caprolactone as electrolytes for lithium-ion batteries. Polym. 2015, 63, 91-98.
    145. Mindemark, J.; Sun, B.; Törmä, E.; Brandell, D. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J. Power Sources 2015, 298, 166-170.
    146. Tominaga, Y.; Nanthana, V.; Tohyama, D. Ionic conduction in poly(ethylene carbonate)-based rubbery electrolytes including lithium salts. Polym. J. 2012, 44 (12), 1155-1158.
    147. Li, Z.; Mindemark, J.; Brandell, D.; Tominaga, Y. A concentrated poly(ethylene carbonate)/poly(trimethylene carbonate) blend electrolyte for all-solid-state Li battery. Polym. J. 2019, 51 (8), 753-760.
    148. Watanabe, M.; Kanba, M.; Nagaoka, K.; Shinohara, I. Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application. J. Appl. Polym. Sci. 1982, 27 (11), 4191-4198.
    149. Watanabe, M.; Kanba, M.; Nagaoka, K.; Shinohara, I. Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4. J. Polym. Sci., Polym. Phys. Ed. 1983, 21 (6), 939-948.
    150. Hu, P.; Chai, J.; Duan, Y.; Liu, Z.; Cui, G.; Chen, L. Progress in nitrile-based polymer electrolytes for high performance lithium batteries. J. Mater. Chem. A 2016, 4 (26), 10070-10083.
    151. Eriksson, T.; Gudla, H.; Manabe, Y.; Yoneda, T.; Friesen, D.; Zhang, C.; Inokuma, Y.; Brandell, D.; Mindemark, J. Carbonyl-Containing Solid Polymer Electrolyte Host Materials: Conduction and Coordination in Polyketone, Polyester, and Polycarbonate Systems. Macromolecules 2022, 55 (24), 10940-10949.
    152. Tanaka, R.; Fujita, T.; Nishibayashi, H.; Saito, S. Ionic conduction in poly(ethylenimine)-and poly(N-methylethylenimine)-lithium salt systems. Solid State Ion. 1993, 60 (1), 119-123.
    153. Takaki, K.; Minoru, I.; Takakazu, Y.; Atsushi, N.; Tooru, T.; Masayoshi, W.; Naoya, O. New Lithium Salt Ionic Conductor Using Poly(vinyl alcohol) Matrix. Chem. Lett. 1989, 18 (11), 1913-1916.
    154. Xue, Z.; He, D.; Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3 (38), 19218-19253.
    155. Bocharova, V.; Sokolov, A. P. Perspectives for Polymer Electrolytes: A View from Fundamentals of Ionic Conductivity. Macromolecules 2020, 53 (11), 4141-4157.
    156. Mindemark, J.; Lacey, M. J.; Bowden, T.; Brandell, D. Beyond PEO—Alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 2018, 81, 114-143.
    157. Forsyth, M.; Sun, J.; Macfarlane, D. R.; Hill, A. J. Compositional dependence of free volume in PAN/LiCF3SO3 polymer-in-salt electrolytes and the effect on ionic conductivity. J. Polym. Sci. B: Polym. Phys. 2000, 38 (2), 341-350.
    158. Diederichsen, K. M.; McShane, E. J.; McCloskey, B. D. Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries. ACS Energy Lett. 2017, 2 (11), 2563-2575.
    159. Doyle, M.; Fuller, T. F.; Newman, J. The importance of the lithium ion transference number in lithium/polymer cells. Electrochim. Acta 1994, 39 (13), 2073-2081.
    160. Rosenwinkel, M. P.; Schönhoff, M. Lithium Transference Numbers in PEO/LiTFSA Electrolytes Determined by Electrophoretic NMR. J. Electrochem. Soc. 2019, 166 (10), A1977.
    161. Rosenwinkel, M. P.; Andersson, R.; Mindemark, J.; Schönhoff, M. Coordination Effects in Polymer Electrolytes: Fast Li+ Transport by Weak Ion Binding. J. Phys. Chem. C 2020, 124 (43), 23588-23596.
    162. Gao, J.; Wang, C.; Han, D.-W.; Shin, D.-M. Single-ion conducting polymer electrolytes as a key jigsaw piece for next-generation battery applications. Chem. Sci. 2021, 12 (40), 13248-13272.
    163. Zhu, J.; Zhang, Z.; Zhao, S.; Westover, A. S.; Belharouak, I.; Cao, P.-F. Single-Ion Conducting Polymer Electrolytes for Solid-State Lithium–Metal Batteries: Design, Performance, and Challenges. Adv. Energy Mater. 2021, 11 (14), 2003836.
    164. Liu, X.; Liu, J.; Lin, B.; Chu, F.; Ren, Y. PVDF-HFP-Based Composite Electrolyte Membranes having High Conductivity and Lithium-Ion Transference Number for Lithium Metal Batteries. ACS Appl. Energy Mater. 2022, 5 (1), 1031-1040.
    165. Ma, Q.; Zhang, H.; Zhou, C.; Zheng, L.; Cheng, P.; Nie, J.; Feng, W.; Hu, Y.-S.; Li, H.; Huang, X.; Chen, L.; Armand, M.; Zhou, Z. Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. Angew. Chem. Int. Ed. 2016, 55 (7), 2521-2525.
    166. Cordier, P.; Tournilhac, F.; Soulié-Ziakovic, C.; Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 2008, 451 (7181), 977-980.
    167. Liu, Y.; Hsu, S.-h. Synthesis and Biomedical Applications of Self-healing Hydrogels. Front. Chem. 2018, 6.
    168. Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding. Science 1997, 278 (5343), 1601-1604.
    169. Zhou, B.; He, D.; Hu, J.; Ye, Y.; Peng, H.; Zhou, X.; Xie, X.; Xue, Z. A flexible, self-healing and highly stretchable polymer electrolyte via quadruple hydrogen bonding for lithium-ion batteries. J. Mater. Chem. A 2018, 6 (25), 11725-11733.
    170. Jo, Y. H.; Li, S.; Zuo, C.; Zhang, Y.; Gan, H.; Li, S.; Yu, L.; He, D.; Xie, X.; Xue, Z. Self-Healing Solid Polymer Electrolyte Facilitated by a Dynamic Cross-Linked Polymer Matrix for Lithium-Ion Batteries. Macromolecules 2020, 53 (3), 1024-1032.
    171. Guo, W.; Li, X.; Xu, F.; Li, Y.; Sun, J. Transparent Polymeric Films Capable of Healing Millimeter-Scale Cuts. ACS Appl. Mater. Interfaces 2018, 10 (15), 13073-13081.
    172. Xing, X.; Li, L.; Wang, T.; Ding, Y.; Liu, G.; Zhang, G. A self-healing polymeric material: from gel to plastic. J. Mater. Chem. A 2014, 2 (29), 11049-11053.
    173. Ding, Y.; Zhang, J.; Chang, L.; Zhang, X.; Liu, H.; Jiang, L. Preparation of High-Performance Ionogels with Excellent Transparency, Good Mechanical Strength, and High Conductivity. Adv. Mater. 2017, 29 (47), 1704253.
    174. Gan, H.; Zhang, Y.; Li, S.; Yu, L.; Wang, J.; Xue, Z. Self-Healing Single-Ion Conducting Polymer Electrolyte Formed via Supramolecular Networks for Lithium Metal Batteries. ACS Appl. Energy Mater. 2021, 4 (1), 482-491.
    175. Jones, S. D.; Nguyen, H.; Richardson, P. M.; Chen, Y.-Q.; Wyckoff, K. E.; Hawker, C. J.; Clément, R. J.; Fredrickson, G. H.; Segalman, R. A. Design of Polymeric Zwitterionic Solid Electrolytes with Superionic Lithium Transport. ACS Cent. Sci. 2022, 8 (2), 169-175.
    176. Yang, J.; Xu, Z.; Wang, J.; Gai, L.; Ji, X.; Jiang, H.; Liu, L. Antifreezing Zwitterionic Hydrogel Electrolyte with High Conductivity of 12.6 mS cm−1 at −40 °C through Hydrated Lithium Ion Hopping Migration. Adv. Funct. Mater. 2021, 31 (18), 2009438.
    177. Akashi, H.; Sekai, K.; Tanaka, K.-i. A novel fire-retardant polyacrylonitrile-based gel electrolyte for lithium batteries. Electrochim. Acta 1998, 43 (10), 1193-1197.
    178. Ren, W.; Ding, C.; Fu, X.; Huang, Y. Advanced gel polymer electrolytes for safe and durable lithium metal batteries: Challenges, strategies, and perspectives. Energy Storage Mater. 2021, 34, 515-535.
    179. Lin, Y.-H.; Subramani, R.; Huang, Y.-T.; Lee, Y.-L.; Jan, J.-S.; Chiu, C.-C.; Hou, S.-S.; Teng, H. Highly stable interface formation in onsite coagulation dual-salt gel electrolyte for lithium-metal batteries. J. Mater. Chem. A 2021, 9 (9), 5675-5684.
    180. Li, W.; Pang, Y.; Liu, J.; Liu, G.; Wang, Y.; Xia, Y. A PEO-based gel polymer electrolyte for lithium ion batteries. RSC Adv. 2017, 7 (38), 23494-23501.
    181. Lee, Y.-Y.; Liu, Y.-L. Crosslinked electrospun poly(vinylidene difluoride) fiber mat as a matrix of gel polymer electrolyte for fast-charging lithium-ion battery. Electrochim. Acta 2017, 258, 1329-1335.
    182. Zhu, Y.; Xiao, S.; Shi, Y.; Yang, Y.; Hou, Y.; Wu, Y. A Composite Gel Polymer Electrolyte with High Performance Based on Poly(Vinylidene Fluoride) and Polyborate for Lithium Ion Batteries. Adv. Energy Mater. 2014, 4 (1), 1300647.
    183. Zhu, Y. S.; Wang, X. J.; Hou, Y. Y.; Gao, X. W.; Liu, L. L.; Wu, Y. P.; Shimizu, M. A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries. Electrochim. Acta 2013, 87, 113-118.
    184. Yang, W.; Yang, W.; Feng, J.; Ma, Z.; Shao, G. High capacity and cycle stability Rechargeable Lithium–Sulfur batteries by sandwiched gel polymer electrolyte. Electrochim. Acta 2016, 210, 71-78.
    185. Silva, W.; Zanatta, M.; Ferreira, A. S.; Corvo, M. C.; Cabrita, E. J. Revisiting Ionic Liquid Structure-Property Relationship: A Critical Analysis. Int. J. Mol. Sci. 2020, 21 (20), 7745.
    186. Smith, E. L.; Abbott, A. P.; Ryder, K. S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114 (21), 11060-11082.
    187. Yu, D.; Xue, Z.; Mu, T. Deep eutectic solvents as a green toolbox for synthesis. Cell Rep. Phys. Sci. 2022, 3 (4), 100809.
    188. Wang, M.; Hu, J.; Dickey, M. D. Tough Ionogels: Synthesis, Toughening Mechanisms, and Mechanical Properties─A Perspective. JACS Au 2022, 2 (12), 2645-2657.
    189. Fan, X.; Liu, S.; Jia, Z.; Koh, J. J.; Yeo, J. C. C.; Wang, C.-G.; Surat'man, N. E.; Loh, X. J.; Le Bideau, J.; He, C.; Li, Z.; Loh, T.-P. Ionogels: recent advances in design, material properties and emerging biomedical applications. Chem. Soc. Rev. 2023, 52 (7), 2497-2527.
    190. Panzer, M. J. Holding it together: noncovalent cross-linking strategies for ionogels and eutectogels. Mater. Adv. 2022, 3 (21), 7709-7725.
    191. Joos, B.; Vranken, T.; Marchal, W.; Safari, M.; Van Bael, M. K.; Hardy, A. T. Eutectogels: A New Class of Solid Composite Electrolytes for Li/Li-Ion Batteries. Chem. Mater. 2018, 30 (3), 655-662.
    192. Wang, J.; Zhang, S.; Ma, Z.; Yan, L. Deep eutectic solvents eutectogels: progress and challenges. GreenChE 2021, 2 (4), 359-367.
    193. Ramesh, S.; Liew, C.-W.; Ramesh, K. Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes. J. Non-Cryst. Solids 2011, 357 (10), 2132-2138.
    194. Zhai, W.; Zhu, H.-j.; Wang, L.; Liu, X.-m.; Yang, H. Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid [BMIM]BF4 for Lithium ion batteries. Electrochim. Acta 2014, 133, 623-630.
    195. Wang, M.; Zhang, P.; Shamsi, M.; Thelen, J. L.; Qian, W.; Truong, V. K.; Ma, J.; Hu, J.; Dickey, M. D. Tough and stretchable ionogels by in situ phase separation. Nat. Mater. 2022, 21 (3), 359-365.
    196. Qin, H.; Panzer, M. J. Chemically Cross-Linked Poly(2-hydroxyethyl methacrylate)-Supported Deep Eutectic Solvent Gel Electrolytes for Eco-Friendly Supercapacitors. ChemElectroChem 2017, 4 (10), 2556-2562.
    197. Hong, S.; Yuan, Y.; Liu, C.; Chen, W.; Chen, L.; Lian, H.; Liimatainen, H. A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors. J. Mater. Chem. C 2020, 8 (2), 550-560.
    198. Kumar, B.; Scanlon, L. G. Polymer-ceramic composite electrolytes. J. Power Sources 1994, 52 (2), 261-268.
    199. Li, S.; Zhang, S.-Q.; Shen, L.; Liu, Q.; Ma, J.-B.; Lv, W.; He, Y.-B.; Yang, Q.-H. Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries. Adv. Sci. 2020, 7 (5), 1903088.
    200. Lv, F.; Wang, Z.; Shi, L.; Zhu, J.; Edström, K.; Mindemark, J.; Yuan, S. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries. J. Power Sources 2019, 441, 227175.
    201. Chen, L.; Li, Y.; Li, S.-P.; Fan, L.-Z.; Nan, C.-W.; Goodenough, J. B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176-184.
    202. Li, M.; Kolek, M.; Frerichs, J. E.; Sun, W.; Hou, X.; Hansen, M. R.; Winter, M.; Bieker, P. Investigation of Polymer/Ceramic Composite Solid Electrolyte System: The Case of PEO/LGPS Composite Electrolytes. ACS Sustain. Chem. Eng. 2021, 9 (34), 11314-11322.
    203. Nkosi, F. P.; Valvo, M.; Mindemark, J.; Dzulkurnain, N. A.; Hernández, G.; Mahun, A.; Abbrent, S.; Brus, J.; Kobera, L.; Edström, K. Garnet-Poly(ε-caprolactone-co-trimethylene carbonate) Polymer-in-Ceramic Composite Electrolyte for All-Solid-State Lithium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4 (3), 2531-2542.
    204. Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. Polymer Electrolytes for Lithium-Based Batteries: Advances and Prospects. Chem 2019, 5 (9), 2326-2352.
    205. Wu, H.; Jia, H.; Wang, C.; Zhang, J.-G.; Xu, W. Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes. Adv. Energy Mater. 2021, 11 (5), 2003092.
    206. Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. Npj Comput. Mater. 2018, 4 (1), 15.
    207. Horstmann, B.; Single, F.; Latz, A. Review on multi-scale models of solid-electrolyte interphase formation. Curr. Opin. Electrochem 2018.
    208. Goodenough, J. B.; Kim, Y. Challenges for Rechargeable Li Batteries. Chem. Mater. 2010, 22 (3), 587-603.
    209. Kang, D.; Xiao, M.; Lemmon, J. P. Artificial Solid-Electrolyte Interphase for Lithium Metal Batteries. Batteries & Supercaps 2021, 4 (3), 445-455.
    210. Kim, S. C.; Kong, X.; Vilá, R. A.; Huang, W.; Chen, Y.; Boyle, D. T.; Yu, Z.; Wang, H.; Bao, Z.; Qin, J.; Cui, Y. Potentiometric Measurement to Probe Solvation Energy and Its Correlation to Lithium Battery Cyclability. J. Am. Chem. Soc. 2021, 143 (27), 10301-10308.
    211. Eshetu, G. G.; Judez, X.; Li, C.; Martinez-Ibañez, M.; Gracia, I.; Bondarchuk, O.; Carrasco, J.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M. Ultrahigh Performance All Solid-State Lithium Sulfur Batteries: Salt Anion’s Chemistry-Induced Anomalous Synergistic Effect. J. Am. Chem. Soc. 2018, 140 (31), 9921-9933.
    212. Ming, J.; Cao, Z.; Wu, Y.; Wahyudi, W.; Wang, W.; Guo, X.; Cavallo, L.; Hwang, J.-Y.; Shamim, A.; Li, L.-J.; Sun, Y.-K.; Alshareef, H. N. New Insight on the Role of Electrolyte Additives in Rechargeable Lithium Ion Batteries. ACS Energy Lett. 2019, 4 (11), 2613-2622.
    213. Hu, R.; Qiu, H.; Zhang, H.; Wang, P.; Du, X.; Ma, J.; Wu, T.; Lu, C.; Zhou, X.; Cui, G. A Polymer-Reinforced SEI Layer Induced by a Cyclic Carbonate-Based Polymer Electrolyte Boosting 4.45 V LiCoO2/Li Metal Batteries. Small 2020, 16 (13), 1907163.
    214. Yu, Z.; Cui, Y.; Bao, Z. Design Principles of Artificial Solid Electrolyte Interphases for Lithium-Metal Anodes. Cell Rep. Phys. Sci. 2020, 1 (7), 100119.
    215. Kim, M. S.; Zhang, Z.; Rudnicki, P. E.; Yu, Z.; Wang, J.; Wang, H.; Oyakhire, S. T.; Chen, Y.; Kim, S. C.; Zhang, W.; Boyle, D. T.; Kong, X.; Xu, R.; Huang, Z.; Huang, W.; Bent, S. F.; Wang, L.-W.; Qin, J.; Bao, Z.; Cui, Y. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 2022, 21 (4), 445-454.
    216. Kim, M. S.; Zhang, Z.; Wang, J.; Oyakhire, S. T.; Kim, S. C.; Yu, Z.; Chen, Y.; Boyle, D. T.; Ye, Y.; Huang, Z.; Zhang, W.; Xu, R.; Sayavong, P.; Bent, S. F.; Qin, J.; Bao, Z.; Cui, Y. Revealing the Multifunctions of Li3N in the Suspension Electrolyte for Lithium Metal Batteries. ACS Nano 2023, 17 (3), 3168-3180.
    217. He, M.; Guo, R.; Hobold, G. M.; Gao, H.; Gallant, B. M. The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. PNAS 2020, 117 (1), 73-79.
    218. Shan, X.; Zhong, Y.; Zhang, L.; Zhang, Y.; Xia, X.; Wang, X.; Tu, J. A Brief Review on Solid Electrolyte Interphase Composition Characterization Technology for Lithium Metal Batteries: Challenges and Perspectives. J. Phys. Chem. C 2021, 125 (35), 19060-19080.
    219. Ebadi, M.; Marchiori, C.; Mindemark, J.; Brandell, D.; Araujo, C. M. Assessing structure and stability of polymer/lithium-metal interfaces from first-principles calculations. J. Mater. Chem. A 2019, 7 (14), 8394-8404.
    220. Andersson, E. K. W.; Sångeland, C.; Berggren, E.; Johansson, F. O. L.; Kühn, D.; Lindblad, A.; Mindemark, J.; Hahlin, M. Early-stage decomposition of solid polymer electrolytes in Li-metal batteries. J. Mater. Chem. A 2021, 9 (39), 22462-22471.
    221. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6 (1), 15-50.
    222. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54 (16), 11169-11186.
    223. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50 (24), 17953-17979.
    224. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59 (3), 1758-1775.
    225. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865-3868.
    226. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132 (15).
    227. Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32 (7), 1456-1465.
    228. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13 (12), 5188-5192.
    229. Bader, R. F. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91 (5), 893-928.
    230. Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter. 2009, 21 (8), 084204.
    231. Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28 (5), 899-908.
    232. Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36 (3), 354-360.
    233. Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113 (22), 9901-9904.
    234. Henkelman, G.; Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113 (22), 9978-9985.
    235. Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 1984, 52 (2), 255-268.
    236. Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31 (3), 1695-1697.
    237. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81 (1), 511-519.
    238. Wu, L.-T.; Nachimuthu, S.; Brandell, D.; Jiang, J.-C. Prediction of SEI Formation in All-Solid-State Batteries: Computational Insights from PCL-based Polymer Electrolyte Decomposition on Lithium-Metal. Batteries & Supercaps 2022, 5 (9), e202200088.
    239. Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100 (13), 136406.
    240. te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22 (9), 931-967.
    241. Grazioli, C.; Baseggio, O.; Stener, M.; Fronzoni, G.; de Simone, M.; Coreno, M.; Guarnaccio, A.; Santagata, A.; D’Auria, M. Study of the electronic structure of short chain oligothiophenes. J. Chem. Phys. 2017, 146 (5).
    242. ADF 2023.1, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.
    243. Van Lenthe, E.; Baerends, E. J. Optimized Slater-type basis sets for the elements 1–118. J. Comput. Chem. 2003, 24 (9), 1142-1156.
    244. Sleigh, C.; Pijpers, A. P.; Jaspers, A.; Coussens, B.; Meier, R. J. On the determination of atomic charge via ESCA including application to organometallics. J. Electron Spectrosc. Relat. Phenom. 1996, 77 (1), 41-57.
    245. Hoffmann, E. A.; Körtvélyesi, T.; Wilusz, E.; Korugic-Karasz, L. S.; Karasz, F. E.; Fekete, Z. A. Relation between C1s XPS binding energy and calculated partial charge of carbon atoms in polymers. J. Mol. Struct.: THEOCHEM 2005, 725 (1), 5-8.
    246. Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; Persson, K. A. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1 (1).
    247. Tran, R.; Xu, Z.; Radhakrishnan, B.; Winston, D.; Sun, W.; Persson, K. A.; Ong, S. P. Surface energies of elemental crystals. Sci. Data 2016, 3 (1), 160080.
    248. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 09 Rev. E.01, Wallingford, CT, 2016.
    249. Zhao, Y.; Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 2006, 125 (19), 194101.
    250. Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120 (1), 215-241.
    251. Ditchfield, R.; Hehre, W. J.; Pople, J. A. Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules. J. Chem. Phys. 2003, 54 (2), 724-728.
    252. Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications. Elsevier Science: 2001.
    253. Sun, H.; Jin, Z.; Yang, C.; Akkermans, R. L. C.; Robertson, S. H.; Spenley, N. A.; Miller, S.; Todd, S. M. COMPASS II: extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 2016, 22 (2), 47.
    254. Sun, B.; Xu, C.; Mindemark, J.; Gustafsson, T.; Edström, K.; Brandell, D. At the polymer electrolyte interfaces: the role of the polymer host in interphase layer formation in Li-batteries. J. Mater. Chem. A 2015, 3 (26), 13994-14000.
    255. Xu, C.; Sun, B.; Gustafsson, T.; Edström, K.; Brandell, D.; Hahlin, M. Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. J. Mater. Chem. A 2014, 2 (20), 7256-7264.
    256. Andersson, E.; Wu, L.-T.; Bertoli, L.; Weng, Y.-C.; Friesen, D.; Elbouazzaoui, K.; Bloch, S.; Ovsyannikov, R.; Giangrisostomi, E.; Brandell, D.; Mindemark, J.; Jiang, J.-C.; Hahlin, M. Initial SEI formation in LiBOB, LiDFOB and LiBF4-containing PEO electrolytes. In Manuscript, 2023.
    257. Sångeland, C.; Sun, B.; Brandell, D.; Berg, E. J.; Mindemark, J. Decomposition of Carbonate-Based Electrolytes: Differences and Peculiarities for Liquids vs. Polymers Observed Using Operando Gas Analysis. Batteries & Supercaps 2021, 4 (5), 785-790.
    258. Marchiori, C. F. N.; Carvalho, R. P.; Ebadi, M.; Brandell, D.; Araujo, C. M. Understanding the Electrochemical Stability Window of Polymer Electrolytes in Solid-State Batteries from Atomic-Scale Modeling: The Role of Li-Ion Salts. Chem. Mater. 2020, 32 (17), 7237-7246.

    無法下載圖示 全文公開日期 2025/08/16 (校內網路)
    全文公開日期 2025/08/16 (校外網路)
    全文公開日期 2025/08/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE