簡易檢索 / 詳目顯示

研究生: 鄭宇廷
Yu-Ting Jheng
論文名稱: 聚氨酯丙烯酸酯固態鋰離子電解質及其可能電池應用
Lithium solid polyurethane acrylate electrolyte and its probable battery application
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 王復民
Fu-Ming Wang
江佳穎
Chia-Ying Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 90
中文關鍵詞: 固態聚合物電解質複合電解質聚氨酯丙烯酸酯可逆加成-斷裂鍊轉移法全固態鋰電池
外文關鍵詞: solid polymer electrolyte, composite electrolyte, polyurethane acrylate, reversible addition-fragmentation chain transfer polymerization, all-solid-state lithium-ion battery
相關次數: 點閱:324下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子鋰離子導體的聚合,分成兩步驟,先行異氰酸酯(IPDI)與己醇及4-烴基丁基丙烯酸酯親核反應得到預聚物,再利用可逆加成-斷裂鍊轉移法(RAFT)控制分子量聚合丙烯酸酯的丙烯雙鍵,形成含氨酯鍵(NHCOO-)之高分子,其黏度分子量聚合在8000 - 10000 g mol-1,約為17-20個預聚物單元組成,並添加鋰鹽增塑劑使玻璃轉化溫度低於室溫,其中,添加40 wt%的LiClO4之Tg約為-27 oC。
    添加不同種類之鋰鹽以量測不同鋰鹽濃度的聚合物離子導電率,其中,較佳比例為添加40 wt%過氯酸鋰鹽(LiClO4)以及30 wt%雙(三氟甲磺酰基)酰亞胺鋰鹽(LiTFSI),其室溫導電率,分別達1.62×10-4S cm-1和5.08×10-5 S cm-1,溫度依賴性以阿瑞尼斯方程式擬合,活化能分別為39.4 kJ mol-1及40.8 kJ mol-1。
    最後,添加了陶瓷粉末LLZTO作為複合材料電解質,期望電解質更高的機械強度及更佳的離子導電率,並改善介面以及漏電反應的發生。以循環伏安法分析,其電位窗口約為5.0 V,以三元材料NMC622作為陰極,及鋰為陽極,搭配複合電解質,電池窗口選擇2.8-4.2 V,並在室溫下,以0.02 C進行恆電流充放電測試,充電電容值為20 mAh g-1,而放電電容值為17 mAh g-1。 若能進一步改善離子導電率,此高分子鋰離子導體可能作為複合材料電解質的黏劑。


    Preparation of the lithium conducting polymer is divided into two steps. First, the nucleophilic reaction proceeds with isophorone diisocyanate (IPDI), hexanol, and 4-hydroxybutyl acrylate to obtain the precursor. The second step is to initiate the free radical polymerization of 4-hydroxybutyl acrylate, mediated by reversible addition-fragmentation chain transfer (RAFT) technique such that the molecular weight is confined. The resultant PU-based polymer contains17-20 precursor units and the polymer molecular weight ranges from 8000 to 10000 g mol-1.
    Addition of the lithium salt plasticizes the PU-based polymer and decreases its glass transition temperature (Tg) below room temperature. The lowest Tg value, -27 oC, is achieved in the lithium conducting PU-based polymer with 40wt% of lithium perchlorate.
    The ionic conductivity was measured on the PU-based polymer of various lithium salts and contents. The two optimal electrolytes are with 40 wt% lithium perchlorate and 30 wt% lithium bis (trifluoromethane- sulfonyl) imide, of which the room-temperature ionic conductivity reach 1.62×10-4 S cm-1 and 5.08×10-5 S cm-1; respectively. Correlation of their temperature dependences yields their activation energy values; 39.4 kJ mol-1 and 40.8 kJ mol-1.
    Finally, a composite electrolyte of the PU-based polymer and ceramic powder LLZTO is prepared. Cyclic voltammograms of the composite electrolyte show the potential window can be as wide as 5.0 V. The galvanostatic charge-discharge test at 0.02 C is conducted with the assembly of NMC622 as cathode, lithium as anode, and the composite electrolyte. Between 2.8 to 4.2 V, the cell displays its charge capacity 20 mAh g-1 and the discharge capacity ~17 mAh g-1.

    目錄 摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1前言 1 1.2研究動機 2 第二章 文獻回顧 5 2.1固態電解質 5 2.1.1聚合物電解質 7 2.1.2聚環氧己烷 8 2.1.3聚氨酯丙烯酸酯 10 2.2鋰鹽共晶系統 12 2.3異氰酸酯反應性對於聚氨酯影響 13 2.4可逆加成-斷裂鏈轉移聚合法(RAFT) 15 第三章 實驗方法與步驟 17 3.1實驗藥品耗材與儀器設備 17 3.1.1實驗藥品 17 3.1.2 實驗儀器與設備 19 3.1.3材料鑑定及儀器設備 20 3.1.4電化學測試儀器及設備 21 3.2實驗流程圖 22 3.2.1可逆加成斷鍊鍊轉移合成具合法合成聚氨酯丙烯酸酯 22 3.2.3電化學量測組裝 23 3.2.3電化學分析 24 3.3實驗方法 25 3.3.1以可逆加成鍛鍊鍊轉移合成具合法合成聚氨酯丙烯酸酯 25 3.3.2CR2032電池墊片前處理清洗 26 3.3.3固態電解質離子電導率電池製備 26 3.3.3複合電解質離子電導率電池製備 27 3.3.5固態電解質之循環伏安法電池製備 28 3.3.6全固態鋰離子電池製備 29 3.4固態電解質材料鑑定與分析 31 3.4.1傅立葉紅外線光譜儀(FTIR) 31 3.4.2差示掃描量熱法(DSC) 32 3.4.3 高分子分子量分析 32 3.5固態電解質電化學特性分析 34 3.5.1交流阻抗分析(AC Impedance) 34 3.5.2循環伏安法(Cyclic Voltammetry) 36 3.5.3全固態鋰離子電池製備 36 第四章 結果與討論 38 4.1傅立葉紅外線光譜光譜圖 (FTIR) 38 4.2高分子分子量分析 40 4.3玻璃轉化溫度 42 4.4離子導電率 47 聚氨酯丙烯酸酯摻LiTFSI之離子電導率 47 聚氨酯丙烯酸酯摻LiClO4之離子導電率 53 複合材料電解質之離子電導率 59 4.5循環伏安法(CYCLIC VOLTAMMETRY) 63 4.6全固態鋰離子電池測試 67 第五章 結論 71 參考文獻 73

    1. F. N. Daud, A. Ahmad, and K. H. Badri, "Characterisations of Palm-Based Polyurethane Solid Polymer Electrolyte," Advanced Materials Research, vol. 1107, pp. 163-167, 2015.
    2. M. S. Su'ait et al., "The potential of polyurethane bio-based solid polymer electrolyte for photoelectrochemical cell application," International Journal of Hydrogen Energy, vol. 39, no. 6, pp. 3005-3017, 2014.
    3. P. V. Wright, "Electrical conductivity in ionic complexes of poly(ethylene oxide)†," Br. Polym. J. , vol. 7, pp. 319-327, 1975.
    4. P. Pal and A. Ghosh, "Robust Succinonitrile Plastic Crystal-Based Ionogel for All-Solid-State Li-Ion and Dual-Ion Batteries," ACS Applied Energy Materials, vol. 3, no. 5, pp. 4295-4304, 2020.
    5. Boisset, S. Menne, J. Jacquemin, A. Balducci, and M. Anouti, "Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries," Phys Chem Chem Phys, vol. 15, no. 46, pp. 20054-63, Dec 14 2013.
    6. L. Long, S. Wang, M. Xiao, and Y. Meng, "Polymer electrolytes for lithium polymer batteries," Journal of Materials Chemistry A, vol. 4, no. 26, pp. 10038-10069, 2016.
    7. J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, vol. 414, no. 6861, pp. 359-67, Nov 15 2001.
    8. K. H. Park et al., "Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries," Advanced Energy Materials, vol. 8, no. 18, 2018.
    9. Y. Meesala, A. Jena, H. Chang, and R.-S. Liu, "Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries," ACS Energy Letters, vol. 2, no. 12, pp. 2734-2751, 2017.
    10. J. Mindemark, M. J. Lacey, T. Bowden, and D. Brandell, "Beyond PEO—Alternative host materials for Li + -conducting solid polymer electrolytes," Progress in Polymer Science, vol. 81, pp. 114-143, 2018.
    11. K. Kerman, A. Luntz, V. Viswanathan, Y.-M. Chiang, and Z. Chen, "Review—Practical Challenges Hindering the Development of Solid-State Li Ion Batteries," Journal of The Electrochemical Society, vol. 164, no. 7, pp. A1731-A1744, 2017.
    12. Zalewska, "New poly(acrylamide) based (polymer in salt) electrolytes: preparation and spectroscopic characterization," Solid State Ionics, vol. 157, no. 1-4, pp. 233-239, 2003.
    13. L. Ye and Z. Feng, "Polymer electrolytes as solid solvents and their applications," in Polymer Electrolytes, 2010, pp. 550-582.
    14. M. M. Hiller, M. Joost, H. J. Gores, S. Passerini, and H. D. Wiemhöfer, "The influence of interface polarization on the determination of lithium transference numbers of salt in polyethylene oxide electrolytes," Electrochimica Acta, vol. 114, pp. 21-29, 2013.
    15. Y. B. H. Olivier Buriez, Jun Hou, John B. Kerr) Minmin Tian, Shanger Wang and J. Q. , Steven E. Sloop,, "Performance limitations of polymer electrolytes based on ethylene oxide polymers," Journal of Power Sources, vol. 89, pp. 149-155, 1999.
    16. J. Yang et al., "High-Performance Solid Composite Polymer Electrolyte for all Solid-State Lithium Battery Through Facile Microstructure Regulation," Front Chem, vol. 7, p. 388, 2019.
    17. J. Zhang, X. Huang, H. Wei, J. Fu, W. Liu, and X. Tang, "Preparation and electrochemical behaviors of composite solid polymer electrolytes based on polyethylene oxide with active inorganic–organic hybrid polyphosphazene nanotubes as fillers," New Journal of Chemistry, vol. 35, no. 3, 2011.
    18. J. K. P. a. P. V. Wright, "Complexes of alkali metal ions with poly(ethylene oxide)," POLYMER, vol. 14, p. 589, 1973.
    19. W. G. C. Berthier, M. Minier, M.B. Armand, J.M. Chabagno, P. Rigaud "Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducls," Solid State Ionics vol. 11, no. 91-95, 1983.
    20. S. C. Roger Frech, Peter G. Bruceb and Colin A. Vincentb, "Structure of an amorphous polymer electrolyte, poly(ethylene oxide)3 : LiCF3SO3," Chemical Communications, no. 2, pp. 157-158, 1997.
    21. S. Xue, Y. Liu, Y. Li, D. Teeters, D. W. Crunkleton, and S. Wang, "Diffusion of Lithium Ions in Amorphous and Crystalline Poly(ethylene oxide)3:LiCF3SO3 Polymer Electrolytes," Electrochimica Acta, vol. 235, pp. 122-128, 2017.
    22. Y. Zhao et al., "A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries," Solid State Ionics, vol. 295, pp. 65-71, 2016.
    23. B. Chen et al., "A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery," Electrochimica Acta, vol. 210, pp. 905-914, 2016.
    24. Y. Jiang et al., "Development of the PEO Based Solid Polymer Electrolytes for All-Solid-State Lithium Ion Batteries," Polymers (Basel), vol. 10, no. 11, Nov 7 2018.
    25. L. Yue et al., "All solid-state polymer electrolytes for high-performance lithium ion batteries," Energy Storage Materials, vol. 5, pp. 139-164, 2016.
    26. S. M. Seidel, S. Jeschke, P. Vettikuzha, and H. D. Wiemhofer, "PVDF-HFP/ether-modified polysiloxane membranes obtained via airbrush spraying as active separators for application in lithium ion batteries," Chem Commun (Camb), vol. 51, no. 60, pp. 12048-51, Aug 4 2015.
    27. Asif, C. Huang, and W. Shi, "Structure property study of waterborne, polyurethane acrylate dispersions based on hyperbranched aliphatic polyester for UV-curable coatings," Colloid and Polymer Science, vol. 283, no. 2, pp. 200-208, 2004.
    28. S. P. Low, A. Ahmad, and M. Y. A. Rahman, "Effect of ethylene carbonate plasticizer and TiO2 nanoparticles on 49% poly(methyl methacrylate) grafted natural rubber-based polymer electrolyte," Ionics, vol. 16, no. 9, pp. 821-826, 2010.
    29. S. Navaratnam, K. Ramesh, S. Ramesh, A. Sanusi, W. J. Basirun, and A. K. Arof, "Transport Mechanism Studies of Chitosan Electrolyte Systems," Electrochimica Acta, vol. 175, pp. 68-73, 2015.
    30. R. Chen, F. Wu, H. Liang, L. Li, and B. Xu, "Novel Binary Room-Temperature Complex Electrolytes Based on LiTFSI and Organic Compounds with Acylamino Group," Journal of The Electrochemical Society, vol. 152, no. 10, 2005.
    31. W. Zaidi, A. Boisset, J. Jacquemin, L. Timperman, and M. Anouti, "Deep Eutectic Solvents Based on N-Methylacetamide and a Lithium Salt as Electrolytes at Elevated Temperature for Activated Carbon-Based Supercapacitors," The Journal of Physical Chemistry C, vol. 118, no. 8, pp. 4033-4042, 2014.
    32. F. P. R. LomOlder, P. Speier, "Selectivity of Isophorone Diisocyanate in the Urethane Reaction Influence of Temperature, Catalysis, and Reaction Partners," Journal of Coatings Technology vol. 69, no. 868, 1997.
    33. K. U. Koichi Hatada, and Ken-ichi Oka, "Unambiguous 13C-NMR Assignments for Isocyanate Carbons of Isophorone Diisocyanate and Reactivity of Isocyanate Groups in 2 - and E-Stereoisomers," Journal of Polymer Science: Part A Polymer Chemistry, vol. 28, pp. 3019-3027, 1990.
    34. M. F. Sonnenschein, Polyurethanes-Science-Technology-Marketsand-Trends. Midland, MI, USA: The Dow Chemical Company, 2015.
    35. T. P. T. L. Y. K. Chong, Graeme Moad, Ezio Rizzardo, and San H. Thang, "A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization: The RAFT Process," American Chemical Society, vol. 32, pp. 2071-2074, 1999.
    36. Y. K. B. C. John Chiefari, Frances Ercole, Julia Krstina, Justine Jeffery, Tam P. T. Le, Roshan T. A. Mayadunne, Gordon F. Meijs, Catherine L. Moad, Graeme Moad, Ezio Rizzardo, and San H. Thang, "Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process," American Chemical Society, vol. 31, pp. 5559-5562, 1998.
    37. R. I. Kusuma, C.-T. Lin, and C.-S. Chern, "Kinetics of reversible addition-fragmentation transfer (RAFT) miniemulsion polymerization of styrene using dibenzyl trithiocarbonate as RAFT reagent and costabilizer," Polymer International, vol. 64, no. 10, pp. 1389-1398, 2015.
    38. R. M. Jian-Jun Yuan, Qing Gao, Yi-Feng Wang, Shi-Yuan Cheng, Lin-Xian Feng, Zhi-Qiang Fan, Lei Jiang, "Synthesis and Characterization of Polystyrene/Poly(4vinylpyridine) Triblock Copolymers by Reversible Addition–Fragmentation Chain Transfer Polymerization and Their Self-Assembled Aggregates in Water," Journal of Applied Polymer Science, vol. 89, pp. 1017-1025, 2003.
    39. 邱俊榮, "丙烯腈寡聚物膜作為固態鋰電池電解質之合成及量測," 碩士, 化學工程系, 國立臺灣科技大學, 台北市, 2020.
    40. H. C. B. a. J. C. PETERSON, "Dilute Solution Properties of a Polyurethane. I. Linear Polymers," JOUltNAL OF POLYMER SCIENCE, vol. 7, pp. 2021-2029, 1969.
    41. G. Mashouf, M. Ebrahimi, and S. Bastani, "UV curable urethane acrylate coatings formulation: experimental design approach," Pigment & Resin Technology, vol. 43, no. 2, pp. 61-68, 2014.
    42. P. Santhosh, T. Vasudevan, A. Gopalan, and K.-P. Lee, "Preparation and properties of new cross-linked polyurethane acrylate electrolytes for lithium batteries," Journal of Power Sources, vol. 160, no. 1, pp. 609-620, 2006.
    43. M. Rani, S. Rudhziah, A. Ahmad, and N. Mohamed, "Biopolymer Electrolyte Based on Derivatives of Cellulose from Kenaf Bast Fiber," Polymers, vol. 6, no. 9, pp. 2371-2385, 2014.
    44. S. Ibrahim, A. Ahmad, and N. Mohamed, "Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes," Polymers, vol. 7, no. 4, pp. 747-759, 2015.
    45. M. Z. Kufian and S. R. Majid, "Performance of lithium-ion cells using 1 M LiPF6 in EC/DEC (v/v = 1/2) electrolyte with ethyl propionate additive," Ionics, vol. 16, no. 5, pp. 409-416, 2009.
    46. T. S. R. Tuan Naiwi et al., "Enhancement of Plasticizing Effect on Bio-Based Polyurethane Acrylate Solid Polymer Electrolyte and Its Properties," Polymers (Basel), vol. 10, no. 10, Oct 12 2018.
    47. L. Chen, Y. Li, S.-P. Li, L.-Z. Fan, C.-W. Nan, and J. B. Goodenough, "PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”," Nano Energy, vol. 46, pp. 176-184, 2018.

    QR CODE