簡易檢索 / 詳目顯示

研究生: 鄭于桓
YU-HUAN JHENG
論文名稱: 固態聚丙烯腈電解質與鋰離子電池應用
Solid state polyacrylonitrile electrolyte and its application in Lithium-ion battery
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 范國泰
Quoc-Thai Pham
許榮木
Jung-Mu Shu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 100
中文關鍵詞: 固態高分子電解質鋰離子電池正極黏著劑聚丙烯腈
外文關鍵詞: solid polymer electrolyte, lithium ion battery, cathode binder, polyacrylonitrile
相關次數: 點閱:348下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 VIII 第一章、緒論 1 1.1 前言 1 1.2 研究動機 3 1.2.1 鋰離子電池基本運作原理 3 1.2.2 固態高分子電解質 4 1.2.3 電極黏著劑 6 第二章 、文獻回顧 7 2.1 固態電解質 7 2.1.1 有機固態電解質(Organic Solid Electrolyte) 7 2.1.2 無機固態電解質(Inorganic Solid Electrolyte) 10 2.1.3 複合型固態電解質(Composite Solid Electrolyte) 11 2.2 PEO(聚氧化乙烯) 12 2.3 PAN(聚丙烯腈) 14 2.4 電極黏著劑 17 2.5 高分子合成機制 19 第三章 、實驗藥品、儀器與樣品製備 20 3.1 實驗藥品 20 3.2 實驗儀器 22 3.3 固態高分子電解質合成 23 3.3.1 [ P1/ DMSO ] 23 3.3.2 [ P2 / DMSO ] 23 3.3.3 [ P3 / DMSO ] 23 3.4 DSC樣品製備 24 3.4.1 [P1] 24 3.4.2 [P2] 24 3.4.3 [P3] 24 3.5 GPC樣品製備 24 3.5.1 [P1/DMF ] 24 3.5.2 [P2/DMF ] 24 3.5.3 [P3/DMF ] 25 3.6 Intrinsic viscosity樣品製備 25 3.6.1 [ P1/DMF ] 25 3.6.2 [ P2/DMF ] 25 3.6.3 [ P3/DMF ] 25 3.7 FTIR樣品製備 26 3.8 TGA樣品製備 26 3.9 離子電導率樣品製備 27 3.9.1 [ P1 / DMSO ] 27 3.9.2 [ P2 / DMSO ] 27 3.9.3 [ P3 / DMSO ] 28 3.10 LSV樣品製備 28 3.10.1 [ P1/DMAC ] 28 3.10.2 [ P2/DMAC ] 29 3.10.3 [ P3/DMAC ] 29 3.11 鋰離子遷移常數(t+)&界面穩定性樣品製備 30 3.11.1 [ P1/DMAC ] 30 3.11.2 [ P2/DMAC ] 30 3.11.3 [ P3/DMAC ] 31 3.12 電極漿料製備 31 3.12.1 [ LiFePO4 ] 31 3.13 P1鈕扣型電池(coin cell)組裝 32 3.14 各電池組裝示意圖 33 3.15 高分子黏著劑(Polymer Binder)合成 34 3.15.1 迷你乳化聚合反應流程 34 3.15.2 配方比例圖 35 3.16 DSC樣品製備 36 3.16.1 [AL82] 36 3.16.2 [A2L532] 36 3.17 TGA樣品製備 36 3.17.1 [AL82] 36 3.17.2 [A2L532] 36 3.18 GPC樣品製備 36 3.18.1 [AL82/DMF] 36 3.18.2 [A2L532/DMF] 36 3.19 離子電導率樣品製備 37 3.19.1 [AL82/ NMP ] 37 3.19.2 [A2532/ NMP ] 37 3.20 LSV樣品製備 38 3.20.1 [AL82/ NMP ] 38 3.20.2 [A2532/ NMP ] 38 第四章 、結果與討論 39 4.1 固態高分子電解質 39 4.1.1 差示掃描量熱法(DSC)分析 39 4.1.2 熱重分析(TGA) 42 4.1.3 膠體滲透層析儀(GPC)分析 43 4.1.4 本質黏度(Intrinsic viscosity)分析 45 4.1.5 傅立葉轉換紅外光譜(FTIR)分析 47 4.1.6 離子電導率(ionic conductivity)分析 49 4.1.7 線性掃描伏安法(LSV)分析 60 4.1.8 鋰離子遷移常數(Lithium transference number (t+))分析 62 4.1.9 鋰金屬與固態電解質之界面穩定性分析 64 4.1.10 固態鋰離子電池測試 67 4.2 正極黏著劑 71 4.2.1 差示掃描量熱法(DSC)分析 71 4.2.2 熱重分析(TGA) 72 4.2.3 膠體滲透層析儀(GPC)分析 73 4.2.4 離子電導率(ionic conductivity)分析 74 4.2.5 線性掃描伏安法(LSV)分析 81 第五章 、結論 82 參考文獻 83 附錄 88

    1.Zubi, G., R. Dufo-López, M. Carvalho, and G. Pasaoglu, The lithium-ion battery: State of the art and future perspectives. Renewable and Sustainable Energy Reviews, 2018. 89: p. 292-308.
    2.Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries, in Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. 2011, World Scientific. p. 171-179.
    3.Chen, T., Y. Jin, H. Lv, A. Yang, M. Liu, B. Chen, Y. Xie, and Q. Chen, Applications of lithium-ion batteries in grid-scale energy storage systems. Transactions of Tianjin University, 2020. 26(3): p. 208-217.
    4.Mauger, A. and C.M. Julien, Critical review on lithium-ion batteries: are they safe? Sustainable? Ionics, 2017. 23(8): p. 1933-1947.
    5.Kalhoff, J., G.G. Eshetu, D. Bresser, and S. Passerini, Safer electrolytes for lithium‐ion batteries: state of the art and perspectives. ChemSusChem, 2015. 8(13): p. 2154-2175.
    6.Wang, Q., L. Jiang, Y. Yu, and J. Sun, Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 2019. 55: p. 93-114.
    7.Pham, H.Q., H.-Y. Lee, E.-H. Hwang, Y.-G. Kwon, and S.-W. Song, Non-flammable organic liquid electrolyte for high-safety and high-energy density Li-ion batteries. Journal of Power Sources, 2018. 404: p. 13-19.
    8.Chen, R., Q. Li, X. Yu, L. Chen, and H. Li, Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chemical reviews, 2019. 120(14): p. 6820-6877.
    9.Aravindan, V., J. Gnanaraj, S. Madhavi, and H.K. Liu, Lithium‐ion conducting electrolyte salts for lithium batteries. Chemistry–A European Journal, 2011. 17(51): p. 14326-14346.
    10.Zou, F. and A. Manthiram, A Review of the Design of Advanced Binders for High‐Performance Batteries. Advanced Energy Materials, 2020. 10(45): p. 2002508.
    11.Polu, A.R. and H.-W. Rhee, Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12–LiTDI solid polymer electrolyte. Journal of Industrial and Engineering Chemistry, 2016. 37: p. 347-353.
    12.Daigle, J.-C., A. Vijh, P. Hovington, C. Gagnon, J. Hamel-Pâquet, S. Verreault, N. Turcotte, D. Clément, A. Guerfi, and K. Zaghib, Lithium battery with solid polymer electrolyte based on comb-like copolymers. Journal of Power Sources, 2015. 279: p. 372-383.
    13.Feuillade, G. and P. Perche, Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry, 1975. 5(1): p. 63-69.
    14.Stephan, A.M., Review on gel polymer electrolytes for lithium batteries. European polymer journal, 2006. 42(1): p. 21-42.
    15.Berthier, C., W. Gorecki, M. Minier, M. Armand, J. Chabagno, and P. Rigaud, Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts. Solid State Ionics, 1983. 11(1): p. 91-95.
    16.Agrawal, R. and G. Pandey, Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. Journal of Physics D: Applied Physics, 2008. 41(22): p. 223001.
    17.Meyer, W.H., Polymer electrolytes for lithium‐ion batteries. Advanced materials, 1998. 10(6): p. 439-448.
    18.Ue, M., SECONDARY BATTERIES – LITHIUM RECHARGEABLE SYSTEMS | Electrolytes: Nonaqueous, in Encyclopedia of Electrochemical Power Sources, J. Garche, Editor. 2009, Elsevier: Amsterdam. p. 71-84.
    19.Zhang, B., R. Tan, L. Yang, J. Zheng, K. Zhang, S. Mo, Z. Lin, and F. Pan, Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials, 2018. 10: p. 139-159.
    20.Muramatsu, H., A. Hayashi, T. Ohtomo, S. Hama, and M. Tatsumisago, Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics, 2011. 182(1): p. 116-119.
    21.Janek, J. and W.G. Zeier, A solid future for battery development. Nature Energy, 2016. 1(9): p. 1-4.
    22.Vignarooban, K., M. Dissanayake, I. Albinsson, and B.-E. Mellander, Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly (ethylene oxide)(PEO) based solid polymer electrolytes. Solid State Ionics, 2014. 266: p. 25-28.
    23.Choi, J.-H., C.-H. Lee, J.-H. Yu, C.-H. Doh, and S.-M. Lee, Enhancement of ionic conductivity of composite membranes for all-solid-state lithium rechargeable batteries incorporating tetragonal Li7La3Zr2O12 into a polyethylene oxide matrix. Journal of Power Sources, 2015. 274: p. 458-463.
    24.Zheng, J. and Y.-Y. Hu, New insights into the compositional dependence of Li-Ion transport in polymer–ceramic composite electrolytes. ACS applied materials & interfaces, 2018. 10(4): p. 4113-4120.
    25.Chen, L., Y. Li, S.-P. Li, L.-Z. Fan, C.-W. Nan, and J.B. Goodenough, PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy, 2018. 46: p. 176-184.
    26.Wang, Y., G. Wang, P. He, J. Hu, J. Jiang, and L.-Z. Fan, Sandwich structured NASICON-type electrolyte matched with sulfurized polyacrylonitrile cathode for high performance solid-state lithium-sulfur batteries. Chemical Engineering Journal, 2020. 393: p. 124705.
    27.DeWees, R. and H. Wang, Synthesis and Properties of NASICON‐type LATP and LAGP Solid Electrolytes. ChemSusChem, 2019. 12(16): p. 3713-3725.
    28.Manthiram, A., X. Yu, and S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2017. 2(4): p. 1-16.
    29.Fenton, D., Complexes of alkali metal ions with poly (ethylene oxide). polymer, 1973. 14: p. 589.
    30.Nishimoto, A., K. Agehara, N. Furuya, T. Watanabe, and M. Watanabe, High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains. Macromolecules, 1999. 32(5): p. 1541-1548.
    31.Stephan, A.M. and K. Nahm, Review on composite polymer electrolytes for lithium batteries. Polymer, 2006. 47(16): p. 5952-5964.
    32.Shen, L., H.B. Wu, F. Liu, J.L. Brosmer, G. Shen, X. Wang, J.I. Zink, Q. Xiao, M. Cai, and G. Wang, Creating Lithium‐Ion Electrolytes with Biomimetic Ionic Channels in Metal–Organic Frameworks. Advanced Materials, 2018. 30(23): p. 1707476.
    33.Sun, C.-C., A. Yusuf, S.-W. Li, X.-L. Qi, Y. Ma, and D.-Y. Wang, Metal organic frameworks enabled rational design of multifunctional PEO-based solid polymer electrolytes. Chemical Engineering Journal, 2021. 414: p. 128702.
    34.Kim, S.H., J.Y. Kim, H.S. Kim, and H.N. Cho, Ionic conductivity of polymer electrolytes based on phosphate and polyether copolymers. Solid State Ionics, 1999. 116(1-2): p. 63-71.
    35.Sekhon, S., N. Arora, and S. Agnihotry, PAN-based gel electrolyte with lithium salts. Solid State Ionics, 2000. 136: p. 1201-1204.
    36.Jayathilaka, P., M. Dissanayake, I. Albinsson, and B.-E. Mellander, Dielectric relaxation, ionic conductivity and thermal studies of the gel polymer electrolyte system PAN/EC/PC/LiTFSI. Solid State Ionics, 2003. 156(1-2): p. 179-195.
    37.Liu, K., M. Wu, H. Jiang, Y. Lin, and T. Zhao, An ultrathin, strong, flexible composite solid electrolyte for high-voltage lithium metal batteries. Journal of Materials Chemistry A, 2020. 8(36): p. 18802-18809.
    38.Bi, J., D. Mu, B. Wu, J. Fu, H. Yang, G. Mu, L. Zhang, and F. Wu, A hybrid solid electrolyte Li 0.33 La 0.557 TiO 3/poly (acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries. Journal of Materials Chemistry A, 2020. 8(2): p. 706-713.
    39.Jung, H.-R., D.-H. Ju, W.-J. Lee, X. Zhang, and R. Kotek, Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochimica Acta, 2009. 54(13): p. 3630-3637.
    40.Yang, T., J. Zheng, Q. Cheng, Y.-Y. Hu, and C.K. Chan, Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS applied materials & interfaces, 2017. 9(26): p. 21773-21780.
    41.Liu, W., S.W. Lee, D. Lin, F. Shi, S. Wang, A.D. Sendek, and Y. Cui, Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nature energy, 2017. 2(5): p. 1-7.
    42.Hu, S., L. Du, G. Zhang, W. Zou, Z. Zhu, L. Xu, and L. Mai, Open-Structured Nanotubes with Three-Dimensional Ion-Accessible Pathways for Enhanced Li+ Conductivity in Composite Solid Electrolytes. ACS Applied Materials & Interfaces, 2021. 13(11): p. 13183-13190.
    43.Liu, W., N. Liu, J. Sun, P.-C. Hsu, Y. Li, H.-W. Lee, and Y. Cui, Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano letters, 2015. 15(4): p. 2740-2745.
    44.Wang, Z., X. Huang, and L. Chen, Understanding of Effects of Nano-Al2 O 3 Particles on Ionic Conductivity of Composite Polymer Electrolytes. Electrochemical and Solid State Letters, 2003. 6(11): p. E40.
    45.Zhang, Z., T. Zeng, Y. Lai, M. Jia, and J. Li, A comparative study of different binders and their effects on electrochemical properties of LiMn2O4 cathode in lithium ion batteries. Journal of Power Sources, 2014. 247: p. 1-8.
    46.Bresser, D., D. Buchholz, A. Moretti, A. Varzi, and S. Passerini, Alternative binders for sustainable electrochemical energy storage–the transition to aqueous electrode processing and bio-derived polymers. Energy & Environmental Science, 2018. 11(11): p. 3096-3127.
    47.He, M., L.-X. Yuan, W.-X. Zhang, X.-L. Hu, and Y.-H. Huang, Enhanced cyclability for sulfur cathode achieved by a water-soluble binder. The Journal of Physical Chemistry C, 2011. 115(31): p. 15703-15709.
    48.Komaba, S., K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui, and K. Konno, Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries. The Journal of Physical Chemistry C, 2011. 115(27): p. 13487-13495.
    49.Jiao, X., J. Yin, X. Xu, J. Wang, Y. Liu, S. Xiong, Q. Zhang, and J. Song, Highly Energy‐Dissipative, Fast Self‐Healing Binder for Stable Si Anode in Lithium‐Ion Batteries. Advanced Functional Materials, 2021. 31(3): p. 2005699.
    50.Zhao, Y., L. Yang, D. Liu, J. Hu, L. Han, Z. Wang, and F. Pan, A conductive binder for high-performance Sn electrodes in lithium-ion batteries. ACS applied materials & interfaces, 2018. 10(2): p. 1672-1677.
    51.Zhang, Z., T. Zeng, H. Lu, M. Jia, J. Li, and Y. Lai, Enhanced high-temperature performances of LiFePO4 cathode with polyacrylic acid as binder. ECS Electrochemistry Letters, 2012. 1(5): p. A74.
    52.Zhang, Z., T. Zeng, C. Qu, H. Lu, M. Jia, Y. Lai, and J. Li, Cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder. Electrochimica acta, 2012. 80: p. 440-444.
    53.Huang, Z.-H., D.-S. Tsai, C.-J. Chiu, Q.-T. Pham, and C.-S. Chern, A lithium solid electrolyte of acrylonitrile copolymer with thiocarbonate moiety and its potential battery application. Electrochimica Acta, 2021. 365: p. 137357.
    54.Yalcinkaya, F., B. Yalcinkaya, A. Pazourek, J. Mullerova, M. Stuchlik, and J. Maryska, Surface modification of electrospun PVDF/PAN nanofibrous layers by low vacuum plasma treatment. International Journal of Polymer Science, 2016. 2016.
    55.Khelifa, F., Y. Habibi, F. Benard, and P. Dubois, Smart acrylic coatings containing silica particles for corrosion protection of aluminum and other metals, in Handbook of Smart Coatings for Materials Protection. 2014, Elsevier. p. 423-458.
    56.Cleland, R.L. and W.H. Stockmayer, An intrinsic viscosity‐molecular weight relation for polyacrylonitrile. Journal of Polymer Science, 1955. 17(86): p. 473-477.
    57.Deivanayagam, R. and R. Shahbazian‐Yassar, Electrochemical methods and protocols for characterization of ceramic and polymer electrolytes for rechargeable batteries. Batteries & Supercaps, 2021. 4(4): p. 596-606.
    58.Ramesh, S. and H. Ng, An investigation on PAN–PVC–LiTFSI based polymer electrolytes system. Solid State Ionics, 2011. 192(1): p. 2-5.
    59.Park, U.-S., Y.-J. Hong, and S.M. Oh, Fluorescence spectroscopy for local viscosity measurements in polyacrylonitrile (PAN)-based polymer gel electrolytes. Electrochimica acta, 1996. 41(6): p. 849-855.
    60.Arof, A., S. Amirudin, S. Yusof, and I. Noor, A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Physical Chemistry Chemical Physics, 2014. 16(5): p. 1856-1867.
    61.Evans, J., C.A. Vincent, and P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer, 1987. 28(13): p. 2324-2328.
    62.Choe, H., B. Carroll, D. Pasquariello, and K. Abraham, Characterization of some polyacrylonitrile-based electrolytes. Chemistry of materials, 1997. 9(1): p. 369-379.
    63.Chen-Yang, Y., Y. Chen, H. Chen, W. Lin, and C. Tsai, Effect of the addition of hydrophobic clay on the electrochemical property of polyacrylonitrile/LiClO4 polymer electrolytes for lithium battery. Polymer, 2009. 50(13): p. 2856-2862.
    64.Jiang, T., P. He, G. Wang, Y. Shen, C.W. Nan, and L.Z. Fan, Solvent‐free synthesis of thin, flexible, nonflammable garnet‐based composite solid electrolyte for all‐solid‐state lithium batteries. Advanced Energy Materials, 2020. 10(12): p. 1903376.
    65.Brissot, C., M. Rosso, J.-N. Chazalviel, P. Baudry, and S. Lascaud, In situ study of dendritic growth inlithium/PEO-salt/lithium cells. Electrochimica acta, 1998. 43(10-11): p. 1569-1574.
    66.Bai, P., J. Li, F.R. Brushett, and M.Z. Bazant, Transition of lithium growth mechanisms in liquid electrolytes. Energy & Environmental Science, 2016. 9(10): p. 3221-3229.
    67.Heitner, K.L., The search for the better polymer electrolyte. Journal of Power Sources, 2000. 89(2): p. 128-131.

    無法下載圖示 全文公開日期 2031/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE