簡易檢索 / 詳目顯示

研究生: 翁偉倫
Wei-Lung Weng
論文名稱: 新型態鋰離子電池添加劑(三聚硫氰酸/雙馬來醯亞胺)之研究探討
The Investigation of New Type of Additive(N,N-Bismaleimide-4,4-Diphenylmethane and Trithiocyanuric acid) in Lithium Ion Battery
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 王復民
Fu-Ming Wang
蔡大翔
Dah-Shyang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 123
中文關鍵詞: 鋰離子電池電池添加劑三聚硫氰酸/雙馬來醯亞胺
外文關鍵詞: lithium ion battery, additive of battery, trithiocyanate/ N,N- bismaleimide- 4,4-diphenylmethane
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討三聚硫氰酸與雙馬來醯亞胺共聚合利用非恆溫示差掃描熱量分析儀(DSC)的方式了解其中以何種反應進行聚合反應,並且使用熱重量分析(TGA)測試其熱裂解溫度模擬當電池發生熱失控時添加劑會有何影響,使用上述兩者作為熱化學分析,同時使用核磁共振光譜分析(NMR)分析其材料結構鑑定作為化學分析。
    本研究同時將以上聚合物作為鋰離子電池正極添加劑,分析對於正極材料LiNi0.5Co0.2Mn0.3O2的影響,分析方法包括使用正極辦電池充放電測試(C/DC)、交流阻抗圖譜分析(EIS)、循環伏安法分析(CV)等電化學反應測試,以了解添加劑的電化學性質,並通過掃描式電子顯微鏡(SEM)、能量分散光譜(EDS)了解充放電過後的電極極片表面型態極組成。最後再使用示差掃描熱量分析儀(DSC)了解電極材料的熱穩定性。經過電性測試比較有/無添加劑的電極極片之間的差異得以了解添加劑的應用在鋰離子電池正極材料上所造成的結果。
    在本研究中的實驗結果中於正極材料LiNi0.5Co0.2Mn0.3O2中添加BMI/TCA
    (1.5:1)0.5%添加劑可以有效改善正極半電池於各式實驗條件下極化現象以及電池電容量,此外從循環伏安法(CV)能夠看出動力學對於電池的影響,添加BMI/
    TCA(1.5:1)0.5%中改善極化現象,以及常溫和高溫下循環壽命圖能夠看見此添加劑的電性較為優秀,從SEM觀察出充放電過後有明顯的一層塗層膜,EDS中也明顯看出碳的增加表明了BMI加入的結果。DSC熱穩定性也能夠看出添加入添加劑後能夠有效的降低放熱量,根據本研究結果,添加BMI/TCA(1.5:1)0.5%為最穩定的添加劑。


    This study investigated the copolymerization of trithiocyanate(TCA)and N,N- bismaleimide-4,4-diphenylmethane(BMI) using a non- isothermal temperature differential scanning calorimeter (DSC) to understand the reaction in which to carry out the polymerization and to test it by thermogravimetric analysis (TGA). The thermal cracking temperature simulates the effect of the additive on the thermal runaway of the battery. Both of the above were used as thermochemical analysis, and the material structure identification was analyzed by nuclear magnetic resonance spectroscopy (NMR) as a chemical analysis.
    In this study, the above polymers were used as positive electrode additives for lithium ion batteries, and the influence on the positive electrode material LiNi0.5Co0.2Mn0.3O2. was analyzed. The analysis methods included the use of positive electrode battery charge and discharge test (C/DC) and AC impedance spectroscopy (EIS). Electrochemical reaction tests such as cyclic voltammetry (CV) to understand the electrochemical properties of the additive, and to understand the surface of the electrode state composition after charge and discharge by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Finally, the differential scanning thermal analyzer (DSC) is used to understand the thermal stability of the electrode material. The difference between the electrode with/without additives was compared by electrochemical testing to understand the results of the application of the additive on the positive electrode material of lithium ion batteries.
    In the experimental results in this study, BMI/TCA(1.5:1) 0.5% was added to the positive electrode material LiNi0.5Co0.2Mn0.3O2.It can effectively improve the polarization of the positive half-cell under various experimental conditions and the battery capacity. In addition, the effect of kinetics on the battery can be seen from cyclic voltammetry (CV), adding BMI/TCA (1.5:1) The improvement of polarization in 0.5%, and the cycle life diagram at normal temperature and high temperature can be seen that the electrical properties of this additive are excellent. From the SEM observation, there is a clear coating film after charge and discharge, and EDS is also obvious. It is seen that the increase in carbon indicates the result of BMI addition. The thermal stability of DSC can also be seen to effectively reduce the heat exothermic after the addition of additives. According to the results of this study, BMI/TCA (1.5:1) 0.5% was added as the most stable additive.

    摘要I ABSTRACTII 致謝IV 目錄V 圖目錄VIII 表目錄XII 第一章 緒論1 1.1研究背景2 1.1.1鋰離子電池工作原理2 1.1.2電極材料2 1.1.2.1正極(陰極)材料2 1.1.2.2負極(陽極)材料5 1.1.2.3電解質6 1.2研究動機與目的8 第二章 文獻回顧9 2.1 鋰離子電池的安全設計9 2.1.1隔離膜改質9 2.1.2電解質改質18 2.1.2.1. 更加穩定的鋰鹽19 2.1.2.2 阻燃型添加劑20 2.1.3正極材料23 2.1.3.1塗層技術於正極材料23 2.1.3.2表面活物修飾27 第三章 實驗藥品、儀器與方法32 3.1實驗藥品32 3.2 實驗儀器33 3.3 實驗方法34 3.3.1 DSC樣品配置34 3.3.1.1 BMI/CA/NMP34 3.3.1.2 BMI/TCA/NMP(1.5:1)34 3.3.1.3 BMI/TCA/HQ/NMP34 3.3.1.4 BMI/TCA/NMP(2:1)34 3.3.1.5 BMI/TCA/HQ/NMP35 3.3.2 NMR樣品配製35 3.3.2.1 BMI/TCA/NMP(1.5:1)35 3.3.2.2 BMI/TCA/NMP(2:1)35 3.3.3 TGA樣品製備36 3.3.3.1 BMI/TCA/NMP(1.5:1)36 3.3.3.2 BMI/TCA/NMP(2:1)36 3.3.4 電極添加劑製備37 3.3.4.1 BMI/TCA(1.5:1)添加劑製備37 3.3.4.2 BMI/TCA(2:1)添加劑製備37 3.3.4.3 BMI/CA(1.5:1)添加劑製備37 3.3.5 電極漿料(slurry)製備38 3.3.5.1 漿料製備- Blank38 3.3.5.2 漿料製備-0.5wt% BMI/TCA(1.5:1)、1.0wt% BMI/TCA(1.5:1)、0.5wt% BMI/TCA(2:1)、1.0wt% BMI/TCA(2:1)38 3.3.6 電極極片製備39 3.3.7 鈕扣型電池(coin cell)組裝39 第四章 結果與討論41 4.1 DSC熱分析41 4.1.1 BMI/TCA與BMI/CA DSC比較圖 41 4.1.2 BMI/TCA 有無HQ之DSC比較圖42 4.2 H1-NMR 分析 44 4.2.1 BMI/TCA(1.5:1)44 4.2.2 BMI/TCA(2:1)47 4.3 TGA熱分析49 4.4 循環伏安法(CV)51 4.4.1 NCM523-Blank-CV51 4.4.1 NCM523-BMI/TCA(1.5:1)0.5% 循環伏安法/微分圖53 4.4.3 NCM523-BMI/TCA(1.5:1)1% 循環伏安圖/微分圖55 4.4.4 NCM523-BMI/TCA(2:1)0.5% 循環伏安圖/微分圖57 4.4.5 NCM523-BMI/TCA(2:1)1% 循環伏安圖/微分圖59 4.4.6 BMI/CA與BMI/TCA添加0.5%比較61 4.4.7 BMI/CA與BMI/TCA添加1%比較63 4.4.8 BMI/TCA(2:1)0%和%BMI/TCA(2:1)1%以及BMI/TCA(2:1)2%比較65 4.5充放電測試(C/D TEST)67 4.5.1 第一圈充放電比較67 4.5.2 常溫下循環次數68 4.5.2.1 STOBA與BMI/TCA比較68 4.5.2.2純BMI與BMI/TCA比較69 4.5.3 NCM523-Blank 充放電圖/EIS圖71 4.5.4 NCM523-BMI/TCA(1.5:1)0.5% 充放電圖/EIS圖75 4.5.5 NCM523-BMI/TCA(1.5:1)1% 充放電圖/EIS圖78 4.5.6 NCM523-BMI/TCA(2:1)0.5% 充放電圖/EIS圖81 4.5.7 NCM523-BMI/TCA(2:1)1% 充放電圖/EIS圖84 4.6 高溫(55OC)循環次數圖 87 4.6.1 NCM523-Blank(55 oC)充放電圖/EIS圖 89 4.6.2 NCM523- BMI/TCA(1.5:1)0.5% (55 oC)充放電圖/EIS圖91 4.6.3 NCM523- BMI/TCA(1.5:1)1% (55 oC)充放電圖/EIS圖93 4.6.4 NCM523- BMI/TCA(2:1)0.5% (55 oC)充放電圖/EIS圖95 4.6.5 NCM523- BMI/TCA(2:1)1% (55 oC)充放電圖/EIS圖97 4.7 電極極片之SEM與EDS分析99 4.8 電極極片熱穩定性分析(DSC)103 第五章 結論104 參考文獻 106

    1.Akimoto, J., Gotoh, Y., & Oosawa, Y. (1998). Synthesis and structure refinement of LiCoO2Single crystals.
    2.Noh, H. J., Youn, S., Yoon, C. S., & Sun, Y. K. (2013). Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz] O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of power sources, 233, 121-130.
    3.T.Abe, Current Status and Future of Lithium-ion Batteries, Secondary Battery Material Seminar (hosted by HORIBA, Ltd.) 2009.
    4.Belov, D., & Yang, M. H. (2008). Investigation of the kinetic mechanism in overcharge process for Li-ion battery. Solid State Ionics, 179(27-32), 1816-1821.
    5.Boukamp, B. A., Lesh, G. C., & Huggins, R. A. (1981). All‐solid lithium electrodes with mixed‐conductor matrix. Journal of The Electrochemical Society, 128(4), 725-729.
    6.Zhang, W. J. (2011). A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 196(1), 13-24.
    7.Liang, B., Liu, Y., & Xu, Y. (2014). Silicon-based materials as high capacity anodes for next generation lithium ion batteries. Journal of Power sources, 267, 469-490.
    8.Wu, H., & Cui, Y. (2012). Designing nanostructured Si anodes for high energy lithium ion batteries. Nano today, 7(5), 414-429.
    9.Abraham, K. M. (2015). Prospects and limits of energy storage in batteries. The journal of physical chemistry letters, 6(5), 830-844.
    10.Wang, Q., Jiang, L., Yu, Y., & Sun, J. (2018). Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy.
    11.Venugopal, G., Moore, J., Howard, J., & Pendalwar, S. (1999). Characterization of microporous separators for lithium-ion batteries. Journal of power sources, 77(1), 34-41.
    12.Fu, D., Luan, B., Argue, S., Bureau, M. N., & Davidson, I. J. (2012). Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. Journal of Power Sources, 206, 325-333.
    13.Ashuri, M., He, Q., & Shaw, L. L. (2016). Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale, 8(1), 74-103.
    14.Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Zaccaria, R. P., & Capiglia, C. (2014). Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of power sources, 257, 421-443.
    15.Feng, J., Yan, B., Lai, M. O., & Li, L. (2014). Design and Fabrication of an All‐Solid‐State Thin‐Film Li‐Ion Microbattery with Amorphous TiO2 as the Anode. Energy Technology, 2(4), 397-400.
    16.MacNeil, D. D., & Dahn, J. R. (2001). The reaction of charged cathodes with nonaqueous solvents and electrolytes: I. Li0.5CoO2. Journal of The Electrochemical Society, 148(11), A1205-A1210.
    17.Lu, Z., Yang, L., & Guo, Y. (2006). Thermal behavior and decomposition kinetics of six electrolyte salts by thermal analysis. Journal of power sources, 156(2), 555-559.
    18.Dahbi, M., Ghamouss, F., Tran-Van, F., Lemordant, D., & Anouti, M. (2011). Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. Journal of Power Sources, 196(22), 9743-9750.
    19.Kanamura, K., Umegaki, T., Shiraishi, S., Ohashi, M., & Takehara, Z. I. (2002). Electrochemical Behavior of Al Current Collector of Rechargeable Lithium Batteries in Propylene Carbonate with LiCF3 SO 3, Li (CF 3 SO 2) 2 N, or Li (C 4 F 9 SO 2)(CF 3 SO 2) N. Journal of The Electrochemical Society, 149(2), A185-A194.
    20.Matsumoto, K., Inoue, K., Nakahara, K., Yuge, R., Noguchi, T., & Utsugi, K. (2013). Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte. Journal of Power Sources, 231, 234-238.
    21.Murmann, P., Mönnighoff, X., von Aspern, N., Janssen, P., Kalinovich, N., Shevchuk, M.& Winter, M. (2016). Influence of the fluorination degree of organophosphates on flammability and electrochemical performance in lithium ion batteries: studies on fluorinated compounds deriving from triethyl phosphate. Journal of The Electrochemical Society, 163(5), A751-A757.
    22.Lin, C. C., Wu, H. C., Pan, J. P., Su, C. Y., Wang, T. H., Sheu, H. S., & Wu, N. L. (2013). Investigation on suppressed thermal runaway of Li-ion battery by hyper-branched polymer coated on cathode. Electrochimica Acta, 101, 11-17.
    23.Wang, F. M., Lo, S. C., Cheng, C. S., Chen, J. H., Hwang, B. J., & Wu, H. C. (2011). Self-polymerized membrane derivative of branched additive for internal short protection of high safety lithium ion battery. Journal of membrane science, 368(1-2), 165-170.
    24.Pan, J. P., Shiau, G. Y., Lin, S. S., & Chen, K. M. (1992). Effect of barbituric acid on the self‐polymerization reaction of bismaleimides. Journal of applied polymer science, 45(1), 103-109.
    25.Su, H. L., Hsu, J. M., Pan, J. P., Wang, T. H., & Chern, C. S. (2010). Effects of solvent basicity on free radical polymerizations of N, N′‐bismaleimide‐4, 4′‐diphenylmethane initiated by barbituric acid. Journal of applied polymer science, 117(1), 596-603.
    26.Risch, M., Ringleb, F., Khare, V., Chernev, P., Zaharieva, I., & Dau, H. (2009). Characterisation of a water-oxidizing Co-film by XAFS. In Journal of Physics: Conference Series (Vol. 190, No. 1, p. 012167). IOP Publishing.
    27.Komova, O. V., Simagina, V. I., Netskina, O. V., Kellerman, D. G., Ishchenko, A. V., & Rudina, N. A. (2008). LiCoO2-based catalysts for generation of hydrogen gas from sodium borohydride solutions. Catalysis Today, 138(3-4), 260-265.
    28.Wang, F. M., Cheng, H. M., Wu, H. C., Chu, S. Y., Cheng, C. S., & Yang, C. R. (2009). Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries. Electrochimica Acta, 54(12), 3344-3351.
    29.Su, H. L., Hsu, J. M., Pan, J. P., Wang, T. H., Yu, F. E., & Chern, C. S. (2011). Kinetic and structural studies of the polymerization of N, N′‐bismaleimide‐4, 4′‐diphenylmethane with barbituric acid. Polymer Engineering & Science, 51(6), 1188-1197.
    30.Pham, Q. T., Hsu, J. M., Wang, F. M., Chen, M. P., & Chern, C. S. (2017). Isothermal polymerization kinetics of N, N′-bismaleimide-4, 4′-diphenylmethane with cyanuric acid. Thermochimica acta, 647, 30-35.
    31.Brug, G. J., Van Den Eeden, A. L. G., Sluyters-Rehbach, M., & Sluyters, J. H. (1984). The analysis of electrode impedances complicated by the presence of a constant phase element. Journal of electroanalytical chemistry and interfacial electrochemistry, 176(1-2), 275-295.
    32.Favors, Z., Bay, H. H., Mutlu, Z., Ahmed, K., Ionescu, R., Ye, R., & Ozkan, C. S. (2015). Towards scalable binderless electrodes: carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO 2 nanofibers. Scientific reports, 5, 8246.
    33.Wang, W., Ruiz, I., Ahmed, K., Bay, H. H., George, A. S., Wang, J., & Ozkan, C. S. (2014). Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes. Small, 10(16), 3389-3396.
    34.Guo, J., Sun, A., Chen, X., Wang, C., & Manivannan, A. (2011). Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochimica Acta, 56(11), 3981-3987.
    35.Dees, D., Gunen, E., Abraham, D., Jansen, A., & Prakash, J. (2005). Alternating current impedance electrochemical modeling of lithium-ion positive electrodes. Journal of The Electrochemical Society, 152(7), A1409-A1417.

    無法下載圖示 全文公開日期 2024/07/25 (校內網路)
    全文公開日期 2024/07/25 (校外網路)
    全文公開日期 2024/07/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE