簡易檢索 / 詳目顯示

研究生: Zemenu Endalamaw Amogne
Zemenu Endalamaw Amogne
論文名稱: 線上和遷移學習的深度學習模型預測鋰離子電池的剩餘使用壽命
Online and Transfer Learning Based Deep Learning Models for Remaining Useful Life Prediction of Li-ion Batteries
指導教授: 王福琨
Fu-Kwun Wang
口試委員: 林則孟
J.-T Lin
徐世輝
S.-H Sheu
林義貴
Y.-K Lin
葉瑞徽
R.-H Yeh
王孔政
K.-J Wang
王福琨
Fu-K Wang
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 93
中文關鍵詞: 剩餘使用壽命健康狀況電池管理系統遷移學習帶有註意力的 BiLSTM滑動窗
外文關鍵詞: Remaining useful life, State of health, Battery management system, Transfer learning, BiLSTM with attention, Sliding window
相關次數: 點閱:423下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子 (Li-ion) 電池是生物醫學、汽車和電子應用的理想能源,因為與市場上的其他電池相比,它具有更小的尺寸、更低的自放電率、更高的能量和功率密度。 許多工業中的應用都使用鋰離子電池,但缺乏維護、惡劣的使用環境和不良的充電操作加速了它們的退化。 因此,即時線上剩餘使用壽命(RUL)預測是一個熱門的研究課題。 本論文整合了兩項使用標準化後的電池容量作為離子電池健康狀態 (SOH) 剩餘壽命預測研究。 使用滑動窗口方法的多步超前預測用於獲得SOH估計。 第一項研究使用六個圓柱形和棱柱形鋰離子 (Li-ion) 電池來評估所提出模型的性能。 使用所提出的即時在線 RUL 預測模型,六種鋰離子電池的相對誤差分別為 0.57%、0.54%、0.56%、0%、1.27% 和 1.41%。 為了評估所提出模型的可靠性,還使用 Monte Carlo dropout 方法提供了 RUL 預測的預測區間。 對於遷移學習方法,總共使用了 6 個電池(3 個作為來源數據集,3 個作為目標數據集)。 通過考慮來源數據集與目標數據集之間差異,使用可轉移性測量來識別來源域和目標域。 四個目標數據集的 RMSE 值分別為 0.0108, 0.0172, 和0.0201。


    A lithium-ion (Li-ion) battery is an ideal energy source for biomedical, automotive, and electronics applications because of its smaller size, lower self-discharge rate, higher energy, and power density than other available batteries in the market. Many industrial applications use lithium-ion batteries, but lack of maintenance, harsh use environments, and poor charging operations accelerate their degradation. Therefore, online remaining useful lifetime (RUL) prediction is a hot research topic. This dissertation integrates two studies that use normalized capacity as a state of health (SOH) for RUL prediction of Lithium-ion batteries. Multi-step ahead prediction using a sliding window method is used to obtain the SOH estimates. The first study uses six cylindrical and prismatic lithium-ion (Li-ion) batteries to evaluate the proposed model's performance. Using the proposed online RUL prediction model, the relative errors for the six Li-ion batteries are 0.57%, 0.54%, 0.56%, 0%, 1.27 %, and 1.41 %, respectively. To evaluate the reliability of the proposed model, the prediction interval for the RUL prediction is also provided using the Monte Carlo dropout approach. For the transfer learning approach, a total of six batteries ( three as a source dataset and three as a target dataset) are used. The source domain and target domain are identified using transferability measurement by considering the cell-to-cell difference of the dataset. The RMSE values for the SOH prediction of three target datasets are 0.0108, 0.0172, and 0.0201.

    摘要 i Abstract ii Acknowledgment iii List of Tables vi List of Figures vii Acronyms viii Chapter One 1 Introduction 1 1.1 Background 1 1.2 Statement of the Problem 3 1.3 Objectives of the Study 4 1.4 Organization of the Dissertation 4 Chapter Two 6 Literature Review 6 2.1 Remaining Useful Life Prediction 6 2.2 Transfer Learning 8 2.3 Knee-point and Knee-onset 13 Chapter Three 16 Methodology 16 3.1 Bi-LSTM with Attention 16 3.2 Bi-LSTM-AT Iterative Prediction with Sliding Window Method 19 3.3 Transferability Measurement for Source Battery and Target Battery Selection 21 3.4 Performance Evaluation Metrics for SOH and RUL Prediction 25 Chapter Four 26 Online RUL Prediction for Lithium-Ion Batteries 26 4.1. Online Remaining Useful Life Prediction of Lithium-Ion Batteries Using Bidirectional Long Short-Term Memory with Attention Mechanism 26 4.1.1 Dataset 26 4.1.2 SOH Prediction 28 4.1.3 RUL Prediction 30 4.2 Transfer Learning Methods Based on Transferability Measurement and Knee-point Concept for Online RUL Prediction of Li-Ion Batteries 37 4.2.1 Dataset and Proposed Framework 37 4.2.2 Knee-point Identification 38 4.2.3 SOH Prediction 41 4.2.4 RUL Prediction 45 Chapter Five 49 Conclusions and Future Study 49 5.1 Conclusions 49 5.2 Future Study 50 Appendices 51 Appendix I: Python code for online RUL prediction 51 Appendix II: Python code for transfer learning approach for SOH prediction 59 References 71

    References
    [1] R.Irle. Global EV Sales for 2022 H1, https://www.ev-volumes.com/; 2022 [ accessed 06 January 2023].
    [2] U.S Department of Energy. Batteries for hybrid and plug-in electric vehicles, https://afdc.energy.gov/vehicles/electric_batteries.html/;2021. [accessed 19 Augest, 2022].
    [3] Wu J, Zhang C, Chen Z. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. Appl Energy 2016;173:134-40. https://doi.org/10.1016/j.apenergy.2016.04.057.
    [4] Ali M, Zafar A, Nengroo SH, Hussain S, Park GS, Kim HJ. Online remaining useful life prediction for lithium-ion batteries using partial discharge data features. Energies 2019;12:4366. https://doi.org/10.3390/en12224366.
    [5] Chen L, Wang H, Chen J, An J, Ji B, Lyu Z, Cao W, Pan H. A novel remaining useful life prediction framework for lithium‐ion battery using grey model and particle filtering. Int J Energy Res 2020;44:7435-49. https://doi.org/10.1002/er.5464.
    [6] Ge MF, Liu Y, Jiang X, Liu J. A review on state of health estimations and remaining useful life prognostics of lithium-ion batteries. Measurement. 2021;174:109057. https://doi.org/10.1016/j.measurement.2021.109057.
    [7] Hasib SA, Islam S, Chakrabortty RK, et al. A comprehensive review of available battery datasets, RUL prediction approaches, and advanced battery management. IEEE Access 2021;9:86166–93. https://doi.org/10.1109/ACCESS.2021.3089032.
    [8] Kim S, Choi YY, Kim KJ, Choi JI. Forecasting state-of-health of lithium-ion batteries using variational long short-term memory with transfer learning. J Energy Storage 2021;41:102893. https://doi.org/10.1016/j.est.2021.102893.
    [9] Guo Y, Shi H, Kumar A, Grauman K, Rosing T, Feris R. SpotTune: Transfer Learning through Adaptive Fine-tuning, https://doi.org/10.48550/arXiv.1811.08737/; 2018 [accessed 19 Augest 2022].
    [10] Neyshabur B, Sedghi H, Zhang C. What is being transferred in transfer learning?, https://doi.org/10.48550/arXiv.2008.11687/;2020 [accessed 19 Augest 2022].
    [11] Pan S J, Yang Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010;22:1345–59. https://doi.org/10.1109/TKDE.2009.191.
    [12] Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C. A Survey on Deep Transfer Learning, https://doi.org/10.48550/arXiv.1808.01974/;2018 [accessed 19 Augest 2022].
    [13] Weiss K, Khoshgoftaar TM, Wang D, A survey of transfer learning. J. Big Data 2016;3:9. https://doi.org/10.1186/s40537-016-0043-6.
    [14] Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H et al. A Comprehensive Survey on Transfer Learning. Proc. IEEE 2021;109:43–76. https://doi.org/10.1109/JPROC.2020.3004555.
    [15] Li Y, Li K. Liu X, Wang Y, Zhang L. Lithium-ion battery capacity estimation — A pruned convolutional neural network approach assisted with transfer learning. Appl. Energy 2021;285. https://doi.org/10.1016/j.apenergy.2020.116410.
    [16] Wang S, Jin S, Deng D, Fernandez C. A critical review of online battery remaining useful lifetime prediction methods. Front Mech Eng 2021;7:719718. https://doi.org/10.3389/fmech.2021.719718.
    [17] Lin X, Tang Y, Ren J, Wei Y. State of charge estimation with the adaptive unscented Kalman filter based on an accurate equivalent circuit model. J Energy Storage 2021;41:102840. https://doi.org/10.1016/j.est.2021.102840.
    [18] Wu M, Qin L, Wu G, Huang Y, Shi C. State of charge estimation of power lithium-ion battery based on a variable forgetting factor adaptive Kalman filter. J Energy Storage 2021; 41:102841. https://doi.org/10.1016/j.est.2021.102841.
    [19] Guha A, Patra A. Online estimation of the electrochemical impedance spectrum and remaining useful life of lithium-ion batteries. IEEE Trans Instrum Meas 2018;67:1836-49. https://doi.org/10.1109/TIM.2018.2809138.
    [20] Dong H, Jin X, Lou Y, Wang C. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter. J. Power Sources 2014;271:114-23. https://doi.org/10.1016/j.jpowsour.2014.07.176.
    [21] Peng W, Ye ZS, Chen N. Joint online RUL prediction for multivariate deteriorating systems. IEEE Trans Ind Inform 2019;15:2870-78. https://doi.org/10.1109/TII.2018.2869429.
    [22] Zhang S, Zhai B, Guo X, Wang K, Peng N, Zhang X. Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks. J Energy Storage 2019;26:100951. https://doi.org/10.1016/j.est.2019.100951.
    [23] Li X, Shu X, Shen J, Xiao R, Yan W, Chen Z. An on-board remaining useful life estimation algorithm for lithium-ion batteries of electric vehicles. Energies 2017;10:691. https://doi.org/10.3390/en10050691.
    [24] Tao T, Zio E, Zhao W. A novel support vector regression method for online reliability prediction under multi-state varying operating conditions. Reliab Eng Syst Saf 2018;177:35-49. https://doi.org/10.1016/j.ress.2018.04.027.
    [25] Zhao Q, Qin X, Zhao H, Feng W. A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries. Microelectron Reliab 2018;85:99-108. https://doi.org/10.1016/j.microrel.2018.04.007.
    [26] Tan X, Zhan D, Lyu P, Rao J, Fan Y. Online state-of-health estimation of lithium-ion battery based on dynamic parameter identification at multi timescale and support vector regression. J Power Sources 2021;484:229233. https://doi.org/10.1016/j.jpowsour.2020.229233.
    [27] Liu Y, Zhao G, Peng X. Deep learning prognostics for lithium-ion battery based on ensembled long short-term memory networks. IEEE Access 2019;7:155130-42. https://doi.org/10.1109/ACCESS.2019.2937798.
    [28] Fan Y, Xiao F, Li C, Yang G, Tang X. A novel deep learning framework for state of health estimation of lithium-ion battery. J Energy Storage 2020;32:101741. https://doi.org/10.1016/j.est.2020.101741.
    [29] Lyu Z, Wang G, Gao R. Li-ion battery prognostic and health management through an indirect hybrid model. J. Energy Storage 2021;42:102990. https://doi.org/10.1016/j.est.2021.102990.
    [30] Ungurean L, Micea MV, Cârstoiu G. Online state of health prediction method for lithium‐ion batteries, based on gated recurrent unit neural networks. Int J Energy Res 2020;44:6767-77. https://doi.org/10.1002/er.5413.
    [31] Li Y, Li K, Liu X, Wang Y, Zhang L. Lithium-ion battery capacity estimation - a pruned convolutional neural network approach assisted with transfer learning. Appl Energy 2021;285:116410. https://doi.org/10.1016/j.apenergy.2020.116410.
    [32] Fan L, Wang P, Cheng Z. A remaining capacity estimation approach of lithium-ion batteries based on partial charging curve and health feature fusion. J Energy Storage 2021;43:103115. https://doi.org/10.1016/j.est.2021.103115.
    [33] Hosen MS, Youssef R, Kalogiannis T, Van Mierlo J, Berecibar M. Battery cycle life study through relaxation and forecasting the lifetime via machine learning. J Energy Storage 2021;40:102726. https://doi.org/10.1016/j.est.2021.102726.
    [34] Pan W, Luo X, Zhu M, Ye J, Gong L, Qu H. A health indicator extraction and optimization for capacity estimation of Li-ion battery using incremental capacity curves. J Energy Storage 2021;42:103072. https://doi.org/10.1016/j.est.2021.103072.
    [35] Xu X, Yu C, Tang S, Sun X, Si X, Wu L. Remaining useful life prediction of lithium- ion batteries based on Wiener processes with considering the relaxation effect. Energies 2019;12:1685. https://doi.org/10.3390/en12091685.
    [36] Shen D, Wu L, Kang G, Guan Y, Peng Z. A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current. Energy. 2021;218:119490. https://doi.org/10.1016/j.energy.2020.119490.
    [37] Jia, J, Liang J, Shi Y, Wen J, Pang X, Zeng J. SOH and RUL Prediction of lithium-ion batteries based on Gaussian process regression with indirect health indicators. Energies 2020:13:375. https://doi.org/10.3390/en13020375.
    [38] Wu Y, Li W, Wang Y, Zhang K. Remaining useful life prediction of lithium-ion batteries using neural network and bat-based particle filter. IEEE Access 2019;7:54843-54. https://doi.org/10.1109/ACCESS.2019.2913163.
    [39] Li X, Zhang L, Wang Z, Dong P. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks. J Energy Storage 2019;21:510-18. https://doi.org/10.1016/j.est.2018.12.011.
    [40] Gou B, Xu Y, Feng X. State-of-health estimation and remaining-useful-life prediction for lithium- ion battery using a hybrid data-driven method. IEEE Trans Veh Technol 2020;69:10854-67. https://doi.org/10.1109/TVT.2020.3014932.
    [41] Che Y , Deng Z, Lin X, Hu L, Hu X. Predictive battery health management with transfer learning and online model correction. IEEE Trans. Veh. Technol 2021;70: 1269-77.https://doi.org/10.1109/TVT.2021.3055811.
    [42] Chehade AA, Hussein AA. A collaborative Gaussian process regression model for transfer learning of capacity trends between li-ion battery cells. IEEE Trans. Veh. Technol. 2020;69: 9542-52. https://doi.org/10.1109/TVT.2020.3000970.
    [43] Chehade AA, Hussein AA. A Multioutput convolved Gaussian process for capacity forecasting of li-ion battery cells. IEEE Trans. Power Electron 2022;37: 896-909. https://doi.org/10.1109/TPEL.2021.3096164.
    [44] El-Dalahmeh M, Al-Greer M, El-Dalahmeh M, Short M. Time-frequency image analysis and transfer learning for capacity prediction of lithium-ion batteries. Energies 2020;13(20): 5447. https://doi.org/10.3390/en13205447.
    [45] Li Y, Tao J. CNN and transfer learning based online SOH estimation for lithium-ion battery. Chinese Control And Decision Conference (CCDC) 2020: 5489-5494. https://doi.org/10.1109/CCDC49329.2020.9164208.
    [46] Shen S, Sadoughi M, Hu C. Online estimation of lithium-ion battery capacity using transfer learning. IEEE Transportation Electrification Conference and Expo (ITEC) 2019;1-4. https://doi.org/10.1109/ITEC.2019.8790606.
    [47] Shen S, Sadoughi M, Li M, Wang Z, Hu C. “Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries. Appl. Energy 2020; 260: 114296. https://doi.org/10.1016/j.apenergy.2019.114296.
    [48] Jia B, Guan Y, Wu L. A state of health estimation framework for lithium-ion batteries using transfer components analysis. Energies 2019;12(13): 2524. https://doi.org/10.3390/en12132524.
    [49] Kim S, Choi YY, Kim KJ, Choi J-I. “Forecasting state-of-health of lithium-ion batteries using variational long short-term memory with transfer learning. J. Energy Storage 202;41: 102893.https://doi.org/10.1016/j.est.2021.102893.
    [50] Ye Z, Yu J. State-of-health estimation for lithium-ion batteries using domain adversarial transfer learning. IEEE Trans. Power Electron 2021;37:3528-43. https://doi.org/10.1109/TPEL.2021.3117788.
    [51] Ye Z, Yu J, Mao L. Multisource domain adaption for health degradation monitoring of lithium-ion batteries. IEEE Trans. Transp. Electrif. 2021;7: 2279-92. https://doi.org/10.1109/TTE.2021.3085430.
    [52] Qin Y, Adams S, Yuen C. Transfer learning-based state of charge estimation for lithium-ion battery at varying ambient temperatures. IEEE Trans. Ind. Informatics 2021;17: 7304-15. https://doi.org/10.1109/TII.2021.3051048.
    [53] Kong J, Yang F, Zhang X, Pan E, Peng Z, Wang D. Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries. Energy 2021;223: 120114. https://doi.org/ 10.1016/j.energy.2021.120114.
    [54] Tan Y, Zhao G. Transfer learning with long short-term memory network for state-of-health prediction of lithium-ion batteries. IEEE Trans. Ind. Electron. 2020;67: 8723-31. https://doi.org/10.1109/TIE.2019.2946551.
    [55] Wang C, Lu N, Wang S, Cheng Y, Jiang B. Dynamic long short-term memory neural-network- based indirect remaining-useful-life prognosis for satellite lithium-ion battery. Appl. Sci.2018;8(11):2078. https://doi.org/ 10.3390/app8112078.
    [56] Che Y, Deng Z, Lin X, Hu L, Hu X. Predictive battery health management with transfer learning and online model correction. IEEE Trans. Veh. Technol.202;70: 1269-77. https://doi.org/10.1109/TVT.2021.3055811.
    [57] Liu Y, Shu X, Yu H, Shen J, Zhang Y, Liu Y, Chen Z. State of charge prediction framework for lithium-ion batteries incorporating long short-term memory network and transfer learning. J. Energy Storage. 2021;37: 102494 https://doi.org/10.1016/j.est.2021.102494.
    [58] Chen Z, Chen L, Shen W, Xu K. Remaining useful life prediction of lithium-ion battery via a sequence decomposition and deep learning integrated approach. IEEE Trans. Veh. Technol. 2022;71:1466–79. https://doi.org/ 10.1109/TVT.2021.3134312.
    [59] Diao W, Saxena S, Han B, Pecht M. Algorithm to determine the knee point on capacity fade curves of lithium-ion cells. Energies 2019;12:2910. https://doi.org/ 10.3390/en12152910.
    [60] Diao W, Saxena S, Pecht M.Accelerated cycle life testing and capacity degradation modeling of LiCoO2-graphite cells. J. Power Sources 2019; 435: 226830. https://doi.org/10.1016/j.jpowsour.2019.226830.
    [61] Zhang C, Wang Y, Gao Y, Wang F, Mu B, Zhang W. Accelerated fading recognition for lithium-ion batteries with Nickel-Cobalt-Manganese cathode using quantile regression method. Appl. Energy 2019;256:113841. https://doi.org/10.1016/j.apenergy.2019.113841.
    [62] Fermín-Cueto P, McTurk E, Allerhand M, Medina-Lopez E, F.Anjos M, Sylvester J, et al. Identification and machine learning prediction of knee-point and knee-onset in capacity degradation curves of lithium-ion cells. Energy AI 2020;1:100006. https://doi.org/10.1016/j.egyai.2020.100006.
    [63] Bacon WD, Watts GD. Estimating the transition between two intersecting straight lines. Biometrika 1971;58:525–34. https://doi.org/10.1093/biomet/58.3.525.
    [64] Strange C, Li S, Gilchrist R, dosReis G. Elbows of Internal Resistance Rise Curves in Li-Ion Cells. Energies 2021;14:1206. https://doi.org/10.3390/en14041206.
    [65] Greenbank S, Howey D. Automated feature extraction and selection for data-driven models of rapid battery capacity fade and end of life. IEEE Trans. Ind. Informatics 2022;18:2965–73. https://doi.org/10.1109/TII.2021.3106593.
    [66] Harris SJ, Harris DJ, Li C. Failure statistics for commercial lithium ion batteries: A study of 24 pouch cells. J. Power Sources 2017;342:589–97. https://doi.org/10.1016/j.jpowsour.2016.12.083.
    [67] Li W, Sengupta N, Dechent P, Howey D, Annaswamy A. Sauer DU. One-shot battery degradation trajectory prediction with deep learning. J. Power Sources 2021;506:230024 https://doi.org/10.1016/j.jpowsour.2021.230024.
    [68] Satopaa V. Albrecht J. Irwin D. Raghavan B. Finding a ‘Kneedle’ in a Haystack: detecting knee points in system behavior. in 2011 31st international conference on distributed computing systems workshops 2011:166–171. https://doi.org/ 10.1109/ICDCSW.2011.20.
    [69] Liu Y, Liu Z, Zuo H, Jiang H, Li P, Li X. A DLSTM-network-based approach for mechanical remaining useful life prediction. Sensors 2022;22:5680. https://doi.org/doi: 10.3390/s22155680.
    [70] Ma J, Shang P, Zou X, Ma N, Ding Y, Sun Y, et al. A hybrid transfer learning scheme for remaining useful life prediction and cycle life test optimization of different formulation Li-ion power batteries. Appl. Energy 2020;282:116167 https://doi.org/10.1016/j.apenergy.2020.116167.
    [71] Severson KA, Attia PM, Jin N, Jin N, Perkins N, Jiang B, Yang Z, et al. Data-driven prediction of battery cycle life before capacity degradation. Nat Energy 2019;4:383–91. https://doi.org/10.1038/s41560-019-0356-8.
    [72] Ma J, Shang P, Zou X, Ma N, Ding Y, Sun Y, et al. A hybrid transfer learning scheme for remaining useful life prediction and cycle life test optimization of different formulation Li-ion power batteries. Appl. Energy 2020;282:116167 https://doi.org/10.1016/j.apenergy.2020.116167.
    [73] Karunasingha DSK. Root mean square error or mean absolute error? Use their ratio as well. Inf. Sci. (Ny). 2022;585:609–29. https://doi.org/10.1016/j.ins.2021.11.036.
    [74] Feng H, Song D. A health indicator extraction based on surface temperature for lithium-ion batteries remaining useful life prediction. J. Energy Storage 2021;34:102118. https://doi.org/10.1016/j.est.2020.102118.
    [75] Wei M, Ye M, Wang Q, Xu X, Twajamahoro JP. Remaining useful life prediction of lithium-ion batteries based on stacked autoencoder and gaussian mixture regression. J. Energy Storage 2022.47:103558. https://doi.org/10.1016/j.est.2021.103558.
    [76] Pang X, Liu X, Jia J, Wen J, Shi Y, Zeng J, Zhao Z. A lithium-ion battery remaining useful life prediction method based on the incremental capacity analysis and Gaussian process regression. Microelectron. Reliab. 2021;127:114405. https://doi.org/10.1016/j.microrel.2021.114405.
    [77] Taylor ME, Stone P. Transfer learning for reinforcement learning domains: A survey. In: The Journal of Machine Learning Research; 2009,p.1633–1685. https://dl.acm.org/doi/10.5555/1577069.1755839
    [78] Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks?, https://doi.org/10.48550/arXiv.1411.1792/; 2014 [accessed 15 October 2022].

    無法下載圖示 全文公開日期 2025/01/10 (校內網路)
    全文公開日期 2025/01/10 (校外網路)
    全文公開日期 2025/01/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE