簡易檢索 / 詳目顯示

研究生: 許碩祐
Shuo-Yu Hsu
論文名稱: 利用無跡卡爾曼濾波器實現鋰離子電池充電狀態、溫度、健康狀態及剩餘壽命之即時估測
Real-­time Estimation of the State of Charge, Temperature, State of Health and Remaining Useful Life of Lithium-­ion Batteries Using Unscented Kalman Filter
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 姜嘉瑞
Chia-Jui Chiang
蔡大翔
Dah-Shyang Tsai
楊景龍
Jing-Long Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 128
中文關鍵詞: 鋰離子電池老化模型即時估測無跡卡爾曼濾波器
外文關鍵詞: Lithium-­ion battery, Aging model, Real­-time estimation, Unscented kalman filter
相關次數: 點閱:327下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究目的為基於鋰離子電池 (Lithium-­ion Battery) 之等效電路模型、熱動態模型、以及所建構之參數老化模型為基礎,應用無跡卡爾曼濾波器建立一含老化效應之估測器進行鋰離子電池溫度電壓響應、荷電狀態 (State of Charge, SOC)、健康狀態 (State of Health, SOH) 及剩餘使用壽命 (Remaining Useful Life, RUL) 之即時估測。參數老化模型鑑別為透過電化學阻抗頻譜之分析實驗 (Electrochemical Impedance Spectroscopy, EIS),利用最小平方法 (Least Squares Method) 求得鋰離子電池在不同荷電狀態 (State Of Charge, SOC) 與不同操作溫度下所建構的加速老化實驗下之各等效電路參數老化趨勢。各參數包含等效串聯電阻 (Internal Resistance, Ri )、極化電阻(Polarization Resistance, Rp )、極化電容 (Polarization Capacitance, Cp )、擴散電阻 (Diffusion Resistance, Rd )、擴散電容 (Diffusion Capacitance, Cd )、下壓因子 (Depression Factor),並將各式數學模型所描述之參數老化趨勢結果進行比較,建構符合鋰離子電池參數老化趨勢之模型。最後分別以不同荷電狀態以及不同等效老化時間之電池以不同充放電行程實驗做驗證,比較含老化效應之估測器與老化數學模型模擬之結果進行比較,藉由實驗驗證結果顯示,可發現含老化效應之估測器在非線性系統問題的處裡上,其精準度較模型之模擬更為良好。


    Based on the equivalent circuit model, thermal dynamic model and the constructed aging model of lithium­-ion battery. This thesis uses unscented kalman filter to establish an estimator with aging effect for lithium-­ion battery real-­time estimation of temperature and voltage response, State of Charge (SOC), State of Health (SOH) and Remaining Useful Life (RUL). The parametric aging model is identified by the analysis experiment of electrochemical impedance spectroscopy (EIS), and the least square method is used to obtain aging parameters from the accelerated aging experiment of the lithium-­ion battery model under different state of charge and different operating temperatures. Each parameter includes equivalent series resistance (Ri), polarization resistance (Rp), polarization capacitance (Cp), diffusion resistance (Rd), diffusion capacitance (Cd) and depression factor. Then use different aging mathematical models to describe the aging trend of the parameters, and establish a lithium­-ion battery aging model. Finally, the batteries with different states of charge and different equivalent aging times are tested by different charge and discharge experiments. The estimator with aging effect is compared with the results of the mathematical model simulation. The experimental verification results show that it can be found that the estimator with aging effect is more accurate than the model simulation in the nonlinear system problem.

    摘要i 英文摘要ii 致謝iii 目錄vi 圖目錄x 表目錄xi 第一章 緒論1 1.1 研究背景1 1.2 文獻回顧4 1.2.1 等效電路模型文獻回顧 4 1.2.2 熱效應模型文獻回顧 5 1.2.3 老化效應模型文獻回顧 5 1.2.4 儲能元件估測法則 6 1.3 研究目的 7 1.4 論文架構 7 第二章 實驗設備、軟體 8 2.1 元件介紹 8 2.1.1 鋰離子電池介紹 8 2.1.2 鋰離子電池原理 8 2.2 硬體設備 11 2.2.1 交流阻抗分析儀 12 2.2.2 可程式直流電源供應器 14 2.2.3 直流電子負載機 15 2.2.4 可程式恆溫試驗機 17 2.2.5 霍爾元件 18 2.2.6 電阻式溫度感測器 19 2.2.7 數據擷取系統 20 2.3 實驗軟體 21 2.3.1 MATLAB 21 2.3.2 Simulink 21 第三章 鋰離子電池模型 22 3.1 交流阻抗分析法 22 3.2 鋰離子電池等效電路模型 26 3.2.1 中頻 ZARC 元件 27 3.2.2 低頻 Warburg 元件 29 3.2.3 鋰離子電池完整等效電路 30 3.3 鋰離子電池之熱動態效應模型 34 3.3.1 鋰離子電池熱動態模型參數鑑別 34 3.4 鋰離子電池參數老化模型 37 3.4.1 鋰離子電池加速老化與交流阻抗實驗 39 3.4.2 鋰離子電池等效電路參數老化模型擬合 44 3.4.2.1 以各式數學模型擬合 Cd 之結果探討 45 3.4.2.2 以各式數學模型擬合 Ri 之結果探討 48 3.4.2.3 以各式數學模型擬合 Rp 之結果探討 51 3.4.2.4 以各式數學模型擬合 Rd 之結果探討 54 3.4.2.5 以各式數學模型擬合 Cp 之結果探討 57 3.4.2.6 以各式數學模型擬合 Req 之結果探討 60 3.4.2.7 老化模型歸納總結 63 第四章 卡爾曼濾波器介紹 64 4.1 離散卡爾曼濾波器 64 4.2 無跡卡爾曼濾波器 70 4.3 老化效應之離散估測器設計 75 第五章 實驗結果 79 5.1 以含老化效應模型為基礎之估測結果 79 5.1.1 絕熱狀態之 2A 充電行程 80 5.1.2 絕熱狀態之固定週期充放電行程 86 5.1.3 絕熱狀態之非固定週期充放電行程 92 5.1.4 絕熱狀態之 NYCC 駕駛行程 98 第六章 結果與未來展望 104 6.1 結論 104 6.2 未來展望 105 附錄 (各式數學模型擬合鋰離子電池各老化參數結果圖) 106 參考文獻 128

    [1] 謝錦隆、張永瑞,再生能源 hcpv.sofc 高功率地利調控系統研製報告技術.核能研究所, 2009.
    [2] T. HURIA, “Rechargeable lithium battery energy storage systems for vehicular applications,” 2012.
    [3] “Ieee guide for the characterization and evaluation of lithium­based batteries in stationary applications,” IEEE Std 1679.1­2017, pp. 1–47, 2018.
    [4] E. Barsoukov and J. Macdonald, “2005, impedance spectroscopy: Theory, experiment and applications.”
    [5] 王衍凱, 以擴張型卡爾曼濾波器為基礎之感應馬達無感測控制及定子轉子阻抗估測. 碩士論文, 99 年,台北.
    [6] M. Jongerden and B. Haverkort, “Battery modeling,” Enschede, January, p. 38, 2008.
    [7] S. Rodrigues, N. Munichandraiah, and A. Shukla, “A review of state­of­charge indication of batteries by means of ac impedance measurements,” Journal of power Sources, vol. 87, no. 1­2, pp. 12–20, 2000.
    [8] S. Buller, “Impedance based simulation models for energy storage devices in advanced automotive power systems (ph. d. thesis),” 2003.
    [9] K. Tsang, L. Sun, and W. Chan, “Identification and modelling of lithium ion battery,”Energy Conversion and Management, vol. 51, no. 12, pp. 2857–2862, 2010.
    [10] D. Andre, M. Meiler, K. Steiner, H. Walz, T. Soczka­Guth, and D. Sauer, “Characterization of high­power lithium­ion batteries by electrochemical impedance spectroscopy. ii: Modelling,” Journal of Power Sources, vol. 196, no. 12, pp. 5349–5356, 2011.
    [11] D. H. Jeon and S. M. Baek, “Thermal modeling of cylindrical lithium ion battery during discharge cycle, ”Energy Conversion and Management, vol.52,no.8­9,pp.2973–2981, 2011.
    [12] F. Jiang, P. Peng, and Y. Sun, “Thermal analyses of lifepo4/graphite battery discharge processes,” Journal of power sources, vol. 243, pp. 181–194, 2013.
    [13] K. Onda, T. Ohshima, M. Nakayama, K. Fukuda, and T. Araki, “Thermal behavior of small lithium­ion battery during rapid charge and discharge cycles,” Journal of Power sources, vol. 158, no. 1, pp. 535–542, 2006.
    [14] J. Gomez, R. Nelson, E. E. Kalu, M. H. Weatherspoon, and J. P. Zheng, “Equivalent circuit model parameters of a high­power li­ion battery: Thermal and state of charge effects,” Journal of Power Sources, vol. 196, no. 10, pp. 4826–4831, 2011.
    [15] A. Eddahech, O. Briat, and J.­M. Vinassa, “Thermal characterization of a high­power lithium­ion battery: Potentiometric and calorimetric measurement of entropy changes,” Energy, vol. 61, pp. 432–439, 2013.
    [16] M. Broussely, P. Biensan, F. Bonhomme, P. Blanchard, S. Herreyre, K. Nechev, and R. Staniewicz, “Main aging mechanisms in li ion batteries,” Journal of power sources, vol. 146, no. 1­2, pp. 90–96, 2005.
    [17] O. Bohlen, J. Kowal, and D. U. Sauer, “Ageing behaviour of electrochemical double layer capacitors: Part i. experimental study and ageing model,” Journal of power sources, vol. 172, no. 1, pp. 468–475, 2007.
    [18] O. Bohlen, J. Kowal, and D. U. Sauer, “Ageing behaviour of electrochemical double layer capacitors: Part ii. lifetime simulation model for dynamic applications,” Journal of Power Sources, vol. 173, no. 1, pp. 626–632, 2007.
    [19] Y. Zhang and C.­Y. Wang, “Cycle­life characterization of automotive lithium­ion batteries with linio2 cathode,” Journal of the Electrochemical Society, vol. 156, no. 7, pp. A527–A535, 2009.
    [20] M. Ecker, J. B. Gerschler, J. Vogel, S. Käbitz, F. Hust, P.Dechent, and D. U. Sauer,“Development of a lifetime prediction model for lithium­ion batteries based on extended accelerated aging test data,” Journal of Power Sources, vol. 215, pp. 248–257, 2012.
    [21] Y. Gao, J. Jiang, C. Zhang, W. Zhang, Z. Ma, and Y. Jiang, “Lithium­ion battery aging mechanisms and life model under different charging stresses,” Journal of Power Sources, vol. 356, pp. 103–114, 2017.
    [22] S.Piller, M.Perrin, andA.Jossen, “Methods for state­of­charge determination and their applications,” Journal of power sources, vol. 96, no. 1, pp. 113–120, 2001.
    [23] G. Plett, “Extended kalman filtering for battery management systems of lipb­based hev battery packs: Part 1. background,” Journal of Power Sources, vol. 134, pp. 252–261, 06 2004.
    [24] W. He, N. Williard, C. Chen, and M. Pecht, “State of charge estimation for electric vehicle batteries using unscented kalman filtering,” Microelectronics Reliability, vol. 53, no. 6, pp. 840–847, 2013.
    [25] H. He, R. Xiong, and J. Peng, “Real­time estimation of battery state­of­charge with unscented kalman filter and rtos μcos­ii platform,” Applied Energy, vol. 162, pp. 1410–1418, 2016.
    [26] T. Wang, S. Chen, H. Ren, and Y. Zhao, “Model­based unscented kalman filter observer design for lithium­ion battery state of charge estimation,” International Journal of Energy Research, vol. 42, no. 4, pp. 1603–1614, 2018.
    [27] C. Huang, Z. Wang, Z. Zhao, L. Wang, C. S. Lai, and D. Wang, “Robustness evaluation of extended and unscented kalman filter for battery state of charge estimation,” IEEE Access, vol. 6, pp. 27617–27628, 2018.
    [28] 何冠廷、陳宏源、陳燦耀、方冠榮、張家欽,“儲能發展的勁旅­鋰離子電池,”科學發展, vol. 0, no. 557, pp. 60–65, 2019.
    [29] 黃可龍、王兆翔、劉素琴, 鋰離子電池原理與技術.五南圖書出版股份有限公司, 2010.
    [30] 張智星, MATLAB 程式設計與應用.清蔚科技股份有限公司, 2001.
    [31] 李宜達,控制系統設計與模擬.全華科技圖書股份有限公司, 2003.
    [32] 鄭文欽,“含熱效應之超級電容等效電路模型,”100 年,台北.
    [33] 曹楚南、張鑒淸,電化學阻抗譜導論, vol. 24. 科學出版社, 2002.
    [34] 李根, “以無跡型卡爾曼濾波器為基礎實現鋰離子電池充電狀態及溫度之及時估測,”106 年,台北.
    [35] 陳璟安,“含熱效應之鋰離子電池等效電路模型,”106 年,台北.
    [36] C. Hu, G. Jain, P. Tamirisa, and T. Gorka, “Method for estimating capacity and predicting remaining useful life of lithium­ion battery,” in 2014 International Conference on
    Prognostics and Health Management, pp. 1–8, IEEE, 2014.
    [37] 蕭文龍, 多變量分析最佳入門實用書: SPSS+ LISREAL (SEM). 碁峰資訊, 2007.
    [38] R. E. Sonntag, C. Borgnakke, G. J. Van Wylen, and S. Van Wyk, Fundamentals of Thermos dynamics, vol. 6. Wiley New York, 1998.
    [39] S. J. Julier and J. K. Uhlmann, “New extension of the kalman filter to nonlinear systems,” vol. 3068, pp. 182–193, 1997.

    無法下載圖示 全文公開日期 2025/08/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE