簡易檢索 / 詳目顯示

研究生: 洪睿正
Jui-Cheng Hung
論文名稱: 圓柱型鋰離子電池熱行為之模擬與實驗整合研究
An Integrated Numerical and Experimental Study on Thermal Behavior of a Cylindrical Lithium-Ion Cell
指導教授: 林顯群
Sheam-Chyun Lin
黃炳照
Bing-Joe Hwang
口試委員: 吳明龍
Alvin Wu
王凱魯
Carl Wang
江怡穎
Helena Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 213
中文關鍵詞: 圓柱型鋰離子電池內短路模擬熱行為分析
外文關鍵詞: Cylindrical Lithium-Ion Cell, The simulation for Internal Short-Circuit
相關次數: 點閱:175下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 各種電池都有其危險性與使用限制,擁有高放電密度的鋰電池也不例外,若製造過程封裝不當、內部安全裝置不完善或於不合適操作環境下,都可能使鋰電池內部溫度上升,造成隔離膜熔解進一步發生爆炸,因此鋰電池使用上的安全性問題、熱評估及良好的熱穩定性更顯得重要。本研究探討商用18650鋰離子電池內部,若存在短路點其溫度累積之過程,並進一步說明不同短路位置時,其嚴重性以及作熱評估。首先利用計算流體力學分析軟體SC/Tetra建立網格系統與執行熱流場計算,並藉由實驗設計一適用於網格獨立性之熱源,結果顯示其實驗與模擬值相差2.04K,證明建構之數值模型具有相當之可信度。
    接著透過文獻確認適用於內短路時之熱源與其體積,再藉由實驗量測得到適用於內短路熱源之材料參數,最後將上述條件分別帶入數值模型以計算短路點於電池不同位置時之變化與影響。由計算結果分析可知,若內短路點分別設置於頂端部分時,因受限於上蓋造成對流效果不佳;而置於底部區時,因流體流速於電池底部產生停滯點,對流效果比頂端更差,因此內短路點位於底處所產生溫度為最高,換言之即此處為最危險之情況;至於中間區域所產生的溫度為最低,故此處為最安全區。
    實際影響電池安全性尚有內短路阻值與其電量狀態(State of Charge,SOC),故本文分別選取短路電阻值為0.01、0.16與1(Ω)進行模擬,分析結果發現倘若短路電阻與電池整體電池相同時,其發熱瓦數為最高。其原因為發生內短路期間,雖然短路瓦數與電池整體瓦數差不多,但由於短路點體積遠小於整體故使得單位體積發熱瓦數極高,因此到達熱失控的時機將視短路熱源而定。故電阻為0.16(Ω)時,不到0.1秒鐘時間,其電池內部最高溫即到達408K(熱失控點);當電阻值為0.01與1(Ω)時,到達熱失控點時機分別為1秒與0.3秒。至於改變電池SOC參數的模擬分析發現,在20%<SOC<80%之操作區,其內部最高溫會隨SOC減少而降低。
    除此之外,本研究並針對電池不同擺放位置,對其熱傳行為作探討,結果顯示相較於內短路點位置、阻值與SOC對電池之影響,在發生內短路1秒鐘內,改變電池之放置位置其自然對流效應無法將熱量有效帶走,導致放置方式對電池的溫度場分佈無任何影響。故綜合歸納來說,若以安全性的考量下,發生短路時任何擺放方式皆無太大益處,唯有短路點位置、阻值及SOC才是增加電池安全性之主要因素。


    Each type of batteries has its own risk and limitation for applications, certainly the high-energy-density lithium-ion battery is not an exception. Usually, these hazardous accidents result from the increasing temperature inside the lithium battery to reach the melting point of separator; hereafter a series of chemical reactions is trigged successively to evolve an explosion. This thermal-runaway phenomenon is mainly attributed to the improper packaging in manufacturing process, inadequate internal safety device, and unsuitable operation environment. Therefore, the safety issue, heat management, and thermal stability for the lithium battery has attracted growing attentions and motivated this research. In this study, a commercial 18650-type lithium-ion battery has been numerically investigated on how the temperature distribution is developed after an internal short circuit (ISCr) is initiated. Besides, its hazard and thermal evaluation are analyzed and described for different ISCr locations.
    The commercial CFD software SC/tetra is adopted to construct the grid system and perform the thermal/fluid calculation. To validate this code, an experiment with the designed heat source inside battery is executed to obtain the thermal data for comparing with numerical calculation. The outcomes illustrates that the numerical tool is reliable because a small temperature deviation between experiment and calculation is found as 2.04K. Besides, it is essential to obtain the appropriate input conditions for an accurate simulation. Thus, a systematic scheme for evaluating the heat generation, the ISCr volume, and the material properties are established via a combined effort of experimental measurement and comprehensive literature survey. Finally, incorporated with the correct inputs, the numerical model can be used to predict the thermal behavior under ISCr condition for different ISCr locations, ISCr resistances, and SOCs (states of charge).
    There are three ISCr positions, top, middle and bottom portions, are studied here. The numerical results demonstrate that the highest temperature appears at the case of bottom ISCr location while the lowest one is found for ISCr located at the middle portion. The maximum temperature occurs because the fluid is trapped at the bottom-side where stagnation point and poor convection exist. Accordingly, the bottom part is considered as the most dangerous location and the middle portion as the safest location. Besides, the safety of lithium battery is influenced by resistance of ISCr and SOC. Here, the resistances of 0.01, 0.16 and 1(Ω) are chosen for simulating the thermal propagation inside the battery. It indicates that the dissipation power has the peak value when the ISCr resistance (Rs) equals to the internal resistance of battery (Ri). It follows that thermal runaway is mainly dependent on the ISCr power since the energy density of ISCr is much larger than that of battery, thank to the smaller volume of ISCr. For this reason, CFD calculations predict the battery temperature reaches 408K (i.e. thermal runaway state) within 0.1 second when the value of Rs is 0.16Ω. Similarly, the thermal runway state is attained within 1 and 3 seconds for the cases of Rs=0.01Ω and 1Ω, respectively. Furthermore, simulations for various SOCs show that the highest temperature inside the battery reduces for a decreasing SOC.

    摘要 II Abstract IV 致謝 VI 目錄 VII 圖索引 XI 表索引 XVI 符號索引 XVIII 第一章 緒論 1 1.1 前言 1 1.2 電池發展的歷史 5 1.3 電池種類與特性 6 1.4 鋰離子電池的電化學系統 10 1.5 鋰離子電池之熱失控機制 13 1.6 鋰離子電池的安全性評估 18 1.7 研究動機與方法 21 第二章 文獻回顧與背景介紹 27 2.1 方型鋰電池 30 2.2 圓柱型鋰電池 37 2.3 熱模型之回顧 42 2.4 鋰電池之熱源量測 47 2.4.1 不可逆熱量測 48 2.4.2 可逆熱量測 49 2.4.3 內短路熱量測 53 第三章 數值方法與邊界設定 58 3.1 統御方程式 58 3.2 紊流模式理論 61 3.3 數值計算方法 62 3.3.1 離散化方式 64 3.3.2 速度與壓力耦合的處理 67 3.3.3 數值求解流程 68 3.4 數值邊界條件設定 71 第四章 實驗設備與量測 75 4.1 電池充放電及溫度量測 78 4.1.1 充放電系統與特性 78 4.1.2 溫度感測器與校正 81 4.2 電池參數之量測與發熱瓦數之確認 85 4.2.1 電池內部溫度量測 87 4.2.2 電池內阻 87 4.2.3 電池熵項 94 4.2.4 短路電流及發熱功率估算 98 第五章 鋰離子電池之模擬參數與網格 105 5.1 鋰電池之模型建立 106 5.2 網格建構與獨立性分析 110 5.2.1 鋰電池發熱瓦數之計算方法 114 5.2.2 網格之獨立性驗證 116 5.3 數值計算之誤差評估 119 5.3.1 三維模型之誤差 122 5.3.2 數值模型之誤差 124 5.3.3 電池材料參數之誤差 128 5.3.4 電池模型驗證之誤差 132 第六章 圓柱型鋰電池之內短路分析 135 6.1 作為短路熱源與內短路體積之計算設定 138 6.1.1 內短路點之熱源值計算設定 140 6.1.2 不同內短路點體積之比較 140 6.2 採用固定熱源之電池內短路模擬 141 6.2.1 不同短路位置之計算模擬結果 144 6.2.2 討論短路點位置之影響彙整討論 152 6.3 採用變動熱源值之電池內短路模擬 156 6.3.1 定熱源與可變熱源之比較 158 6.3.2不同Rs值對內短路點之溫度影響 168 6.3.3不同內阻下之熱失控時機評估 172 6.4 總結 181 第七章 結論與建議 183 7.1 結論 183 7.2 建議 185

    參考資料
    1. Yamaki, J. I., Tobishima, S. I., Hayashi, K., Saito, K., Nemoto, Y., Arakawa, M., A Consideration of The Morphology of Electrochemically Deposited Lithium in an Organic Electrolyte. Journal of Power Sources, Vol. 74, No. 2, pp. 219-227, 1998.
    2. Engber, D., Is Your Laptop Ready to Blow, July 20, 2006, from http://www.popularmechanics.com/technology/gadgets/news/3388551
    3. Jeon, D.H., Baek, S.M. Thermal Modeling of Cylindrical Lithium Ion Battery During Discharge Cycle. Energy Conversion and Management, Vol. 52, No. 8–9, pp. 2973-2981, 2011.
    4. 黃俊,動力電池產熱的成分細化與極間劃分方法研究,華清大學車輛工程綜合論文訓練,北京,2012年。
    5. 劉彥餘,最佳化鋰電池充電法則研究與充電電路之實現,國立台灣科技大學電子工程系碩士論文,2008年。
    6. Tate, C., Boeing Dreamliner Battery Fire Hot Enough to Melt Fuselage, January 15, 2013, from http://www.mcclatchydc.com/2013/01/15/179964/boeing-dreamliner-battery-fire.html#.UaxwlEBmh8G.
    7. Alan, L., Peter, E., Batteries Can Pose Fire Risk to Planes, March 7, 2007, from http://usatoday30.usatoday.com/tech/news/techpolicy/2007-03-05-batteries-planes_N.htm?csp=34&utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+usatoday-TechTopStories+(Tech+-+Top+Stories)
    8. Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., Chen, C., Thermal Runaway Caused Fire and Explosion of Lithium Ion Battery. Journal of Power Sources, Vol. 208, No. 0, pp. 210-224, 2012.
    9. Torabi, F., Esfahanian, V., Runaway in Batteries. Journal of The Electrochemical Society, Vol. 158, No. 8, pp. A850-A858, 2011.
    10. 鄭錦淑,鋰電池材料熱分析研究,工業材料雜誌,264期,2008年12月。
    11. Chen, Z., Qin, Y., Ren, Y., Lu, W., Orendorff, C., Roth, E. P., Amine, K., Multi-Scale Study of Thermal Stability of Lithiated Graphite. Energy and Environmental Science, Vol. 4, No. 10, pp. 4023-4030, 2011.
    12. 項宏發,陳春華,王正洲,鋰離子電池電解液的安全性研究,中國科學技術大學材料科學與工程系。
    13. Maleki, H., Howard, J. N., Internal Short Circuit In Li-Ion Cells. Journal of Power Sources, Vol. 191, No. 2, pp. 568-574, 2009.
    14. Guo, G., Long, B., Cheng, B., Zhou, S., Xu, P., Cao, B., Three-Dimensional Thermal Finite Element Modeling of Lithium-Ion Battery in Thermal Abuse Application. Journal of Power Sources, Vol. 195, No.8, pp. 2393-2398, 2010.
    15. Kim, U. S., Shin, C. B., Kim, C. S., Modeling for The Scale-Up of a Lithium-Ion Polymer Battery. Journal of Power Sources,.Vol. 189, No. 1, pp. 841-846, 2009.
    16. Chen, S. C., Wang, Y. Y., Wan, C. C., Thermal Analysis of Spirally Wound Lithium Batteries. The Electrochemical Society, Vol. 153, No. 4, pp. A637-A648, 2006.
    17. Inui, Y., Kobayashi, Y., Watanabe, Y., Watase, Y., Kitamura, Y., Simulation of Temperature Distribution in Cylindrical and Prismatic Lithium Ion Secondary Batteries. Energy Conversion and Management, Vol. 48, No. 7, pp. 2103-2109, 2007.
    18. Kim, G. H., Pesaran, A., Spotnitz, R., A Three-Dimensional Thermal Abuse Model for Lithium-Ion Cells. Journal of Power Sources, Vol. 170, No. 2, pp. 476-489, 2007.
    19. Bernardi, D., Pawlikowski, E., Newman J., A General Energy Balance for Battery Systems. Journal of The Electrochemical Society, Vol. 132, No. 1, pp. 5-12, 1985.
    20. Takano, K., Saito, Y., Kanari, K., Nozaki, K., Kato, K., Negishi, A., Kato, T., Entropy Change in Lithium Ion Cells on Charge and Discharge. Journal of Applied Electrochemistry, Vol. 32, No.3, pp. 251-258, 2002.
    21. Onda, K., Ohshima, T., Nakayama, M., Fukuda, K., Araki, T., Thermal Behavior of Small Lithium-Ion Battery During Rapid Charge and Discharge Cycles. Journal of Power Sources, Vol. 158, No. 1, pp. 535-542, 2006.
    22. Chen, D. M., Gibbard, H. F., Thermal Energy Generation of LiAl/FeS Cells, Journal of Electrochemical Society, Vol. 130, No. 10, pp. 1975-1979, 1983.
    23. Hong, J. S., Maleki, H., Hallaj, S. A., Redey, L., Selman, J. R., Electrochemical-Calorimetric Studies of Lithium-Ion Cells. Journal of Electrochemical Society, Vol. 145, No. 5, pp. 1498-1501, 1988.
    24. Hallaj, S. A., Venkatachalapathy, R., Prakash, J., Selman, J. R., Entropy Changes Due to Structure Transformation in the Graphite Anode and Phase Change of LiCoO2 Cathode, Journal of Electrochemical Society, Vol. 147, No. 7, pp. 2432-2436, 2000.
    25. Thomas, K. E., Bogatu, C., Newman, J., Measurement of the Entropy of Reaction as a Function of State of Charge in Doped and Undoped Lithium Manganese Oxide, Journal of Electrochemical Society, Vol. 148, No. 6, pp. A570-A575, 2001.
    26. Bang, H., Yang, H., Sun, Y. K., Prakash, J., In Situ Studies of LixMn2O4 and LixAL0.17Mn1.83O3.97S0.03 Cathode by IMC, Journal of Electrochemical Society, Vol. 152, No. 2, pp. A421-A428, 2005.
    27. W, L., Prakash, J., In Situ Measurements of Heat Generation in a Li/Mesocarbon Microbead Half-Cell, Journal of Electrochemical Society, Vol. 150, No. 3, pp. A262-A266, 2003.
    28. Thomas, K. E., Newman, J., Heats of Mixing and of Entropy in Porous Insertion Electrodes, Journal of Power Sources. Vol. 119-121, No. 1, pp. 844-849, 2003.
    29. Onda, K., Kameyama, H., Hanamoto, T., Ito, K., Experimental Study on Heat Generation Behavior of Small Lithium-Ion Secondary Batteries. Journal of Electrochemical Society, Vol. 150, No. 3, pp. A285-A291, 2003.
    30. Yang, H., Prakash, J., Determination of the Reversible and Irreversible Heats of a LiNi0.8Co0.15Al0.05O2-Natural Graphite Cell Using Electrochemical-Calorimetric Technique, Journal of Electrochemical Society, Vol. 151, No. 8, pp. A1222-A1229, 2004.
    31. Huang, Q., Yan, M., Jiang, Z., Thermal Study on Single Electrodes in Lithium-Ion Battery, Journal of Power Sources, Vol. 156, No. 2, pp. 541-546, 2006.
    32. Ichimura, M., The Safety Characteristics of Lithium-Ion Batteries for Mobile Phones and the Nail Penetration Test. Elecommunications Energy Conference, Rome, pp. 687-692, Sept. 30-Oct. 4, 2007.
    33. Software Cradle Co, Ltd., Basics of CFD Analysis, SC/Tetra-User's Guide, September, 2009.
    34. McDonough, J.M., Introductory Lectures on Turbulence. Departments of Mechanical Engineering and Mathematics University of Kentucky, 2007.
    35. Patankar, S.V., Spalding, D.B., A Calculation procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows. International Journal of Heat and Mass Transfer, Vol. 15, No. 10, pp. 1787-1806, 1972.
    36. Software Cradle Co, Ltd., Solver Referenc. SC/Tetra-User's Guide, September, 2009.
    37. Hallaj, S. A., Venkatachalapathy, R., Prakash, J., Selman, J. R., Characterization of Commercial Li-Ion Batteries Using Electrochemical–Calorimetric Measurements. Journal of Power Sources, Vol. 87, No. 1–2, pp. 186-194, 2000.
    38. 鄭又嘉,永磁式同步發電機散熱設計之數值與實驗整合研究, 國立台灣科技大學機械工程系碩士論文,2011。
    39. 吳明龍,性能/安全性難兼顧,鋰電池內短路測試考驗大,新通訊元件雜誌,115期,2010年九月。
    40. Cai, W., Wang, H., Maleki, H., Howard, J., Edgar, L. C., Experimental Simulation of Internal Short Circuit in Li-Ion and Li-Ion-polymer Cells. Journal of Power Sources, Vol. 196, No. 18, pp. 7779-7783, 2011.
    41. 吳世維,謝登存,林炳明,鋰電池內短路測試方法之研究,工業材料雜誌,2012年4月。

    QR CODE