簡易檢索 / 詳目顯示

研究生: 黃長益
Chang-Yi Huang
論文名稱: 集成模型預測鋰離子電池與燃料電池剩餘使用壽命之研究
Ensemble Model for Remaining Useful Life Prediction of Lithium-Ion Batteries and Fuel Cells System
指導教授: 王福琨
Fu-Kwun Wang
口試委員: 林則孟
Ze-Meng Lin
徐世輝
Shi-Hui Hsu
林義貴
Yi-Gui Lin
葉瑞徽
Rui-Hui Ye
歐陽超
Chao Ouyang
王福琨
Fu-Kwun Wang
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 110
中文關鍵詞: 鋰離子電池燃料電池長短期記憶梯昇回歸
外文關鍵詞: Lithium-ion battery, Fuel cells, Long-Short Term Memory, Gradient Boosted Regression
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    鋰離子電池(Lithium-Ion batteries)與質子交換膜燃料電池(Proton Exchange Membrane Fuel Cells, PEMFCs)是現今新能源的兩大主流。鋰離子電池的主要優點在於具備高儲存能量密度、使用壽命長、自放電率低、無記憶效應與低溫環境適應強等特性,被廣泛應用於汽車動力電池、筆電、手機、電子裝置電池以及作為儲能電池使用。質子交換膜燃料電池則具備了高能源轉換效率、低污染、高功率產出特性也廣泛應用於車輛動力、可攜式電力與發電廠場所。本論文主要是針對質子交換膜燃料電池與鋰離子電池的健康狀態(State of Health, SOH)及剩餘使用壽命(Remain Useful Life, RUL)的預測模型與演算法的研究。本研究包含了二個議題,在第三章提出長短期記憶-注意力(Long-Short Term Memory with attention, AT-LSTM)、支持向量回歸( Support Vector Regression)與隨機森林回歸(Random Forest Regression)之集成模型(Ensemble Model)應用於質子交換膜燃料電池容量退化預測的研究;第四章提出長短期記憶-注意力與梯昇回歸(Gradient Boosted Regression, GBR)之集成模型堆疊式長短期記憶(Stacked Long-Short Term Memory, SLSTM)應用於鋰離子電池(Lithium-Ion Batteries)循環壽命(Cycle Life)預測的研究,應用差分進化演算法(Differential Evolution Algorithm)尋求最佳參數及蒙地卡羅(Monte Carlo dropout)求得預測區間條件下,以平均絕對百分比誤差(Mean Absolute Percentage Error, MAPE)、根均方誤差(Root Mean Square Error, RMSE) 、平均絕對誤差(Mean Absolute Error, MAE)、相對誤差(Relative Error, RE)、絕對百分比誤差(Absolute Percentage Error, APE)來驗證集成模型的精準度,所得結果皆優於單一模型。最後提出結論及對後續研究的建議。
    關鍵字:鋰離子電池;燃料電池;長短期記憶;梯昇回歸


    ABSTRACT
    Lithium-ion batteries and proton exchange membrane fuel cells (PEMFCs) are two main streams of new energy. The main advantages of lithium-ion batteries are their high storage energy density, long service life, low self-discharge rate, no memory effect, and strong adaptability to the low-temperature environment. They are widely used in automobile power batteries, laptops, mobile phones, electronic devices batteries, and energy storage batteries. Proton exchange membrane fuel cells have high energy conversion efficiency, low pollution, high power output characteristics, and are widely used in vehicle power, portable electricity, and power plant sites. The study of this dissertation is to propose the prediction model and algorithm of state of health (SOH) for lithium-ion batteries and remain useful life (RUL) for PEMFCs and lithium-ion batteries. In the third chapter, the ensemble model of long-short term memory with attention (AT-LSTM), support vector regression (SVR), and random forest regression (RFR)were proposed to predict the capacity degradation of PEMFCs. In chapter 4, To propose a study of the stacked long-short term memory (SLSTM) ensemble model based on the gradient boosted regression(GBR) and AT-LSTM applied to forecast the lithium-ion batteries cycle life. Apply differential evolution (DE)algorithm to get the best parameter and Monte Carlo dropout to get the prediction confidence interval(CI), accuracy of the ensemble model was verified by mean absolute percentage error (MAPE), root means square error (RMSE), mean absolute error (MAE), relative error (RE) and absolute percentage error (APE). The results are superior to the single model. The last chapter is the conclusions and future study.

    Keywords: Lithium-ion battery; Fuel cells; Stacked long-short term memory; Monte
    Carlo dropout

    Table of Contents 摘要 ...........................................................................i Abstract.......................................................................ii 致謝..........................................................................iii Table of Contents..............................................................iv List of Figures................................................................vi List of Tables................................................................vii Abbreviations................................................................viii Chapter One Introduction.......................................................1 1.1. Motivation.................................................................1 1.2. Research Objectives........................................................3 1.3. Organization of the Dissertation...........................................3 Chapter Two Literature Review..............................................5 2.1. Existing methods for the RUL Prediction of PEMFC Stacks....................5 2.2. Existing methods for capacity reduction and cycle life prediction of Lithium-Ion Batteries.....................................................11 2.3. Differential Evolution Algorithms and Monte Carlo Dropout Method..........13 Chapter Three Ensemble Model for Degradation Prediction of PEMFC Stacks...16 3.1. Introduction..............................................................16 3.2. Experimental Data.........................................................16 3.3. Proposed Ensemble Model...................................................19 3.4. Analysis Results..........................................................22 3.4.1 Voltage Degradation.................................................22 3.4.2 RUL Prediction......................................................24 3.5. Conclusions...............................................................26 Chapter Four Ensemble Model Base on Stacked Long-Short Term Memory Model for Cycle Life Prediction of Lithium-Ion Batteries.................................27 4.1. Introduction..............................................................27 4.2. Experimental Data.........................................................28 4.3. Prediction Models.........................................................29 4.4. Analysis Results..........................................................32 4.4.1 Capacity Degradation Trend Prediction...............................32 4.4.2 Cycle Life Prediction...............................................37 4.5. Conclusions...............................................................39 Chapter Five Conclusions and Future Study.....................................40 5.1. Conclusions...............................................................40 5.2. Future Study..............................................................41 Appendices.....................................................................43 Appendix I: R-code for Degradation Prediction of the Fuel Cells Stacks.........43 Appendix II: R-code for Cycle Life Prediction of the Lithium-ion Batteries.....58 References.....................................................................93

    References
    1.Liu, C., Wang, Y., Chen, Z. Degradation model and cycle life prediction for
    lithium-ion battery used in hybrid energy storage system. Energy. 2019; 166:
    796–806.
    2.Harting, N., Schenkendorf, R., Wolff, N., Krewer, U. State-of-health
    identification of lithium-ion batteries based on nonlinear frequency response
    analysis: First steps with machine learning. Applied Sciences. 2018; 8(5), 821.
    3.Tan, Y., Zhao, G. A novel state-of-health prediction method for lithium-ion
    batteries based on transfer learning with long short-term memory networks. IEEE
    Transactions on Industrial Electronic 2019.doi:10.1109/TIE.2019.2946551.
    4.Zhang, C., Zhu, Y., Dong, G., Wei, J. Data‐driven lithium‐ion battery states
    estimation using neural networks and particle filtering. International Journal
    Energy Research. 2019; 43:8230–8241.
    5.Li H, Ravey A, N’Diaye A, Djerdir A. Online adaptive equivalent consumption
    minimization strategy for fuel cell hybrid electric vehicle considering power
    sources degradation. Energy Conversion and Management. 2019; 192:133-149.
    6.Jouin M, Gouriveau R, Hissel D, Péra MC, Zerhouni N. Prognostics of PEM fuel
    cell in a particle filtering framework. International Journal of Hydrogen
    Energy. 2014;39(1):481-494.
    7.Zhang D, Cadet C, Bérenguer C, Yousfi-Steiner N. Some improvements of particle
    filtering based prognosis for PEM fuel cells,” IFAC-PapersOnLine.
    2016;49(28):162-167.
    8.Robin C, Gerard M, Franco AA, Schott P. Multi-scale coupling between two
    dynamical models for PEMFC aging prediction. International Journal of Hydrogen
    Energy.2013;38(11): 4675-4688.
    9.Polverino P, Pianese. Model-based prognostic algorithm for online RUL
    estimation of PEMFCs. In: Proceedings 2016 IEEE 3rd Conference Control and
    Fault-Tolerant Systems.Barcelona, Spain, 599-604, 2016.
    10.Chen K, Laghrouche S, and A. Djerdir A. Fuel cell health prognosis using
    unscented Kalman filter: Postal fuel cell electric vehicles case study.
    International Journal of Hydrogen Energy. 2019;44(3):1930-1939.
    11.Javed K, Gouriveau R, Zerhouni N, Hissel D. Prognostics of proton exchange
    membrane fuelcells stack using an ensemble of constraints based connectionist
    networks. Journal of Power Sources.2016; 324:745-757.
    12.Silva RE, Gouriveau R, Jemei S, Hissel D, Boulon L, Agbossou K, Steiner NY.
    Proton exchange membrane fuel cell degradation prediction based on adaptive
    neuro-fuzzy inference systems. International Journal of Hydrogen Energy.
    2014;39(21):11128-11244.
    13.Morando S, Jemei S, Hissel D, Gouriveau R, Zerhouni N. Proton exchange
    membrane fuel Cell ageing forecasting algorithm based on echo state network.
    International Journal of Hydrogen Energy.2017;42(2):1472-1480.
    14.Wu Y, Breaz E, Gao F, Paire D, Miraoui A. Nonlinear performance degradation
    prediction of proton exchange membrane fuel cells using relevance vector
    machine. IEEE Transactions on Energy Conversion.2016;31(4):1570-1582.
    15.Liu J, Li Q, Chen W, Yan Y, Qiu Y, Cao T. Remaining useful life prediction of
    PEMFC based on long short-term memory recurrent neural networks. International
    Journal of Hydrogen Energy.2019;44(11):5470-5480.
    16.Zhou D, Gao F, Breaz E, Ravey A, Miraoui A. Degradation prediction of PEM fuel
    cell using a moving window based hybrid prognostic approach.
    Energy.2017;138:1175-1186.
    17.Ma R, Li Z, Breaz E, Liu C, Bai H, Briois P, Gao F. Data-fusion prognostics of
    proton exchange membrane fuel cell degradation. IEEE Transaction on Industry
    Applications.2019;55(4):4321-4331.
    18.Cheng Y, Zerhouni N, Lu C. A hybrid remaining useful life prognostic method
    for proton exchange membrane fuel cell. International Journal of Hydrogen
    Energy. 2018;43(27):12314-12327.
    19.Li Z, Wu D, Hu C, Terpenny J. An ensemble learning-based prognostic approach
    with degradation-dependent weights for remaining useful life prediction.
    Reliability Engineering and System Safety.2019;184:110-122.
    20.Shao M, Zhu XJ, Cao HF, Shen HF. An artificial neural network ensemble method
    for fault diagnosis of proton exchange membrane fuel cell system.
    Energy.2014;67:268-275.
    21.Zhang D, Baraldi P, Cadet C, Yousfi-Steiner N, Bérenguer C, Zio E. An ensemble
    of models for integrating dependent sources of information for the prognosis
    of the remaining useful life of proton exchange membrane fuel cells.
    Mechanical systems and Signal Processing.2019; 124:479-501.
    22.Zhang Y, Xiong R, He H, Pecht M. Long short-term memory recurrent neural
    network for remaining useful life prediction of lithium-ion batteries. IEEE
    Transactions on Vehicular Technology.2018;67(7):5695–5705.
    23.Chollet F, Allaire JJ. Deep learning with R. Shelter Island, NY, USA: Manning
    Publications,2017.
    24.Wang Y, Huang M, Zhao L. Attention-based LSTM for aspect-level sentiment
    classification. In: Proceedings of the 2016 Conference on Empirical Methods in
    Natural Language Processing. Austin, Texas, USA, 606-615, 2016.
    25.Ma R, Yang T, Breaz E, Li Z, Briois P, Gao F. Data-driven proton exchange
    membrane fuel cell degradation predication through deep learning method.
    Applied Energy. 2018; 231:102-115.
    26.Kim S, Kang M. Financial series prediction using attention LSTM,”
    arXiv:1902.10877.2019.
    27.Liu J, Wang G, Duan LY, Abdiyeva K, Kot AC. Skeleton-based human action
    recognition with global context-aware attention LSTM networks. IEEE
    Transactions on Image Processing.2017;27(4):1586-1599.
    28.Ran X, Shan Z, Fang Y, Lin C. An LSTM-based method with attention mechanism
    for travel time prediction. Sensors. 2019;19(861):1-22.
    29.Jouin M, Gouriveau R, Hissel D, Péra MC, Zerhouni N. Prognostics of proton
    exchange membrane fuel cell stack in a particle filtering framework including
    characterization disturbances and voltage recovery. In: 2014 International
    Conference on Prognostics Health Management. Cheney, WA, USA, 1-6, 2014.
    30.Huang J, Bo Y, Wang H. Electromechanical equipment state forecasting based on
    genetic algorithm–support vector regression. Expert Systems with Applications.
    2011;38(7):8399-8402.
    31.García FT, Villalba LJ, Portela J. Intelligent system for time series
    classification using support vector machines applied to supply-chain. Expert
    Systems with Applications.2012;39(12):10590-10599.
    32.Wang FK, Du T. Implementing support vector regression with differential
    evolution to forecast motherboard shipments. Expert Systems with Applications.
    2014;41(8)3850-3855.
    33.Breiman L. Random forests. Machine Learning. 2001;45(1):5-32.
    34.Wang LA, Zhou X, Zhu X, Dong Z, Guo W. Estimation of biomass in wheat using
    random forest regression algorithm and remote sensing data. The Crop Journal.
    2016; 4(3):212-219.
    35.Li Y, Zou C, Berecibar M, Nanini-Maury E, Chan JC, van den Bossche P, Van
    Mierlo J, Omar N. Random forest regression for online capacity estimation of
    lithium-ion batteries.Appl Energy. 2018; 232:197-210.
    36.Baudron P, Alonso-Sarría F, García-Aróstegui JL, Cánovas-García F, Martínez-
    Vicente D, Moreno-Brotóns J. Identifying the origin of groundwater samples in
    a multi-layer Aquifer system with random forest classification. Journal of
    Hydrology .2013;499:303-315.
    37.Gu F, Guo J, Yao X, Summers P A, Widijatmoko SD, Hall P. An investigation of
    the current status of recycling spent lithium-ion batteries from consumer
    electronics in China. Journal of Cleaner Production. 2017;161: 765-780.
    38.Mansouri SS, Karvelis P, Georgoulas G, Nikolakopoulos G. Remaining useful
    battery life prediction for UAVs based on machine learning. IFAC-
    PapersOnLine.2017;50:4727-4732.
    39.Zhang Y, Xiong R, He H, Pecht MG. Long short-term memory recurrent neural
    network for remaining useful life prediction of lithium-ion batteries. IEEE
    Transactions on Vehicular Technology. 2018;67(7):5695-5705.
    40.Li X, Zhang L, Wang Z, Dong P. Remaining useful life prediction for lithium-
    ion batteries based on a hybrid model combining the long short-term memory and
    Elman neural networks. Journal of Energy Storage.2019;21:510-518.
    41.Li Y, Zou C, Berecibar M, Nanini-Maury E, Chan JCW, van den Bossche P, Van
    Mierlo J, Omar N. Random forest regression for online capacity estimation of
    lithium-ion batteries. Applied Energy.2018;232:197-210.
    42.Mishra M, Martinsson J, Rantatalo M, Goebel K. Bayesian hierarchical model-
    based prognostics for lithium-ion batteries. Reliability Engineering and
    system Safety. 2018;172: 25-35.
    44.Guo, P., Cheng, Z., Yang, L. A data-driven remaining capacity estimation
    approach for lithium-ion batteries based on charging health feature
    extraction. Journal of Power Sources. 2019; 412:442–450.
    45.Cheng, Y., Zerhouni, N., Lu, C. A hybrid remaining useful life prognostic
    method for proton exchange membrane fuel cell. International Journal of
    Hydrogen Energy. 2018; 43, 12314–21237.
    46.Li, Z., Wu, D., Hu, C., Terpenny, J. An ensemble learning-based prognostic
    approach with degradation-dependent weights for remaining useful life
    prediction. Reliability Engineering and System Safety.2019;184:110–122.
    47.Javed, K., Gouriveau, R., Zerhouni, N.; Hissel, D. Prognostics of proton
    exchange membrane fuel cells stack using an ensemble of constraints based
    connectionist networks.Journal of Power Sources. 2016; 324:45–757.
    48.Shao, M., Zhu, X.J., Cao, H.F., Shen, H.F. An artificial neural network
    ensemble method for fault diagnosis of proton exchange membrane fuel cell
    system. Energy 2014, 67, 268–275.
    49.Zhang, D., Baraldi, P., Cadet, C., Yousfi-Steiner, N.; Bérenguer, C.; Zio, E.
    An ensemble of models for integrating dependent sources of information for the
    prognosis of the remaining useful life of proton exchange membrane fuel cells.
    Mechanical systems and Signal Processing.2019; 124: 479–501.
    50.Li, Z., Fang, H., Yan, Y. An ensemble hybrid model with outlier detection for
    prediction of lithium-ion battery remaining useful life. In Proceedings of the
    2019 Chinese Control and Decision Conference (CCDC), Nanchang, China, 2019;
    pp. 2630–2635.
    51.Zhang, Y., Xiong, R., He, H., Liu, Z. A LSTM-RNN method for the lithuim-ion
    battery remaining useful life prediction. In Proceedings of the 2017
    Prognostics and System Health Management Conference (PHM-Harbin), Harbin,
    China, 2017; pp. 1–4.
    52.Breiman, L. Random forests. Machine. Learning. 2001; 45:5–32.
    53.Friedman, J.H. Stochastic gradient boosting. Computational Statistics and Data
    Analysis.2002; 38:367–378.
    54.Ridgeway, G. Generalized boosted models: A guide to the GBM package. Update
    2007, 1–15.
    55.Storn R, Price K. Differential evolution – a simple and efficient heuristic
    for global optimization over continuous spaces. Journal of Global
    Optimization.1997;11:341-359. https://doi.org/10.1023/A:1008202821328.
    56.Gal, Y., Ghahramani, Z. Dropout as a bayesian approximation: Representing
    model uncertainty in deep learning. In Proceedings of the International
    Conference on Machine Learning 2016; pp. 1050–1059.
    57.https://www.depends-on-the-definition.com/model-uncertainty-in-deep-learning-
    with-monte-carlo-dropout/ Accessed on 12 June 2020
    58.Bressel M, Hilairet M, Hissel D, Bouamama BO. Extended Kalman filter for
    prognostic of proton exchange membrane fuel cell. Applied Energy.2016;164:220-
    227.
    59.Zhou D, Al-Durra A, Zhang K, Ravey A, Gao F. Online remaining useful lifetime
    prediction of proton exchange membrane fuel cells using a novel robust
    methodology. Journal of Power Sources.2018; 399:314-328.
    60.Liu H, Chen J, Hissel D, Su H. Remaining useful life estimation for proton
    exchange membrane fuel cells using a hybrid method. Applied
    Energy.2019;237:910-919.
    61.Chen K, Laghrouche S, Djerdir A. Degradation prediction of proton exchange
    membrane Fuel cell based on grey neural network model and particle swarm
    optimization. Energy Conversion and Management. 2019;195: 810-818.
    62.Ma R, Yang T, Breaz E, Li Z, Briois P, Gao F. Data-driven proton exchange
    membrane fuel cell degradation predication through deep learning method.
    Applied Energy. 2018; 231:102-115.
    63.Zhu L, Chen J. Prognostics of PEM fuel cells based on Gaussian process state
    space models. Energy.2018;149:63-73.
    64.Gouriveau R, Hilairet M, Hissel D, Jemeï S, Jouin M, Lechartier E, Morando S,
    Pahon E, PéraMC, Zerhouni N. IEEE PHM 2014 Data Challenge-Details for
    articipants. 2014.
    65.Jouin M, Gouriveau R, Hissel D, Péra MC, Zerhouni N. Prognostics of proton
    exchange membrane fuel cell stack in a particle filtering framework including
    characterization disturbances and voltage recovery. In: 2014 International
    Conference on Prognostics Health Management. Cheney, WA, USA, 1-6, 2014.
    66.Storn R, Price K. Differential evolution – a simple and efficient heuristic
    for global optimization over continuous spaces. Journal of Global
    Optimization.1997;11(4):341-359.
    67.Price K, Storn RM, Lampinen JA. Differential evolution: a practical approach
    to global optimization. New York: Springer, 2005.
    68.Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: representing model
    uncertaintyin deep learning. In: Proceedings of The 33rd International
    Conference on Machine Learning New York, NY, USA,2016.
    69.Smith, K., Saxon, A., Keyser, M., Lundstrom, B., Cao, Z. and Roc, A. Life
    prediction model for grid-connected Li-ion battery energy storage system. In
    Proceedings of the 2017American Control Conference (ACC), Seattle, WA, 2017;
    pp. 4062–4068.
    70.Severson, K.A., Attia, P.M., Jin, N., Perkins, N., Jiang, B., Yang, Z., Chen,
    M.H., Aykol,M., Herring, P.K., Fraggedakis, D., et al. Data-driven prediction
    of battery cycle life before capacity degradation. Nature Energy. 2019; 4: 383
    –391.
    71.Chen, Z., Sun, M., Shu, X., Xiao, R., Shen, J. Online state of health
    estimation for lithium-ion batteries based on support vector machine. Applied
    Sciences. 2018, 8, 925.
    72.Wang, F.K., Mamo, T. A hybrid model based on support vector regression and
    differential evolution for remaining useful lifetime prediction of lithium-ion
    batteries. Journal of Sources.2018;401: 49–54.
    73.Price, K., Storn, R.M., Lampinen, J.A. Differential Evolution: A Practical
    Approach to Global Optimization; Springer Science & Business Media, 2006.
    74.Mullen, K., Ardia, D., Gil, D.L., Windover, D., Cline, J. DEoptim: An R
    package for global optimization by differential evolution. Journal of
    Statistical Software. 2011;40: 1-26.

    無法下載圖示 全文公開日期 2023/08/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2025/08/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE