簡易檢索 / 詳目顯示

研究生: 林瑋琪
Wei-Chi Lin
論文名稱: 鋰離子電池的分數階模型研究
A Comparative Study of Fractional Order Models for Lithium Ion Batteries
指導教授: 劉益華
Yi-Hua Liu
口試委員: 鄧人豪
Jen-Hao Teng
邱煌仁
Huang-Jen Chiu
王順忠
Shun-Chung Wang
陳冠炷
Guan-Jhu Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 53
中文關鍵詞: 分數階方程式恆相位元件鋰離子電池模型最佳化參數
外文關鍵詞: fractional order equations, constant phase element, models of lithium ion batteries, parameters optimization
相關次數: 點閱:164下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池具有相較其他種類的電池較高的能量密度、耐溫範圍寬可耐熱耐冷、使用壽命長、安全性佳、環境友善、無記憶效應、體積小重量輕等優勢,需求也日益增長,舉凡大至電網儲能系統的調節,在推廣再生能源時,風力與太陽能雖不需使用燃料且是乾淨能源,但會受天氣影響使得發電量變動起伏,有了電池儲能調節就可以改善電力穩定度;中至將電動汽機車與油電混和車的普遍化增加可行性,是因鋰離子電池的高續航力及壽命,促使交通工具也能減少燃料使用及碳排量;小至隨處可見的電子產品,如智慧型手機、手錶、筆記型電腦等也有鋰離子電池的蹤跡。
    在模擬應用中,需要獲得在不同的運轉負載下的鋰離子電池精確動態特性,助於準確的診斷動態電池模型狀態。常用的三種鋰離子電池模型為,電化學模型(Electrochemical Models, EM)、等效電路模型(Equivalent Circuit Models, EchM)和分數階模型 (Fractional Order Models, FOM),因為EchM的計算效率較EM高,能在電池模擬實驗中常見EchM的使用。若要更精準的預測電池暫態變化及考量非理想因素,可由許多文獻中得到FOM優於EchM的結論,進而在電池管理系統中使用FOM準確地監測電池狀態。FOM特徵是以非電氣特性的恆相位元件及特定指數階的華寶元件替代EchM中的理想電容電感,本文將提出五種較常見的FOM,推導其在含有分數階恆相位元件的模型中的時域電池端電壓與充放電電流之關係式,獲得更為精確的電氣特性結果;並以此五種模型架構代入實驗數據中比較誤差量,最後使用五種最佳化演算法對此最佳模型找出最貼近電池特性的參數組合。


    Compared with other kinds of batteries, lithium-ion batteries have the advantages of high energy density, wide temperature range, long cycle life, being eco-friendly, small and light and no memory effect, etc.. Thus, lithium-ion batteries are used in a wide range of applications nowadays. For example, improving power stability of grid energy storage systems, increasing the feasibility of the generalization of electric vehicles and hybrid vehicles by their high endurance and cycle life, and a variety of electronic products powered by lithium-ion batteries.
    It is necessary to obtain precise dynamic characteristics of lithium-ion batteries under different operating states to model its status. The three commonly used lithium-ion battery models are electrochemical model (EM), equivalent circuit model (ECM) and fractional order model (FOM). Because the calculation efficiency of ECM is higher than that of EM, ECM is widely used in battery simulation experiments. To predict battery transient response and non-ideal factors better, lots of literatures derived the conclusion that FOM is more precise than ECM.
    The characteristic of FOM is to replace capacitance and inductance in ECM with the non-electric constant phase element. This paper will deduce the relationship between the battery terminal voltage and the charging and discharging current of the five common FOMs. Then the results will be substituted into the experimental data to compare the error amount and verify whether the second-order FOM performs better. Finally, using five algorithms to find out which parameter set performs is closest to the battery characteristics.

    摘要 i ABSTRACT ii 誌謝 iii 目錄 v 圖目錄 viii 表目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.3 研究動機及目的 4 1.4 論文大綱 4 第二章 分數階與電池等效模型介紹 5 2.1 分數階介紹 5 2.2 分數階微積分計算介紹 5 2.3 分數階元件介紹 8 2.4 等效電池模型 9 2.4.1 電池相關名詞 9 2.4.2 整數階電池等效模型 10 2.4.3 R(RQ)模型 12 2.4.4 R(RQ)W模型 14 2.4.5 R(RWQ)模型 15 2.4.6 R(RQ)(RQ)模型 16 2.4.7 R(RQ)(RQ)W模型 17 第三章 演算法介紹 19 3.1 演算法應用於搜尋最佳電池參數組合 19 3.1.1 適應值評估方式 19 3.1.2 最佳化限制條件 19 3.2 PSO演算法最佳化流程介紹 19 3.3 JS演算法最佳化流程介紹 21 3.4 DA演算法最佳化流程介紹 24 3.5 MRFO演算法最佳化流程介紹 27 3.6 GWO演算法最佳化流程介紹 30 第四章 模擬與實驗結果 34 4.1 電池規格與實驗數據 34 4.2 五種分數階模型以PSO搜索參數的模擬結果 36 4.3 五種演算法以R(RWQ)模型搜索參數的模擬結果 39 4.4 結果分析與討論 42 第五章 結論與未來展望 45 5.1 結論 45 5.2 未來展望 45 參考文獻 47

    M A Hannan, M S H Lipu, A Hussain, et al, “ A review of lithium-ion battery tate of charge estimation and management system in electric vehicle applications: Challenges and recommendations,” Renew. Sustain. Energy ev., 2017, 78: 834–854.
    [2] W Wang, Y Li, C Lin, et al, “Mass-spring-damping theory based equivalent mechanical model for cylindrical lithium-ion batteries under mechanical abuse,” Chinese J. Mech. Eng, 2020, 33:23.
    [3] Y Sun, Z Ma, G Tang, et al, “Estimation method of state-of-charge for lithium-ion battery used in hybrid electric vehicles based on variable structure extended Kalman flter,” Chinese J. Mech. Eng, 2016, 29(4): 717–726.
    [4] Y Zheng, M Ouyang, X Han, et al, “Investigating the error sources of the online state of charge estimation methods for lithium-ion batteries in electric vehicles,” J. Power Sources, 2018, 377: 161–188.
    [5] M Doyle, T F Fuller, J S Newman, “Modeling of galvanostatic charge and disch rge of the lithium/polymer/insertion cell,” J. Electrochem. Soc, 1993, 140(6): 1526–1533.
    [6] T F Fuller, M Doyle, J Newman, “Simulation and optimization of the dual lithium ion insertion cell,” J. Electrochem. Soc, 1994, 141(1): 1–10.
    [7] X Kong, G L Plett, M S Trimboli, et al, “Pseudo-two-dimensional model and impedance diagnosis of micro internal short circuit in lithium-ion cells,” J. Energy Storage, 2020, 27: 101085.
    [8] R Xiong, S Ma, H Li, et al, “Toward a safer battery management system: A critical review on diagnosis and prognosis of battery short circuit,” iScience, 2020, 23(4): 101010.
    [9] M R Palacín, “Understanding ageing in Li-ion batteries: A chemical issue,” Chem. Soc. Rev., 2018, 47(13): 4924–4933.
    [10]J Tian, R Xiong, W Shen, “A review on state of health estimation for lithium ion batteries in photovoltaic systems,” eTransportation, 2019, 2: 100028.
    [11]R Xiong, Y Zhang, J Wang, et al, “Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles,” EEE Trans. Veh. Technol, 2019, 68(5): 4110–4121.
    [12]P Amiribavandpour, W Shen, D Mu, et al, “An improved theoretical electrochemical-thermal modelling of lithium-ion battery packs in electric vehicles,” J. Power Sources, 2015, 284: 328–338.
    [13]C Lin, A Tang, “Simplifcation and efcient simulation of electrochemical model for li-ion battery in EVs,” Energy Procedia, 2016, 104: 68–73.
    [14]R Xiong, J Tian, H Mu, et al, “A systematic model-based degradation behavior recognition and health monitoring method for lithium-ion batteries,” Appl. Energy, 2017, 207: 372–383.
    [15]P Shrivastava, T Kok, M Yamani, et al, “Overview of model-based online state-of-charge estimation using Kalman flter family for lithium-ion batteries,” Renew. Sustain. Energy Rev., 2019, 113: 109233.
    [16]Y Zheng, W Gao, X Han, et al, “An accurate parameters extraction method for a novel on-board battery model considering electrochemical properties,” J. Energy Storage, 2019, 24: 100745.
    [17]R Xiong, Q Yu, W Shen, et al, “A sensor fault diagnosis method for a lithium-ion battery pack in electric vehicles,” IEEE Trans. Power Electron, 2019, 34(10): 9709–9718.
    [18]R Xiong, R Yang, Z Chen, et al, “Online fault diagnosis of external short circuit for lithium-ion battery pack,” IEEE Trans. Ind. Electron, 2020, 67(2): 1081–1091.
    [19]H He, R Xiong, J Fan, “Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach,” Energies, 2011, 4(4): 582–598.
    [20]X Lai, Y Zheng, T Sun, “A comparative study of diferent equivalent circuit models for estimating state-of-charge of lithium-ion batteries,” Electrochim. Acta, 2018, 259: 566–577.
    [21]J Huang, Z Li, B Y Liaw, et al, “Graphical analysis of electrochemical imped-ance spectroscopy data in Bode and Nyquist representations,” J. Power Sources, 2016, 309: 82–98.
    [22]H Qu, J Kafe, J Harris, et al, “Application of ac impedance as diagnostic tool – Low temperature electrolyte for a Li-ion battery,” Electrochim. Acta, 2019, 322: 134755.
    [23]T Osaka, D Mukoyama, H Nara, “Review-development of diagnostic process for commercially available batteries, especially lithium ion battery, by electrochemical impedance spectroscopy,” J. Electrochem. Soc, 2015,162(14): A2529–A2537.
    [24]S Guo, R Xiong, W Shen, et al, “Aging investigation of an echelon internal heating method on a three-electrode lithium ion cell at low temperatures,” J. Energy Storage, 2019, 25(5): 100878.
    [25]H Ge, J Huang, J Zhang, et al, “Temperature-adaptive alternating current preheating of lithium-ion batteries with lithium deposition prevention,” J. Electrochem. Soc, 2016, 163(2): A290–A299.
    [26]B Hirschorn, M E Orazem, B Tribollet, et al, “Determination of effective capacitance and flm thickness from constant-phase-element parameters,” Electrochim. Acta, 2010, 55(21): 6218–6227.
    [27]J Huang, H Ge, Z Li, J Zhang, “Dynamic electrochemical impedance spec-troscopy of a three-electrode lithium-ion battery during pulse charge and discharge,” Electrochim. Acta, 2015, 176: 311–320.
    [28]X Lu, H Li, N Chen, “An indicator for the electrode aging of lithium-ion bat-teries using a fractional variable order model,” Electrochim. Acta, 2019, 299:378–387.
    [29]D Andre, M Meiler, K Steiner, et al, “Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy,” II: Modelling. J. Power Sources, 2011, 196(12): 5349–5356.
    [30]M Hu, Y Li, S Li, et al, “Lithium-ion battery modeling and parameter identi-fcation based on fractional theory,” Energy, 2018, 165: 153–163.
    [31]S Li, M Hu, Y Li, et al, “Fractional-order modeling and SOC estimation of lithium-ion battery considering capacity loss,” Int. J. Energy Res., 2019, 43(1): 417–429.
    [32]J Xu, C C Mi, B Cao, et al, “A new method to estimate the state of charge of lithium-ion batteries based on the battery impedance model,” J. Power Sources, 2013, 233: 277–284.
    [33]C Liu, W Liu, L Wang, et al, “A new method of modeling and state of charge estimation of the battery,” J. Power Sources, 2016, 320: 1–12.
    [34]C Zou, X Hu, S Dey, et al, “Nonlinear fractional-order estimator with guaranteed robustness and stability for lithium-ion batteries,” IEEE Trans. Ind. Electron, 2017, 65(7): 5951–5961.
    [35]R Xiong, J Tian, “A comparative study on fractional order models for voltage simulation of lithium ion batteries,” IEEE 89th Veh. Technol. Conf., IEEE, 2019: 1–5.
    [36]R Yang, R Xiong, H He, et al, “A fractional-order model-based battery external short circuit fault diagnosis approach for all-climate electric vehicles application,” J. Clean. Prod, 2018, 187: 950–959.
    [37]Q Yang, J Xu, B Cao, et al, “A simplifed fractional order impedance model and parameter identifcation method for lithium-ion batteries,” PLoS One, 2017, 12(2): 1–13.
    [38]X Hu, H Yuan, C Zou, et al, “Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus,” IEEE Trans. Veh. Technol, 2018, 67(11): 10319–10329.
    [39]Y Chen, D Huang, Q Zhu, et al, “A new state of charge estimation algorithm for lithium-ion batteries based on the fractional unscented Kalman flter,” Energies, 2017, 10(9): 1313.
    [40]B Wang, Z Liu, S E Li, et al, “State-of-charge estimation for lithium-ion batteries based on a nonlinear fractional model,” IEEE Trans. Control Syst. Technol., 2017, 25(1): 3–11.
    [41]J Tian, R Xiong, Q Yu, “Fractional-order model-based incremental capacity analysis for degradation state recognition of lithium-ion batteries,” IEEE Trans. Ind. Electron, 2019, 66: 1576–1584.
    [42]Y Zou, S E Li, B Shao, et al, “State-space model with non-integer order derivatives for lithium-ion battery,” Appl. Energy, 2016, 161: 330–336.
    [43]L De Sutter, Y Firouz, J De Hoog, et al, “Battery aging assessment and para-metric study of lithium-ion batteries by means of a fractional diferential model,” Electrochim. Acta, 2019, 305: 24–36.
    [44]Y Jiang, B Xia, X Zhao, et al, “Data-based fractional diferential models for non-linear dynamic modeling of a lithium-ion battery,” Energy, 2017, 135: 171–181.
    [45]H Mu, R Xiong, H Zheng, et al, “A novel fractional order model based state-of-charge estimation method for lithium-ion battery. Appl,” Energy, 2017, 207: 384–393.
    [46]J Peng, J Luo, H He, et al, “An improved state of charge estimation method based on cubature Kalman flter for lithium-ion batteries,” Appl. Energy, 2019, 253: 113520.
    [47]Tian et al. Chin. J. Mech. Eng, “A Comparative Study of Fractional Order Models on State of Charge Estimation for Lithium Ion Batteries,” Chinese Journal of Mechanical Engineering (2020) 33:51.
    [48]Ivo Petráš, “Fractional Derivatives, Fractional Integrals, and Fractional Differential Equations in Matlab,” Technical University of Košice Slovak Republic.
    [49]J. Phys. Chem. Lett., “The Origin of the Constant Phase Element,” 2022, 13, 2, 580–589 Publication Date:January 20, 2022 https://doi.org/10.1021/acs.jpclett.1c03782
    [50]一篇就搞懂電池5種等效電路模型,https://m.elecfans.com/article/1563962.html
    [51]陳冠炷,「基於灰狼演算法之最佳化鋰離子電池充電電流樣式搜尋」,台灣科技大學電機工程系博士學位元論文,民國110年7月。
    [52]陳章豪,「基於元啟發演算法的太陽能電池模型參數識別之研究」,台灣科技大學電機工程系碩士學位元論文,民國110年7月。
    [53]智慧演算法研學社(Jack旭),智慧優化演算法:蜻蜓優化演算法,
    https://blog.csdn.net/u011835903/article/details/107783363

    無法下載圖示 全文公開日期 2026/02/14 (校內網路)
    全文公開日期 2026/02/14 (校外網路)
    全文公開日期 2026/02/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE