簡易檢索 / 詳目顯示

研究生: 陳育誠
Yu-Chen Chen
論文名稱: 製備LAMOX基電解質的單室燃料電池及其功率表現
Preparation and power performance of single chamber SOFC based on LAMOX electrolyte
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 郭東昊
Dong-Hau Kou
呂宗昕
Chung-Hsin Lu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 77
中文關鍵詞: 單氣室固態氧化物燃電池鑭鉬氧化物鑭鏑鉬鎢氧化物單電池功率表現
外文關鍵詞: SC-SOFC, LAMOX, LDMW, single cell
相關次數: 點閱:715下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究之目的為發展以鑭鉬氧化物(LAMOX)做為電解質之固態氧化物燃料電池。在論文中以鏑、鎢雙摻雜鑭鉬氧化物(La1.8Dy0.2Mo2-xWx , LDMW)作為單電池之電解質,10mol% Gd摻雜CeO2 (GDC10)作為陰極擴散阻障層並與GDC10-Ni陶金複合材料陽極及鑭鍶鈷鐵氧化物( La0.6Sr0.4Co0.8Fe0.2, LSCF6482)陰極搭配,以陽極支撐的單電池架構,在單氣室(single-chamber)的設計下進行j-V及j-P曲線的量測。單電池測試時,總氣體流量為350 sccm的甲烷-空氣混合物通入反應器作為電化學反應之用。並且探討在不同溫度下,不同陽極比例、Rmix(CH4 /O2)、電解質組成及厚度對最大功率密度(maximum power density, MPD)及開環電位(open circuit voltage, OCV)的影響。結構分析方面,以X光繞射分析陽極陶金相,以SEM電鏡分析單電池顯微結構。
      從XRD的結果顯示, 1523K燒結,NiO與電解質並不會反應生成其它晶相。SEM的影像顯示,電極結構皆為多孔,電解質緻密。用做比較的各組單電池皆有著相似的電池架構。
      在改變陽極組成對功率表現影響上,GDC10 : NiO(in wt%) = 40 : 60 的陽極與La1.8Dy0.2Mo2(LDM91)的搭配展現出較佳的MPD。在898K時,其OCV及MPD分別為0.77V及193mW cm-2。而在氣氛的影響上,Rmix = 1的MPD值在各個溫度下皆高於Rmix = 2。電解質厚度及組成對電性的影響上,厚度為70μm左右時,單電池的OCV隨著鎢含量的增加而增加;但MPD卻呈現相反的趨勢。而當電解質的厚度降至30μm時,單電池的OCV仍隨著鎢含量的增加而增加但比厚度為70μm時低;而對於30μm厚度的La1.8Dy0.2Mo1.6W0.4及La1.8Dy0.2Mo1W1來說,在溫度分別為823K、848K、873K及823K、848K、873K、898K、923K、948K時其MPD值較厚電解質單電池的高,但當溫度繼續升高至898K及973K,卻沒有比較高。


    Our purpose intends to develop SOFC single cell based on LAMOX electrolyte. In this study, La1.8Dy0.2Mo2-xWx (LDMW), 10mol% Gd doped CeO2 (GDC10), GDC10-Ni cermet composite and La0.6Sr0.4Co0.8Fe0.2 (LSCF6482) are electrolyte, cathodic diffusion barrier layer, anode and cathode respectively. Those anode- supported single cells were tested on the basis of single-chamber design. 350 sccm methane-air mixture supplied for electrochemical reactions was introduced into reactor. The effects on open circuit voltage (OCV) and maximum power density (MPD) via adjusting anode ratio, Rmix(the amount of CH4 / the amount of O2) and composition as well as thickness of electrolyte were investigated in this thesis. Materials microstructure and chemical compatibility were examined by SEM and XRD.
    XRD patterns show that no impurity phase forms between electrolyte and NiO at 1523K. Porosity in electrodes and similar configuration in each single cell can be seen in SEM image.
    As to the effect on OCV and MPD, the single cell supported by GDC : NiO (in wt%) = 40 :60 exhibits higher MPD than that of other ratios. For this single cell, the best performance takes place at 898K. Its OCV and MPD are 0.77V and 193mW cm-2 respectively. As to the effect on Rmix, the MPD of Rmix = 1 prevail to that of Rmix =2. Thickness and composition also deeply affect OCV and MPD. When electrolytes thickness are around 70μm, OCV of single cells increase with tungsten content in electrolyte yet MPD decrease with it. Working temperature increases with tungsten content in electrolyte as well. On the other hand, thinner electrolytes (~30μm) are applied on single cells, OCV of single cells still increase with W content in electrolyte. Additionally, their values are lower than that of thicker electrolyte. La1.8Dy0.2Mo1.6W0.4 and La1.8Dy0.2Mo1W1 single cells with thinner electrolytes promote MPD when temperature are 823K, 848K and 873K for La1.8Dy0.2Mo1.6W0.4 and 823K, 848K, 873K, 898K, 923K, 948K for La1.8Dy0.2Mo1W1. However, their performances are not better when temperatures are higher than 898K for La1.8Dy0.2Mo1.6W0.4 and 973K for La1.8Dy0.2Mo1W1.

    中文摘要 英文摘要 目錄 圖目錄 表目錄 第一章 前言 第二章 理論基礎及文獻回顧  2.1 SOFCs的原理及發展   2.1.1 SOFCs的工作原理 2.1.2 電解質材料 2.1.3鑭鉬氧化物( La2Mo2O9)電解質 2.1.3.1 鑭鉬氧化物簡介及其氧離子導機制 2.1.3.2 鑭鉬氧化物優缺點及可能的解決之道 2.1.4 陰極材料 2.1.5陽極材料 2.1.6 SOFC的架構 2.2單氣室SOFCs 第三章 實驗方法 3.1實驗藥品及儀器 3.2實驗流程 3.2.1粉末製備 3.2.1.1鏑鎢雙摻雜鑭鉬氧化物(LDMW)粉末製備 3.2.1.2 Gd0.1Ce0.9O1.9(GDC10)粉末製備 3.2.1.3 La0.6Sr0.4Co0.8Fe0.2O3-d(LSCF6428)粉末製備 3.2.2 XRD分析 3.2.3 SOFC單電池試片製作 3.2.3.1 陽極支撐材的製作 3.2.3.2 粉末膠配製 3.2.3.3 旋轉塗佈( Spin coating) 3.2.3.4 網版印刷(Screen printing) 3.2.4 j-V及j-P曲線量測 3.2.4.1測試系統簡介 3.2.4.2電池測試流程 3.2.5 SEM影像分析 第四章 結果與討論 4.1 XRD分析 4.2 j-V及j-P曲線以及相對應之顯微結構分析 4.2.1不同陽極組成所製備的單電池其j-V及j-P曲線以及相對應之顯微結構分析 4.2.2不同Rmix下的j-V及j-P 4.2.3不同W含量的所製備的單電池其j-V及j-P曲線以及相對應之顯微結構分析 4.2.4不同電解質厚度的單電池之j-V 與j-P曲線 第五章 結論 參考文獻

    1. S. Lee, J.M. Vohs, and R.J. Gorte, A study of SOFC anodes based on Ni-Cu and Cu-Co bimetallics in CeO2-YSZ, J. Electrochem. Soc., 151(9) A1319 (2004).
    2. Z.G. Lu, J.H. Zhu, Z.H. Bi and X.C. Lu, A Co-Fe alloy as alternative anode for solid oxide fuel cell, J. Power Sources, 180 172 (2008).
    3. S. Lee, Y. Lim, E. A Lee, H.J. Hwang and J. Moon, Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCF) and La0.6Ba0.4Co0.2Fe0.8O3-δ(LBCF) cathodes prepared by combined citrate-EDTA method for IT-SOFCs, J. Power Sources, 157 848 (2006).
    4. T. Wei, Y. Ji, X. Meng and Y. Zhang, Sr2NiMoO6-δas anode material for LaGaO3-based solid oxide fuel cell, Electrochem. Commun., 10 1369 (2008).
    5. H. Lv, Y.J. Wu, B. Huang, B.Y. Zhao and K. Hu, Structure and electrochemical properties of Sm0.5Sr0.5Co1 − xFexO3 − δ cathodes for solid oxide fuel cells, J. Power Sources, 177 901 (2006).
    6. D. Marrero-López, J. Pena-Martinez, J.C. Ruiz-Morales, D. P′erez-Coll, M.C. Mart′ın-Sede˜no and P. Núñez, Applicability of La2Mo2-yWyO9 materials as solid electrolytes for SOFCs, Solid State Ionics, 178 1366 (2007).
    7. P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux and Y. Laligant, Designing fast oxide-ion conductors based on La2Mo2O9, Nature, 404 856 (2000).
    8. F. Goutenoire, O. Isnard, E. Suard, O. Bohnke, Y. Laligant, R. Retoux and Ph. Lacorre, Structural and transport characteristics of the LAMOX family of fast oxide-ion conductors, based on lanthanum molybdenum oxide La2Mo2O9, J. Mater. Chem., 11 119 (2001).
    9. D-S. Tsai M-J. Hsieh, J-C. Tseng and H-Y. Lee, Ionic conductivities and phase transitions of lanthanide rare-earth substituted La2Mo2O9, J. Eur. Ceram. Soc., 25 481 (2004).
    10. H-C. Chang, D-S. Tsai, W-H. Chung, Y-S. Huang. and M-V. Le, A ceria layer as diffusion barrier between LAMOX and lanthanum strontium cobalt ferrite along with the impedance analysis, Solid State Ionics, 180 412 (2009).
    11. T-Y Jin, M.V. M. Rao, C-L Cheng, D-S Tsai and M-H Hung, Structural stability and ion conductivity of the Dy and W substituted La2Mo2O9, Solid State Ionics, 178 367 (2007).
    12. M. Yano, A. Tomita, M. Sano and T. Hibino, Recent advances in single-chamber solid oxide fuel cells: A review, Solid State Ionics, 177 3351 (2007).
    13. D.J.L. Brett, A. Atkinson, N. P. Brandon and Stephen J. Skinner, Intermediate temperature solid oxide fuel cells, Chem. Soc. Rev., 37 1568 (2008).
    14. R.J. Grote and J.M. Vohs, Novel SOFC anode for the direct electrochemical oxidation of hydrocarbons, J. Catal., 216 477 (2003).
    15. E. Ivers-Tiffe’e, A.Weber and D. Herbstritt, Materials and technologies for SOFC-components, J. Eur. Ceram. Soc. 21 1805 (2001).
    16. J. Molenda, K. ′ Swierczek and W. Zaj˛ac, Functional materials for the IT-SOFC, J. Power Sources, 173 657 (2007).
    17. F. Goutenoire, O. Isnard, R. Retoux and P. Lacorre, Crystal Structure of La2Mo2O9, a New Fast Oxide−Ion Conductor, Chem. Mater., 12 2575 (2000).
    18. D. Marrero-López, D. P′erez-Coll, J.C. Ruiz-Morales, J. Canales-Vázquez, M.C. Mart′ın-Sede˜no and P. Núñez, Synthesis and transport properties in La2−xAxMo2O9−d(A=Ca2+, Sr2+, Ba2+, K+) series, Electrochimi. Acta, 52 5219 (2007).
    19. Q. F. Fang, X. P. Wang , Z. S. Li , G. G. Zhang and Z. G. Yi, Relaxation peaks associated with the oxygen-ion diffusion in La2−xBixMo2O9 oxide-ion conductors, Mater. Sci. Eng. A, 370 365 (2004).
    20. S. Georges, F. Goutenoire, F. Altorfer, D. Sheptyakov, F. Fauth, E. Suard and P. Lacorre, Thermal, structural and transport properties of the fast oxide-ion conductors La2−xRxMo2O9 (R=Nd, Gd, Y), Solid State Ionics, 161 231 (2003).
    21. Z. S. Khadasheva, N. U. Venskovskii, M. G. Safronenko, A. V. Mosunov , E. D. Politova and S. Yu. Stefanovich, Synthesis and Properties of La2(Mo1 – xMx )2O9 (M = Nb, Ta) Ionic Conductors, Inorg. Mater., 38 1168 (2002).
    22. D. Marrero-López, J. Canales-Vázquez, J.C. Ruiz-Morales, J.T.S. Irvine and P. Núñez, Electrical conductivity and redox stability of La2Mo2−xWxO9 materials, Electrochimi. Acta, 50 4385 (2005).
    23. J. W. Stevenson, T. R. Armstrong, R. D. Carneim, L. R. Pederson and W. J. Weber, Electrochemical properties of mixed conducting perovskites La1-xMxCo1-yFey (M = Sr, Ba, Ca), J. Electrochem. Soc., 143 2722 (1996).
    24. N. Q. Minh, Solid oxide fuel cell technology—features and applications, Solid State Ionics, 174 271 (2004).
    25. T.W. Napporn, X. Jacques-Bédard, F. Morin and M. Meunier,Operating conditions of a single-chamber SOFC, J. Electrochem. Soc., 151 12 A2088 (2004).
    26. C. Zhang, Y. Zheng, R. Ran, Z. Shao, W. Jin, N. Xu and J. Ahn, Initialization of a methane-fueled single-chamber solid-oxide fuel cell with NiO + SDC anode and BSCF + SDC cathode, J. Power Sources, 179 640 (2008).
    27. T. Suzuki, P. Jasinski, V. Petrosky, H. U. Anderson and F. Dogan, Performance of a porous electrolyte in single-chamber SOFCs, J. Electrochem. Soc., 152 3 A527 (2005).
    28. T. Suzuki, P. Jasinski, V. Petrosky, H. U. Anderson and F. Dogan, Anode supported single chamber solid oxide fuel cell in CH4-air mixture, J. Electrochem. Soc., 151 9 A1473 (2004).
    29. X. Jacques-Bédard, T.W. Napporn, R. Roberge and M. Meunier, Performance and ageing of an anode-supported SOFC operated in single-chamber conditions, J. Power Sources, 153 108 (2006).
    30. X. Jacques-Bédard, T.W. Napporn, R. Roberge and M. Meunier, Coplanar electrodes designs for single-chamber SOFC, J. Electrochem. Soc., 154 3 B305 (2007).
    31. I. Riess, On the single chamber solid oxide fuel cells, J. Power Sources, 175 325 (2007).
    32. T. Hibino, S.Wang, S. Kakimoto and M.Sano, One-chamber solid oxide fuel cell constructed from a YSZ electrolyte with a Ni anode and LSM cathode, Solid State Ionics, 127 89 (2000).
    33. T. Hibino, A. Hashimoto, T. Inoue, J-I Tokuno, S-I Yoshida and M. Sano, A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures, Science, 288 16 2031 (2000).
    34. Z. Shao, C. Kwak, S. M. Haile, Anode-suppouted thin-film fuel cells operated in a single chamber configuration, Solid State Ionics, 175 39 (2004).
    35. K.F. Chen, Y.T. Tian, Z. Lü, N. Ai, X.Q. Huang and W.H. Su, Behavior of 3 mol% yttria-stabilized tetragonal zirconia polycrystal film prepared by slurry spin coating, J. Power Sources, 186 128 (2009).
    36. R. Hui, Z.W. Wang, S. Yick, R. Maric, D. Ghosh, Fabrication of ceramic films for solid oxide fuel cells via slurry spin coating technique, J. Power Sources, 172 840 (2007).
    37. 陳政緯,半電池反應之交流主抗研究鑭鈣鈷鐵氧化物陰極,碩士學位論文,國立台灣科技大學,台北,民國九十六年。
    38. 張混傑,氧化鈰薄層對鑭鍶鈷鐵氧/鑭鉬氧半電池之阻抗影響,碩士學位論文,國立台灣科技大學,台北,民國九十七年。
    39. T. Hibino, A. Hashimoto, T. Inoue, J-I Tokuno, S-I Yoshida and M. Sano, Single-chamber solid oxide fuel cells at intermediate temperatures with various in hydrocarbon-air mixtures, J. Electrochem. Soc., 147 9 2882 (2000).

    無法下載圖示 全文公開日期 2014/07/31 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE