簡易檢索 / 詳目顯示

研究生: 張仁禎
Jen-Chen Chang
論文名稱: 陽極孔洞大小及貴重金屬添加對單氣室固態氧化物燃料電池的影響
The effects of anode pore size and noble metal addition on SC-SOFC
指導教授: 蕭敬業
Ching-Yeh Shiau
口試委員: 劉端祺
Tuan-Chi Liu
周振嘉
Chen-Chia Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 85
中文關鍵詞: 電泳沉積貴金屬孔洞單氣室多層陽極固態氧化物燃料電池
外文關鍵詞: elexphoretic deposition, solid oxide fuel cell, noble metal, pore, single chamber, multi-layer anode
相關次數: 點閱:263下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在以各種不同的方法改善單氣室固態氧化燃料電池 (SC-SOFC) 之陽極,其方法包括改變陽極 NiO-SDC 之比例、摻雜不同孔洞生成劑(石墨、澱粉、PMMA)、製備多層孔洞型陽極以及摻雜不同貴金屬(Ru、Rh、Pd)。同時藉由電子顯微鏡 (SEM) 、交流阻抗 (AC-impedance) 以及電功密度測試來研究陽極改變對電池的影響。電池功率測試進料為甲烷與空氣,操作溫度為500-700℃。
    由實驗結果得知, NiO-SDC 比例為 6 : 4 所製備之陽極擁有最佳的電化學性質;在添加的孔洞生成劑當中,以摻雜石墨所製備之陽極,擁有較佳的電功密度;而製備多層孔洞型陽極所測得的電功密度也較單層孔洞型陽極佳;摻雜貴金屬Pd於陽極中可提高電池功率,且其功率隨著Pd摻雜量增加而增加,而陽極摻雜3 wt% Pd所製備之電池,於600 ℃下測得的最大電功密度 ( Power density ) 與開環電位值 ( OCV ) 分別為 331 mW/cm2 與 0.84 V;摻雜貴金屬Rh、Ru於陽極中反而會降低電池功率密度;另外以Rh滴定於陽極表面的實驗結果顯示,此方式可有效改善Rh直接摻雜陽極的缺點,而陽極表面滴定0.1 wt% Rh所製備之電池,其最大電功密度與開環電位值分別為 339 mW/cm2 與 0.825 V。


    This study intends to improve the performance of anode in a single-chamber solid state oxide fuel cell (SC-SOFC) via various methods including adjusting NiO-SDC ratio, adding pore former (graphite, starch and PMMA), preparing multi-layers anode and adding noble metals (Ru, Rh, Pd) into anode. The anodes as prepared were analyzed by scanning electron microscope (SEM), AC impedance. The cell systems were tested for power density at the temperature range of 500 - 700 ℃. Methane and air were used as fuel resource.
    The experimental results show that the best ratio of NiO-SDC is 6:4. When the pore former was used, the anode with graphite added possesses as higher power density. It is also noted that SC-SOFC with multi-layer anode prevails over that with single layer anode. When adding noble metal to the anode, Pd addition was found to be able to promote the cell power density, At 600℃, the maximum power density and the open circuit voltage (OCV) are 331 mW/cm2 and 0.84 V, respectively, for the anode with 3wt% Pd addition. However, adding Rh and Ru were found to reduce the cell performance. On the other hand, dropping instead of directly adding Rh in the anode exhibits higher power density. The maximum power density and OCV are 339 mW/cm2 and 0.84 V, respectively, when dropping 0.1wt% Rh on the anode surface.

    目錄 中文摘要 英文摘要 誌謝 目錄圖 目錄 表目錄 第一章 緒論 1-1 前言 1-2 研究動機 第二章 文獻回顧與理論基礎 2-1 固態氧化物燃料電池基本原理 2-1-1 雙氣室固態氧化物燃料電池 (DC – SOFC) 2-1-2 單氣室固態氧化物燃料電池 (SC - SOFC) 2-2 SOFC陽極 2-2-1 Ni電解質陽極材料 2-2-2 鈣鈦礦結構陽極材料 2-2-3 陽極改質 2-3 固態氧化物燃料電池電解質 2-3-1 氧化鋯系列電解質 2-3-2 氧化鈰系列電解質 2-3-3 氧化鉍系列電解質 2-3-4 鑭鎵氧系列電解質 2-4 固態氧化物燃料電池陰極 2-5 粉體製備 2-6 電泳沉積法 第三章 實驗方法與步驟 3-1 實驗方法 3-2 儀器設備 3-3 實驗藥品 3-4 電池元件的製備 3-4-1 製備 SDC 電解質與 SSC 陰極粉末 3-4-2 製備陽極基材 ( NiO – SDC - 孔洞生成劑 – 貴金屬 ) 3-4-3 配置電泳懸浮液 3-4-4 製備 SDC 電解質層 3-4-5 調製陰極網印用膠 3-4-6 製備陰極電極 3-4-7 製備電流收集器 3-4-8 陽極 ( NiO – SDC ) 之還原 3-5 燃料電池之特性鑑定與分析 3-5-1 SEM 表面影像分析 3-5-2 EDX元素分析 3-5-3 交流阻抗分析 3-6 燃料電池之測試 第四章 結果與討論 4-1 以不同NiO - SDC比之陽極所製備之電池 4-1-1 SEM與EDS分析 4-1-2 電功率密度測試 4-1-3 交流阻抗分析 4-2 摻雜孔洞生成劑之陽極 4-2-1 SEM分析 4-2-2 電功率密度測試 4-2-3 交流阻抗分析 4-3 石墨含量對陽極及其電池之影響 4-3-1 SEM分析 4-3-2 電功率密度測試 4-4 多層陽極對電池的影響 4-4-1 SEM分析 4-4-2 電功率密度測試 4-5 CH4-O2 比例對電池的影響 4-6 陽極摻雜不同貴金屬對電池的影響 4-6-1 SEM分析 4-6-2 交流阻抗分析 4-6-3 電功率密度測試 4-7 Pd含量對陽極及其電池之影響 4-7-1 電功率密度測試 4-8 陽極表面滴定貴金屬對電池之影響 4-8-1 SEM分析 4-8-2 電功率密度測試 第五章 結論 參考文獻

    Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda, N. Imanishai, Electrical conductivity of the ZrO2-Ln2O3 (Ln = lanthanides) system. Solid State Ionics, 1999. 121(1): p. 133-139.

    S-W. Baek, J. H. Kim, J. Bae, Characteristics of ABO3 and A2BO4 (A=Sm, Sr; B=Co, Fe, Ni) samarium oxide system as cathode materials for intermediate temperature-operating solid oxide fuel cell. Solid State Ionics, 2008. 179(27-32): p. 1570-1574.

    B. E. Buergler, M. E. Siegrist, L. J. Gauckler, Single chamber solid oxide fuel cells with integrated current-collectors. Solid State Ionics, 2005, 176(19-22):p. 1717-1722.

    K. Chen, X. Chen, Z. Lu, N. Ai, X. Huang, W. Su, Performance of an anode-supported SOFC with anode functional layers. Electrochimica Acta, 2008. 53(27): p. 7825-7830.

    M. Chen, B. H. Kim, Q. Xu, O. J. Nam, J. H. Ko, Synthesis and performances of Ni-SDC cermets for IT-SOFC anode. Journal of the European Ceramic Society, 2008. 28(15): p. 2947-2953.

    R. Craciun, S. Park, R. J. Gorte, J. M. Vohs, C. Wang, W. L. Worrell, Novel method for preparing anode cermets for solid oxide fuel cells. Journal of the Electrochemical Society, 1999. 146(11): p. 4019-4022.

    D. W. Dees, T. D. Claar, T. E. Easler, D. C. Fee, F. C. Mrazek, conductivity of porous Ni/ZrO2-Y2O3 cermets. Journal of the Electrochemical Society, 1987. 34(9): p. 2141-2146.

    K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics, 1992. 52(1-3): p. 165-172..

    H. Fukunaga, M. Ihara, K. Sakaki, K. Yamada, Relationship between overpotential and the three phase boundary length. Solid State Ionics, 1996. 86-88(pt 2): p. 1179-1185.

    C. Haering, A. Roosen, H. Schichl, Schn, M. Schnoller, Degradation of the electrical conductivity in stabilised zirconia system Part II: Scandia- stabilised zirconia. Solid State Ionics, 2005. 176(3-4): p. 261-268.

    J. J. Haslam, A-Q. Pham, B. W. Chung, J. F. DiCarlo, R. S. Glass, Effects of the use of pore formers on performance of an anode supported solid oxide fuel cell. Journal of the American Ceramic Society, 2005. 88(3): p. 513-518.

    T. Hibino, A. Hashimoto, T. Inoue, J-I Tokuno, S-I Yoshida, M. Sano, Single-chamber solid oxide fuel cells at intermediate temperatures with various hydrocarbon-air mixtures. Journal of the Electrochemical Society, 2000. 147(8): p. 2888-2892.

    T. Hibino, A. Hashimoto, M. Suzuki, M. Yano, S-I Yoshida, M. Sano, A solid oxide fuel cell with a novel geometry that eliminates the need for preparing a thin electrolyte film. Journal of the Electrochemical Society, 2002. 149(2): p. A195-A200.

    T. Hibino, A. Hashimoto, M. Yano, M. Suzuki, S-I Yoshida, M. Sano, High performance anodes for SOFCs operating in methane-air mixture at reduced temperatures. Journal of the Electrochemical Society, 2002. 149(2): p. A133-A136.

    T. Hibino, A. Hashimoto, M. Yano, M. Suzuki, M. Sano, Ru-catalyzed anode materials for direct hydrocarbon SOFCs. Electrochimica Acta, 2003. 48(17): p. 2531-2537.

    T. Hibino, H. Tsunekawa, S. Tanimoto, M. Sano, Improvement of a single-chamber solid-oxide fuel cell and evaluation of new cell designs. Journal of the Electrochemical Society, 2000. 147(4): p. 1338-1343.

    J. Hu, Z. Lu, K. Chen, X. Huang, N. Ai, X. Du, C. Fu, J. Wang, W. Su, Effect of composite pore-former on the fabrication and performance of anode-supported membranes for SOFCs. Journal of Membrane Science, 2008. 318(1-2): p. 445-451.

    K. Huang, M. Feng, J. B. Goodenough, M. Schmerling, Characterization of Sr-doped LaMnO3 and LaCoO3 as cathode materials for a doped LaGaO3 ceramic fuel cell. Journal of the Electrochemical Society, 1996. 143(11): p. 3630-3636.

    Y-H Huang, R. I. Dass, J. C. Denyszyn, J. B. Goodenough, Synthesis and characterization of Sr2MgMoO6-δ. Journal of the Electrochemical Society, 2006. 153(7): p. A1266-A1272.

    T. Ishihara, M. Honda, T. Shibayama, H. Minami, H. Nishiguchi, Y. Takita, Intermediate temperature solid oxide fuel cells using a new LaGaO3 based oxide ion conductor. Journal of the Electrochemical Society, 1998. 145(9): p. 3177-3183.

    T. Ishihara, H. Matsuda, Y. Takita, Doped LaGaO3 perovskite type oxide as a new oxide ionic conductor. Journal of the American Chemical Society, 1994. 116(9): p. 3801-3803.

    T. Ishihara, H. Matsuda, Y. Takita, Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide. Solid State Ionics, 1995. 79: p. 147-151.

    T. Ishihara, K. Sato, Y. Takita, Electrophoretic deposition of Y2O3-stabilized ZrO2 electrolyte films in solid oxide fuel cells. Journal of the American Ceramic Society, 1996. 79(4): p. 913-919.

    T. Iwata, Characterization of Ni-YSZ anode degradation for substrate-type solid oxide fuel cells. Journal of the Electrochemical Society, 1996. 143(5): p. 1521-1525.

    Y. Ji, Y-H Huang, J-R Ying, J-B Goodenough, Electrochemical performance of La-doped Sr2MgMoO6-δ; in natural gas. Electrochemistry Communications, 2007. 9(8): p. 1881-1885.

    J-M Li, F-Y Huang, W-Z Weng, X-Q Pei, C-R Luo, H-Q Lin, C-J Huang, H-L Wan, Effect of Rh loading on the performance of Rh/Al2O3 for methane partial oxidation to synthesis gas. Catalysis Today, 2008. 131(1-4): p. 179-187.

    S. Li, Z. Lu, B. Wei, X. Huang, J. Miao, Z. Liu, W. Su, Performances of Ba0.5Sr0.5Co0.6Fe0.4O3-δ-Ce0.8Sm0.2O1.9 composite cathode materials for IT-SOFC. Journal of Alloys and Compounds, 2008. 448(1-2): p. 116-121.

    M. Matsuda, T. Hosomi, K. Murata, T. Fukui, M. Miyake, Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC. Journal of Power Sources, 2007. 165(1): p. 102-107.

    J. Molenda, K. Swierczek, W. Zajac, Functional materials for the IT-SOFC. Journal of Power Sources, 2007. 173(2 SPEC. ISS.): p. 657-670.

    H. Moon, S. D. Kim, E. W. Park, S. H. Hyun, H. S. Kim, Characteristics of SOFC single cells with anode active layer via tape casting and co-firing. International Journal of Hydrogen Energy, 2008. 33(11): p. 2826-2833.

    B. Morel, R. Roberge, S. Savoie, T. W. Napporn, M. Meunier, Catalytic activity and performance of LSM cathode materials in single chamber SOFC. Applied Catalysis A: General, 2007. 323: p. 181-187.

    S. Naito, H. Tanaka, S. Kado, T. Miyao, S. Naito, K. Okumura, K. Kunimori, K. Tomishige, Promoting effect of Co addition on the catalytic partial oxidation of methane at short contact time over a Rh/MgO catalyst. Journal of Catalysis, 2008. 259(1): p. 138-146.

    H-A Nishimoto, K. Nakagawa, N-O Ikenaga, T. Suzuki, Partial oxidation of methane to synthesis gas over Ru-loaded Y2O3 catalyst. Catalysis Letters, 2002. 82(3-4): p. 161-167.

    S. Ohara, R. Maric, X. Zhang, K. Mukai, T. Fukui, H. Yoshida, T. Inagaki, K. Miura, High performance electrodes for reduced temperature solid oxide fuel cells with doped lanthanum gallate electrolyte. I. Ni-SDC cermet anode. Journal of Power Sources, 2000. 86(1): p. 455-458.

    A. Petric, P. Huang, F. Tietz, Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics, 2000. 135(1-4): p. 719-725.

    P. Ried, P. Holtappels, A. Wichser, A. Ulrich, T. Graule, Synthesis and characterization of La0.6Sr0.4Co0.2Fe0.8O3-δ; and Ba0.5Sr 0.5Co0.8Fe0.2O3-δ. Journal of the Electrochemical Society, 2008. 155(10): p. 1029-1035.

    J. C. Ruiz-Morales, J. Canales-Vazquez, B. Ballesteros-Perez, J. Pena-Martinez, D. Marrero-Lopez, J. T. S. Irvine, P. Nunez, LSCM-(YSZ-CGO) composites as improved symmetrical electrodes for solid oxide fuel cells. Journal of the European Ceramic Society, 2007. 27(13-15): p. 4223-4227.

    D. Simwonis, F. Tietz , D. Stoever, Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells. Solid State Ionics, 2000. 132(3): p. 241-251.

    S.C. Singhal, Advances in solid oxide fuel cell technology. Solid State Ionics, 2000. 135(1-4): p. 305-313.

    S. J. Skinner, J. A. Kilner, Oxygen diffusion and surface exchange in La2-xSrxNiO4+δ. Solid State Ionics, 2000. 135(1-4): p. 709-712.

    C. Sun, Z. Xie, C. Xia, H. Li, L. Chen, Investigations of mesoporous CeO2-Ru as a reforming catalyst layer for solid oxide fuel cells. Electrochemistry Communications, 2006. 8(5): p. 833-838.

    C. Sun, U. Stimming, Recent anode advances in solid oxide fuel cells. Journal of Power Sources, 2007. 171(2): p. 247-260.

    K. Swierczek, M. Gozu, Structural and electrical properties of selected La1-xSrxCo0.2Fe0.8O3 and La0.6Sr0.4Co0.2Fe0.6Ni0.2O3 perovskite type oxides. Journal of Power Sources, 2007. 173(2 SPEC. ISS.): p. 695-699.

    O. O. Van der Biest, L. J. Vandeperre, Electrophoretic deposition of materials. 1999, Annual Reviews Inc: Palo Alto, CA, United States. p. 327-352.

    S. Varcova, K. Wiik, J. Tolchard, H. J. M. Bouwmeester, T. Grande, Structural instability of cubic perovskite BaxSr1 - xCo1 - yFeyO3. Solid State Ionics, 2008. 178(35-36): p. 1787-1791.

    J. B. Wang, J-C Jang, T-J Huang, Study of Ni-samaria-doped ceria anode for direct oxidation of methane in solid oxide fuel cells. Journal of Power Sources, 2003. 122(2): p. 122-131.

    C. Wen, R. Kato, H. Fukunaga, H. Ishitani, K. Yamada, Overpotential of nickel/yttria-stabilized zirconia cermet anodes used in solid oxide fuel cells. Journal of the Electrochemical Society, 2000. 147(6): p. 2076-2080.

    C. Xia, M. Liu, Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC-Ni anodes for low-temperature SOFCs. Solid State Ionics, 2002. 152-153: p. 423-430.

    C. Xia, W. Rauch, F. Chen, M. Liu, Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs. Solid State Ionics, 2002. 149(1-2): p. 11-19.

    H. Yahiro, K. Eguchi, H. Arai, Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell. Solid State Ionics, 1989. 36(1-2): p. 71-75.

    K. Yamaji, T. Horita, M. Ishikawa, N. Sakai, H. Yokokawa, Chemical stability of the La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere. Solid State Ionics, 1999. 121(1): p. 217-224.

    S. Yang, T. He, Q. He, Sm0.5Sr0.5CoO3 cathode material from glycine-nitrate process: Formation, characterization, and application in LaGaO3-based solid oxide fuel cells. Journal of Alloys and Compounds, 2008. 450(1-2): p. 400-404.

    Y. L. Yang, C. L. Chen, S. Y. Chen, C. W. Chu, A. J. Jacobson, Impedance studies of oxygen exchange on dense thin film electrodes of La0.5Sr0.5CoO3-δ. Journal of the Electrochemical Society, 2000. 147(11): p. 4001-4007.

    S. Zha, J. Cheng, Q. Fu, G. Meng, Ceramic fuel cells based on ceria-carbonate salt composite electrolyte. Materials Chemistry and Physics, 2002. 77(2): p. 594-597.

    S. Zha, P. Tsang, Z. Cheng, M. Liu, Electrical properties and sulfur tolerance of La0.75Sr 0.25Cr1-xMnxO3 under anodic conditions. Journal of Solid State Chemistry, 2005. 178(6): p. 1844-1850.

    C. Zhang, Y. Zheng, R. Ran, Z. Shao, W. Jin, N. Xu, J. Ahn, Initialization of a methane-fueled single-chamber solid-oxide fuel cell with NiO + SDC anode and BSCF + SDC cathode. Journal of Power Sources, 2008. 179(2): p. 640-648.

    X. Zhang, C. Deces-Petit, S. Yick, M. Robertson, O. Kesler, R. Maric, D. Ghosh, A study on sintering aids for Sm0.2Ce0.8O1.9 electrolyte. Journal of Power Sources, 2006. 162(1): p. 480-485.

    X. Zhang, S. Ohara, R. Maric, H. Okawa, T. Fukui, H. Yoshida, T. Inagaki, K. Miura, Interface reactions in the NiO-SDC-LSGM system. Solid State Ionics, 2000. 133(3): p. 153-160.

    F. Zhao, A. V. Virkar, Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters. Journal of Power Sources, 2005. 141(1): p. 79-95.

    陳冠蓉, 以 Ni - SDC 為陽極材料之固態氧化物燃料電池研究 , in 化學工程研究所. 2005 , 國立成功大學.

    無法下載圖示 全文公開日期 2014/07/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE