簡易檢索 / 詳目顯示

研究生: 賴鵬宇
PENG-YU LAI
論文名稱: 製備鑭鏑鉬鎢氧化物電解質之固態氧化物燃料電池及其功率量測
Preparation of solid oxide fuel cells using (La1.8Dy0.2)(Mo2-xWx)O9 electrolytes and their power measurements
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 許貫中
kchsu@ntnu.edu.tw
周振嘉
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 99
中文關鍵詞: 電解質單電池
外文關鍵詞: Electrolyte, Single cell, Perovskite structure
相關次數: 點閱:210下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究以鑭鏑鉬鎢氧化物(La2-xDyx)(Mo2-yWy)O9電解質為主,燒製電解質支撐單電池和陽極支撐單電池,再分別以單氣室測試系統和雙氣室測試系統進行功率量測。 藉著XRD繞射圖譜去確認電極及電解質的製作是否煅燒成單一純相,並改善製程方法。 藉由微觀電子顯微鏡使用,來觀察單電池個別的微結構,分析加以改善。
    電解質支撐單電池搭配不同陽極材料進行功率密度量測,此電池為 (La0.6Sr0.4)(Co0.8Fe0.2)O3-δ / Ce0.9Gd0.1O2 / (La2-xDyx)(Mo2-yWy)O9 / Anode,在7500C時,陽極 (La2-xDyx)(Mo2-yWy)O9+NiO(1:1) 的功率表現優於其它電極材料,其功率密度為 67.1 mW/cm2。 接著分別改變測試溫度電解質厚度。溫度7500C時,觀察出得到電解質厚度減少至0.4mm時 ,其功率密度反而是下降的,此時功率只有50.8 mW/cm2,比電解質厚度0.7mm時的67.1 mW/cm2功率低,很明顯地,試片發生漏氣問題。但普遍來說,功率密度跟文獻的數值相比還是小了許多,歸咎於下列幾種原因,電解質膨脹係數過大,強度過低,在密封匹配難找到氣封玻璃材質,因為在升溫過程中,試片跟跟氧化鋁管膨脹係數差異過大,產生熱應力,且試片強度過低,導致試片承受不住,試片裂開,所以我們最佳的封法使用二層氣封膠,但此方法漏氣情形仍相當嚴重,也因此我們的功率密度一直無法提升。
    陽極支撐單電池則是以單氣室進行測試功率密度,此單電池為(Ba0.5Sr0.5)(CoxFe1-x)O3-δ/Ce0.9Gd0.1O2/(La2-xDyx)(Mo2-yWy)O9/ Ce0.9Gd0.1O2+NiO。 在6000C時,功率密度可達到157.9 mW/cm2。單電池的效能最佳,陽極支撐單電池單氣室的OCV值比電解質支撐單電池還低,但電流密度卻大了許多,因為陽極支撐單電池的電解質厚度只有40µm比電解質支撐單電池 700 µm 小了許多,所以歐姆電阻相對地比較小,不需要氣封的單氣室量測結果明顯較雙氣室結果為佳。


    In this work, we study the LDMW-based solid oxide fuel single cells with the electrolyte-supported and anode-supported configurations electrolyte. The power density was measured, using single-chamber or two-chamber cell testing system. The texture structure and morphology were investigated by X-ray diffraction and scanning electron microscopy. The XRD results indicated that the structure of electrodes and electrolyte were single phase.
    The single cell coated the different anode material for electrode-supported was measured in two-chamber cell testing system at 7500C. The results indicated that the power of single cell with (La2-xDyx)(Mo2-yWy)O9 NiO(1:1) anode was higher than the others and its power density was 67.1 mW/cm2. In optimize conditions of different temperature and electrolyte thickness, the power density of single cell with the electrolyte thickness(0.7mm) was the highest at 7500C. Decreasing the electrolyte thickness to 0.4mm, the power was only 50.8 mW/cm2. Obviously, The electrolyte was cracked. Since the power density was much lower than the data in the literature. Two plausible causes are the TEC value of LDMW is too high and its strength too weak. The TEC of LDMW is much higher than the that of the Al2O3 tube, the thermal stress was demonstrated too much for LDMW. Thus we sealed the single cell with two types of paste on two-level way. Still, the result of sealing was not very good. The appearance of the crack lines was very obvious.
    The single cell for anode-supported (Ba0.5Sr0.5)(CoxFe1-x)O3-δ / Ce0.9Gd0.1O2 / (La2-xDyx)(Mo2-yWy)O9 / Ce0.9Gd0.1O2+NiO was measured in a single-chamber cell testing system and the maximum power density was 157.9 mW/cm2 at 6000C. the performance of single cell was higher. The OCV of the single cell for anode-supported was lower than the single cell for electrolyte-supported. It may result from the electrolyte thickness was lower than the single cell, the value of the ohm resistance decreased. The result of power density measured in the single-chamber testing system was much better than the two-chamber testing system.

    第一章 緒論 7 1.1前言 7 1.2研究動機 8 第二章 理論基礎與文獻探討 9 2.1 燃料電池(FC) 之簡介 9 2.1.1燃料電池原理[1-3] 9 2.1.2燃料電池特點: 10 2.1.3各種燃料電池之比較 10 2.1.4應用 11 2.2 固態氧化物燃料電池之簡介[4] 11 2.2.1原理 11 2.2.2優點 12 2.3 固態氧化物燃料電池之構造組成[6] 13 2.3.1固態電解質(solid electrolyte): 13 2.3.2 陽極(anode) 19 2.3.3 陰極(cathode) 19 2.4 固態氧化物燃料電池結構設計 20 2.5 鑭鉬氧化物(La2Mo2O9) 20 2.6阻障層GDC電解質 24 2.7陰極/電解質間之界面電化學 25 2.8 SOFC之極化現象 26 第三章 實驗方法及步驟 30 3.1 實驗藥品 30 3.2 實驗流程 34 3.3電解質支撐單電池材料製備 35 3.3.1電解質-鑭鏑鉬鎢氧化物 (La1.8Dy0.2)(Mo2-xWx)O9 的基材製備 35 3.3.2 陰極-鑭鍶鈷鐵氧化物LSCF的製備 37 3.3.3 阻障層-GDC的製備 38 3.3.4 不同陽極-CuO+GDC、LDM、LM、LDMW+NiO材料的製備 40 3.3.5電解質支撐單電池試片之燒製 43 3.3.6電解質支撐單電池電測試系統架設 46 3.3.7 電解質支撐單電池電密封 49 3.4 陽極支撐單電池材料製備 52 3.4.1 陽極基材-GDC+NiO(1:1)製備 52 3.4.2 電解質-LDM製備: 53 3.4.3 阻障層-GDC製備: 54 3.4.4 陰極-鋇鍶鈷鐵氧化物BSCF製備: 54 3.4.5 陽極支撐單電池之燒製 56 3.4.5 陽極支撐單電池測試系統 57 3.5 材料特性分析 58 3.5.1 X光繞射分析 58 3.5.2 掃描式電鏡於截面及表面微觀分析 58 3.5.3單電池之I-V、I-P量測 59 第四章 結果與討論 60 4.1 電解質支撐單電池雙氣室測試 60 4.1.1 XRD結構鑑定 60 4.1.2顯微電鏡為結構觀察 62 4.1.3 雙氣室測試系統,電解質支撐單電池使用不同陽極對電性I-V及I-P的影響 64 4.1.4雙氣室測試系統,LSCF/GDC/LDMW/ LDMW+NiO 電解質支撐單電池對不同溫度的I-V 及I-P變化 69 4.1.5雙氣室測試系統, LSCF/GDC/LDMW/ LDMW+NiO 電解質支撐單電池對不同電解質厚度的I-V 及I-P比較分析 72 4.2 陽極支撐單電池單氣室測試 77 4.2.1 陽極支撐單電池XRD結構鑑定 77 4.2.2陽極支撐單電池的顯微結構觀察及改善 81 4.1.3 單氣室測試系統陽極支撐BSCF陰極對電性I-V及I-P的影響 84 第五章 結論 90 參考文獻 93 附錄A 97 附錄B 98 附錄C 99

    1. 黃鎮江,“燃料電池”,全華科技圖書股份有限公司 (2003)
    2. N. Q. Minh and T. Takahashi, Science and Technology of Ceramic Fuel 55
    3. A. J. Appleby and F. R. Foulkes, Fuel cell hand book, 55
    4. H. Gregor, Fuel cell technology hand book, CRC Press, (2002)
    5. J. Larminie and A. Dicks, Fuel Cell System Explained, 2ed, JOHN WILEY & SONS, Inc. , England, (2000).
    6. J. W. Kim, A.V. Virkar, K. Z. Fung, K. Mehta, and S.C. Singhal, Journal of The Electrochemical Society, 146, 69 (1999)
    7. N. Q. Minh and T. Takahashi, Science and technology of ceramic fuel cells. Elsevier, 1995.
    8. M. Mogensen, N. M. Sammes, G. A. Tompsett, solid State Ionics, 129:63~94(2000).
    R. L. Cook, , Journal of the Electrochemistry Society, 137, 3309~3310 (1990).
    9. N. M. Sammes, G. A. Tompsett, H. Näfe and F. Aldinget, Journal of the European Ceramic Society, 19, 1801~1826(1999).
    10. P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant, Nature, 404, 856 (2000).
    11. D. S. Tsai, M. J. Hsieh, J. C. Tseng, H. Y. Lee, J. Euro. Ceram. Soc., 25 [4], 481 (2005).
    12. S. Georges, F. Goutenoire, O. Bohnke, M. C. Steil, S. J. Skinner, H. D. Wiemhofer, P. Lacorre, J. New Materials for Electrochemical Systems, 7, 51 (2004).
    13. S. Georges, S. J. Skinner, P. Lacorre, M. C. Steil, Dalton Trans., 3101 (2004).
    14. A. Tarancon, T. Norby, G. Dezanneau, A. Morata, F. Peiro, J. R. Morante, Electrochem. Solid-State Lett., 7, A373 (2004).
    15. C. Tealdi, G. Chiodelli, L. Malavasi, G. Flor, J. Mater. Chem., 14, 3553 (2004).
    16. G. G. Zhang, Q. F. Fang, X. P. Wang, Z. G. Yi, Phys. Stat. Sol., 199, 329 (2003).
    17. S. Georges, F. Goutenoire, F. Altorfer, D. Sheptyakov, F. Fauth, E. Suard, P. Lacorre, Solid State Ionics, 161, 231 (2003).
    18. S. Georges, F. Goutenoire, Y. Laligant, Ph. Lacorre, J. Mater. Chem. 13, 421, 2317 (2003).
    19. Z. G. Yi, Q. F. Fang, X. P. Wang, G. G. Zhang, Solid State Ionics, 160, 117 (2003).
    20. X. P. Wang, Q. F. Fang, Phys. Rev. B, 65, 064304-1(2002).
    21. X. P. Wang, Q. F. Fang, Z. S. Li, G. G. Zhang, Z. G. Yi, Appl. Phys. Lett., 81, 3434 (2002).
    22. X. P. Wang, Q. F. Fang, Solid State Ionics, 146, 185 (2002).
    23. F. Goutenoire, O. Isnard, E. Suard, O. Bohnke, Y. Laligant, R. Retoux, and P. Lacorre, J. Mater. Chem., 11, 119 (2001).
    24. X. P. Wang, Q. F. Fang, J. Phys. Condens. Matter, 13, 1641 (2001).
    25. P. Lacorre, Solid State Ionics, 2, 755 (2000).
    26. P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant, Nature, 404, 856 (2000).
    27. F. Goutenoire, O. Isnard, R. Retoux, P. Lacorre, Chem. Mater., 12, 2575 (2000).
    28. F. Goutenoire, E. Suard, R. Retoux and P. Lacorre, J. Solid State Chem., 142, 228 (1999).
    29. P. Lacorre and R. Retoux, J. Solid State Chem., 132, 443 (1997).
    30. P. Lacorre, Solid State Ionics, 2, 755 (2000).
    31. P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux, Y. Laligant, Nature, 404, 856 (2000).
    32. F. Goutenoire, O. Isnard, R. Retoux, P. Lacorre, Chem. Mater., 12, 2575 (2000).
    33. Phase Diagrams for Ceramists, Vol III, The American Ceramic Society, Fig.4423 (1975).
    34. F. Goutenoire, O. Isnard, E. Suard, O. Bohnke, Y. Laligant, R. Retoux, and P. Lacorre, J. Mater. Chem., 11, 119 (2001).
    35. D. S. Tsai, M. J. Hsieh, J. C. Tseng, H. Y. Lee, J. Euro. Ceram. Soc., 25 [4], 481 (2005).
    36. F. Shi, J. Meng and Y. Ren, Solid State Commun., 95, 745 (1995).
    37. A. Manthiram and J. Gopalakrishnan, J. Less-Common Met., 68, 167 (1979).
    38. P. Lacorre and R. Retoux, J. Solid State Chem., 132, 443 (1997).
    39. S. Georges, F. Goutenoire, Y. Laligant, Ph. Lacorre, J. Mater. Chem. 13, 421, 2317 (2003).
    40. T. Y. Jin, M.V. M. Rao, C. L. Cheng, D. S. Tsai ,M. H. Hung, Solid State Ionics, 178, 367 (2007).
    41. K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Solid State Ionics,165,52 (1992).
    42. 方昱超 “金屬摻雜對SDC 導氧材料的影響及其在氧氣感測器中應用的研究”碩士學位論文, 國立台灣科技大學(2005).
    43. M. Gödickemeier, L J. Gauckler, Journal of The Electrochemical Society, 145,414 (1998)
    44. J. Larminie and A. Dicks, “Fuel Cell System Explained”, 1th Edition, JOHN WILEY & SONS, Inc. , England, (2000).
    45. J. W. Kim, A.V. Virkar, K. Z. Fung, K. Mehta, and S.C. Singhal, Journal of The Electrochemical Society, 146, 69 (1999).

    無法下載圖示 全文公開日期 2014/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE