簡易檢索 / 詳目顯示

研究生: Tesfaye Teka Hagos
Tesfaye Teka Hagos
論文名稱: 高電壓電解液改良工程以提升無陽極鋰金屬電池之電化學效能
High-Voltage Liquid Electrolyte Engineering to Improve Electrochemical Performance of Anode-Free Lithium Metal Battery
指導教授: 蘇威年
Wei-Nien Su
口試委員: 蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
吳溪煌
She-huang Wu
吳乃立
Nae-Lih Wu
張仍奎
Jeng-Kuei Chang
鄧熙聖
Hsisheng Teng
程敬義
Jim Cherng
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 151
中文關鍵詞: 無陽極電池陰離子衍生之SEI銅片稀釋死鋰氟化界面層電解液研究工具碳酸酯-醚混合物鋰枝晶靜置時間電壓降電容量降
外文關鍵詞: anion-derived SEI, diluent, fluorinated interphase, electrolyte development tool, carbonate-ether mixture, resting time, voltage drop, capacity drop
相關次數: 點閱:302下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高能量密度和高安全性是發展次世代電化學儲能元件兩代關鍵因素。因此,於能量密度上鋰金屬是被認為最具有潛力的陽極材料,其具有高的理論電容量(3860 mAh/g)和最低的還原電位(-3.04 V) 以及極小的密度(0.534 g/cm3)。為了真正實現二次可充放電鋰金屬電池,有許多困難的工作已被克服且取得顯著的進展。然而,鋰金屬具有極高的化學反應性大大阻礙了實際上的運用。 為了克服鋰金屬難以用於負極的瓶頸,一種新型態”無陽極鋰金屬電池”(AFLMB)被研發出來,於組裝完成後處在放電狀態,通過將鋰源預先儲存在陰極中並經過第一圈的充電後才將鋰金屬沉積在銅箔表面形成一顆完整的電池。這種電池不僅大大的提升電池的能量密度,也可以減少大量成本並簡化電池的製造難度,甚至在充電之前電池可以保持絕對的安全性。然而,由於缺乏穩定的固態電解液介面層(SEI)來控制鋰離子的沉積行為,因此在充放電循環過程中會造成鋰金屬生長成苔癬狀、晶鬚狀甚或是樹枝狀等等,這會造成電池的短路以及死鋰的產生並降低電池效率。因此,研發可生成良好的SEI與具有高循環效率的電解液成為解決此項問題的關鍵。
    第一項工作中以FEC稀釋之局部高濃度電解液 2M LiPF6 EC/DEC (1:1 v/v%)表現出良好的工作電位(2.5-4.5V),該開發之電解液可以在0.2 mA/cm2的電流下表現良好的平均庫倫效率97.8%且在循環50圈後仍能有40%的電容量保持率,與市售的碳酸酯類電解液相比,其僅有90%的平均庫倫效率並在循環15圈後電池即失去功效,本工作在無陽極電池碳酸酯體系的電解液中表現出極好的效能。另外,我們將此電解液於Li‖Cu以0.2 mA/cm2進行量測,其顯著的改善循環效率,表現出平均庫倫效率~98%及經過1066小時後仍有很小的遲滯電位(~30 mV)。此系統藉由局部高濃度的鹽類減少可自由反應之溶劑以降低電解液分解的情形,並依靠著與FEC稀釋劑的幫助使溶液導離度提升,有效的改善電化學效能與拓寬工作電位窗。
    在 第二個工作中,使用Cu‖LiNi1/3Mn1/3Co1/3O2 (Cu//NMC)的無陽極電池,並搭配不易燃且具有高度氟化界面層的碳酸酯-醚混合高壓電解液1 M LiPF6 FEC: TTE 3:7 v/v% (FEC/TTE). 在所有測試過的電解液中,我們會挑選出最好與最差的電解液做比較並研究基礎的科學現象。其中,最好的電解液的無陽極電池在0.5 mA/cm2的電流下可循環超過65圈後仍有50%以上的電容量且有98.67%的平均庫倫效率,商用碳酸酯電解液1 M LiPF6 EC/DEC 1:1 v/v% (EC/DEC) 則僅能循環5圈且平均庫倫效率僅有84.59%。而在 Li‖Cu 的系統中以.0.2 mA/cm2循環超過2250小時平均庫倫效率仍有98.87%而商用電解液循環500小時僅有82.65%的平均庫倫效率。 我們開發的電解液不論在高壓鋰金屬電池體系或是高壓鋰離子電池體系中皆顯示良好的循環性能,表現了優秀的穩定性與電容量,其歸功於氟化溶劑與鹽類陰離子生成穩定而厚實的SEI於極片表面。
    在最後一項工作中,我們研究在充飽電的情況下(SOC=100%),觀察於不同靜置/儲存時間下鋰金屬沉積的形貌、電壓降以及電容量降的情況。這項工作可通過電池充飽電了解電解質與鋰沉積的相互作用。同樣的,我們比較商用電解液1 M LiPF6 EC/DEC (1:1 v/v%)與所開發的電解液1 M LiPF6 FEC/TTE (3:7 v/v%),當我們增加電荷儲存時間,1 M LiPF6 FEC/TTE (3:7 v/v%)相較於1 M LiPF6 EC/DEC (1:1 v/v%)顯現出電極表面平滑而緻密的型態,阻抗增加相對較少且幾乎沒有電壓降與電容量降的情形。這表明1 M LiPF6 FEC/TTE (3:7 v/v%)於高壓狀態下非常穩定且不會快速與沉積之鋰金屬進行反應。儘管1 M LiPF6 FEC/TTE (3:7 v/v%)表現出了優秀的穩定性,但是我們仍觀察到不論在哪一種電解液中仍會隨著時間產生副反應。此項研究尚無法了解在此靜止的電荷存儲狀態下電池內產生了什麼反應,仍需要其他臨場技術支持並進行深入的科學探討。


    High energy density and safety are the two key parameters for the development of
    next-generation storage materials. In fulfilling these requirements lithium metal is considered as the most promising anode material in lithium metal battery due to its highest theoretical capacity (3860 mAh/g) and lowest reduction potential (-3.04 V) vs Li/Li+(V). To realize lithium metal rechargeable secondary battery, incredible research efforts are employed and notable progresses has been made. However, the notorious reactivity of metallic lithium as well as the catalytic nature of high-voltage cathode materials largely prevents their practical application. To overcome these bottleneck issues and use lithium metal as anode, a new battery architecture “anode-free lithium metal battery (AFLMB)” in discharge state by pre-storing lithium in the cathode and lithium metal anode generated in-situ on copper current collector while charging is designed. This battery design not only boosts the energy density but also minimizes cost, safety and ease of cell fabrication. However, like the other lithium metal battery, the in-situ plated lithium grows to moss and whiskers like lithium dendrites on copper current collector during cycling due to lack of stable and mechanically solid electrolyte interface (SEI) to control the stress exerted by the dendritic Li growth. Hence, developing effective electrolyte that forms stable SEI and using effective tool for the development is the key to solve the challenges of the current battery technology.
    Locally-concentrated electrolyte, 2M LiPF6 in ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1 v/v%) diluted with fluoroethylene carbonate (FEC), 2 M LiPF6 in EC/DEC 1:1 v/v% diluted by 50% FEC (E2), which is stable within wide potential range (2.5-4.5 V) is reported for the first time in our first approach. The developed electrolyte shows stable cyclic performance with ACE of 97.8% and more than 40% retention capacity at the 50th cycle, which is the best result reported for carbonate based solvents for AFLMBs. The commercial carbonate-based electrolyte shows less than 90% ACE and even cannot proceed more than 15 cycles with retention capacity of 40% at current density of 0.2 mA/cm2. Furthermore, the compatibility of the electrolyte for Li‖Cu cell was also confirmed. It shows significant improvement in cycling stability of lithium with an average coulombic efficiency (ACE) of ~98% and small voltage hysteresis (~30 mV) with current density of 0.2 mA/cm2 for over 1066 hours. The enhanced cycle life and well retained in capacity of the locally-concentrated electrolyte is mainly because of the synergetic effect of FEC as the diluent to increase the ionic conductivity and the locally-concentrated electrolyte that forms stable anion-derived SEI. The locally-concentrated electrolyte also shows high robustness to the effect of upper limit cut-off voltage.
    In our second work, an anode-free cell, Cu‖LiNi1/3Mn1/3Co1/3O2 (Cu//NMC), with all its irreversible features is employed as a tool to develop non-flammable and highly fluorinated interphase forming carbonate-ether mixed high-voltage electrolyte, 1 M LiPF6 in FEC: TTE 3:7 v/v% (FEC/TTE). Among all the electrolytes tested, the two extreme electrolytes (the best and the worst) have been chosen for comparison and understanding the fundamental science behind. The best electrolyte developed shows stable cycling for more than 65 cycles with >50% retention capacity with average coulombic efficiency (Av. CE) of ~98.67% in the anode-free cell at 0.5 mA/cm2. Under the same condition of >50% retention capacity, the cells with 1 M LiPF6 in EC/DEC 1:1 v/v% (EC/DEC) electrolyte can only be cycled for 5 cycles with Av. CE of 84.59% at the same current density. Li‖Cu cell can be cycled with lower polarization and almost no fading in capacity for ~2250 hours with Av. CE of 98.87% in the developed electrolyte compared to the commercial electrolyte which was cycled only for ~500 hours with Av. CE of 82.65% at a current density of 0.2 mA/cm2. The best electrolyte developed (FEC/TTE) also shows much better cycling performance in high-voltage lithium metal batteries (HVLMBs) and high-voltage lithium ion batteries (HVLIBs) compared to the commercial electrolyte, indicating the anode-free protocol is a powerful tool to develop electrolytes not only for lithium-metal batteries but also lithium-ion batteries. The best performance and high stability of the developed electrolyte at high voltage can be attributed to the formation of stable LiF dominated SEI generated from both the fluorinated solvents and the salt anions.
    In the final work, the stability and/or interaction of selected electrolytes with deposited lithium upon different resting/storage time after fully charged (SoC) as a parameter in terms of morphological change, voltage drop and discharge capacity drop has been investigated. This work demonstrates a new way of evaluating electrolytes using resting time at fully charging state by dealing with the interaction of the electrolytes and the deposited lithium. Cells that are assembled using two electrolytes 1 M LiPF6 in EC/DEC (1:1 v/v%) and 1 M LiPF6 in FEC/TTE (3:7 v/v%) were used for comparison at deposition state. As the resting/storage time increases the cells with 1 M LiPF6 in FEC/TTE (3:7 v/v%) shows smooth and compact morphology, relatively small increases in impedance, small voltage drops and almost insignificant discharge capacity drop compared to 1 M the cells with LiPF6 in EC/DEC (1:1 v/v%). This indicates that 1 M LiPF6 in FEC/TTE (3:7 v/v%) is more stable to react with the deposited lithium and safe electrolyte. Though the cells with FEC/TTE electrolyte shows relatively stable properties for long time than those with EC/DEC, but in general we have observed that in both electrolytes there are side reactions (chemical reaction) as resting time increases. However, still this investigation is not enough to understand what reactions are taking place inside the cells during this resting/storage time, so further in- situ techniques are required to understand the science behind in depth.

    中文摘要 i Abstract v Acknowledgments ix Table of Contents xi List of Figures xv List of Tables xxiii List of units and abbreviations xxv Chapter 1: Introduction 1 1.1 Background of the Study 1 1.2 Lithium Secondary Battery as Energy Storage Device 3 1.3 Basic Components of Secondary Batteries 5 1.3.1 Cathode Materials 8 1.3.2 Anode Materials 9 1.3.3 Separators 11 1.3.4. Electrolytes 12 1.4 Non-Aqueous Liquid Electrolytes and Its Components 13 1.4.1 Solvents 13 1.4.1.1 Carbonate-based Solvents 13 1.4.1.2 Ether-based Solvents 15 1.4.1.3 Ionic Liquid Based Solvents 16 1.4.2 Salts 16 Chapter 2: The Challenges and Possible Mitigation Approaches for Rechargeable Lithium Metal Batteries 19 2.1 Lithium Metal Battery 19 2.2 Issues Related with Lithium Metal Battery 20 2.3 Strategies to Utilize Lithium Metal as Anode 22 2.3.1 Electrode and Current Collector Modification 24 2.3.2 Electrolyte Additives 25 2.3.3 Electrolyte Modification 26 2.3.4 Solid Electrolyte Interphases Formation 27 2.3.4.1 Concentrated Electrolytes 27 2.3.4.2 Fluorinated Electrolytes 29 2.4 Anode-Free Rechargeable Lithium Metal battery 31 2.5 Motivation and Objectives of the Study 38 2.5.1 Motivation 38 2.5.2 Objectives 39 Chapter 3: Experimental Section 41 3.1 Chemicals and Reagents 41 3.2 Electrode Fabrication 42 3.2.1 Cathode Material 42 3.2.2 Anode Current Collector Preparation 43 3.2.3 Electrolyte Preparation 43 3.3 Electrochemical Measurement and Characterization 45 3.3.1 Electrochemical Measurements 45 3.3.2 Lithium Morphology Characterization 47 3.3.3 SEI and Solution Structure Characterizations 48 3.3.4 Computational Investigations 49 Chapter 4: Locally-concentrated LiPF6 in Carbonate-based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Battery 51 4.1 Introduction 51 4.2. Results and Discussion 55 4.2.1 Electrolyte Concentration Optimization and Physicochemical Properties 55 4.2.2 Electrochemical Performance and Morphology of Anode-free Cu‖ NMC Cell 58 4.2.3 Electrochemical Performance and Li-deposition Morphology Using Li‖Cu Cell 63 4.2.4 Solvation Structure and the Chemistry at Interphase 66 4.3 Summary 72 Chapter 5: Developing High-Voltage Carbonate-Ether Mixed Electrolyte via Anode-Free Cell Configuration 75 5.1 Introduction 75 5.2 Result and Discussion 77 5.2.1 Developing Electrolytes Using anode-free Li metal Battery Configuration 77 5.2.2 Morphology and Inactive Li Evolution in Two Extreme Electrolytes 84 5.2.3 Electrochemical Stability of Two Extreme Electrolytes 88 5.2.4 Solvation Structure and Chemistry at Interphases 95 5.2.5 Electrochemical Performance of Li-ion and Li-Metal batteries 99 5.3 Summary 101 Chapter 6: Investigating Stability of Electrolytes at Different Resting Time After Fully-Charged Using Anode-Free Lithium Metal Battery 103 6.1 Introduction 103 6.2 Results and Discussions 104 6.2.1 Morphological Change and Surface Composition at Different Resting Times 104 6.2.2 Effect of Resting Times on Capacity and Voltage Drop 112 6.3. Summary 114 Chapter 7: Conclusions and Future Outlooks 115 7.1. Conclusions 115 7.2. Future Perspectives 117 References 119 Appendix A: Supporting data for Chapter 4 141 Appendix B: Supporting data for Chapter 5 145 Appendix C: Supporting data for Chapter 6 149

    [1] D.o.E. United Nations, P.D. Social Affairs, World Population Prospects 2019: Highlights, (2019).
    [2] I. Energy, C. Change, World Energy Outlook Special Report, IEA: Paris, France, (2015).
    [3] S. Hernández, M.A. Farkhondehfal, F. Sastre, M. Makkee, G. Saracco, N. Russo, Syngas production from electrochemical reduction of CO2: current status and prospective implementation, Green Chemistry, 19 (2017) 2326-2346.
    [4] N. Panwar, S. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review, Renewable and Sustainable Energy Reviews, 15 (2011) 1513-1524.
    [5] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nanoscience And Technology: A Collection of Reviews from Nature Journals, World Scientific2010, 320-329.
    [6] J.B. Goodenough, K.-S. Park, The Li-ion rechargeable battery: a perspective, Journal of the American Chemical Society, 135 (2013) 1167-1176.
    [7] X. Luo, J. Wang, M. Dooner, J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Applied energy, 137 (2015) 511-536.
    [8] D. Aurbach, M. Daroux, P. Faguy, E. Yeager, Identification of surface films formed on lithium in propylene carbonate solutions, Journal of The Electrochemical Society, 134 (1987) 1611-1620.
    [9] J. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.-G. Zhang, High rate and stable cycling of lithium metal anode, Nature communications, 6 (2015) 6362.
    [10] M.R. Palacin, Recent advances in rechargeable battery materials: a chemist’s perspective, Chemical Society Reviews, 38 (2009) 2565-2575.
    [11] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific2011, 171-179.
    [12] C. Fang, X. Wang, Y.S. Meng, Key issues hindering a practical lithium-metal anode, Trends in Chemistry, 1(2019), 152-158.
    [13] J. Vetter, P. Novák, M.R. Wagner, C. Veit, K.-C. Möller, J. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, Ageing mechanisms in lithium-ion batteries, Journal of power sources, 147 (2005) 269-281.
    [14] M. Reddy, G. Subba Rao, B. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries, Chemical reviews, 113 (2013) 5364-5457.
    [15] B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries. A look into the future, Energy & Environmental Science, 4 (2011) 3287-3295.
    [16] R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting, K. Albe, C. Hess, W. Jaegermann, Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches, Materials Science and Engineering: B, 192 (2015) 3-25.
    [17] X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries, Advanced Functional Materials, 27 (2017) 1605989.
    [18] M.S. Whittingham, Chemistry of intercalation compounds: metal guests in chalcogenide hosts, Progress in Solid State Chemistry, 12 (1978) 41-99.
    [19] A. Mendiboure, C. Delmas, P. Hagenmuller, New layered structure obtained by electrochemical deintercalation of the metastable LiCoO2 (O2) variety, Materials research bulletin, 19 (1984) 1383-1392.
    [20] A.S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific2011, 148-159.
    [21] C.M. Julien, A. Mauger, K. Zaghib, H. Groult, Comparative Issues of Cathode Materials for Li-Ion Batteries, Inorganics, 2 (2014) 132-154.
    [22] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Materials Today, 18 (2015) 252-264.
    [23] F.F. Bazito, R.M. Torresi, Cathodes for lithium ion batteries: the benefits of using nanostructured materials, Journal of the Brazilian Chemical Society, 17 (2006) 627-642.
    [24] A.M. Haregewoin, A.S. Wotango, B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy & Environmental Science, 9 (2016) 1955-1988.
    [25] T. Ohzuku, A. Ueda, N. Yamamoto, Zero‐strain insertion material of Li [Li1/3Ti5/3] O 4 for rechargeable lithium cells, Journal of the Electrochemical Society, 142 (1995) 1431-1435.
    [26] P.P. Prosini, R. Mancini, L. Petrucci, V. Contini, P. Villano, Li4Ti5O12 as anode in all-solid-state, plastic, lithium-ion batteries for low-power applications, Solid State Ionics, 144 (2001) 185-192.
    [27] C. Ouyang, Z. Zhong, M. Lei, Ab initio studies of structural and electronic properties of Li4Ti5O12 spinel, Electrochemistry Communications, 9 (2007) 1107-1112.
    [28] J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, High-performance anode materials for rechargeable lithium-ion batteries, Electrochemical Energy Reviews, 1 (2018) 35-53.
    [29] V. Deimede, C. Elmasides, Separators for lithium‐ion batteries: a review on the production processes and recent developments, Energy technology, 3 (2015) 453-468.
    [30] P. Arora, Z. Zhang, Battery Separators, Chemical Reviews, 104 (2004) 4419-4462.
    [31] J. Trevey, J.S. Jang, Y.S. Jung, C.R. Stoldt, S.-H. Lee, Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium–ion batteries, Electrochemistry communications, 11 (2009) 1830-1833.
    [32] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chemical reviews, 104 (2004) 4303-4418.
    [33] Q. Li, J. Chen, L. Fan, X. Kong, Y. Lu, Progress in electrolytes for rechargeable Li-based batteries and beyond, Green Energy & Environment, 1 (2016) 18-42.
    [34] S.-I. Lee, U.-H. Jung, Y.-S. Kim, M.-H. Kim, D.-J. Ahn, H.-S. Chun, A study of electrochemical kinetics of lithium ion in organic electrolytes, Korean Journal of Chemical Engineering, 19 (2002) 638-644.
    [35] D.S. Hall, J. Self, J.R. Dahn, Dielectric Constants for Quantum Chemistry and Li-Ion Batteries: Solvent Blends of Ethylene Carbonate and Ethyl Methyl Carbonate, The Journal of Physical Chemistry C, 119 (2015) 22322-22330.
    [36] K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Reviews, 104 (2004) 4303−4417.
    [37] J.-K. Park, in: G.-A. Nazri, Balaya, P., Manthiram, A., Yamada, A., Yang, Y. (Ed.) Principles and Applications of Lithium Secondary Batteries Wiley-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany, 2012, 355.
    [38] T. Jaumann, J. Balach, U. Langklotz, V. Sauchuk, M. Fritsch, A. Michaelis, V. Teltevskij, D. Mikhailova, S. Oswald, M. Klose, G. Stephani, R. Hauser, J. Eckert, L. Giebeler, Lifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes, Energy Storage Materials, 6 (2017) 26-35.
    [39] A.J. Fry, Synthetic organic electrochemistry, John Wiley & Sons1989, ISBN-0-471-63396-8
    [40] X. Wu, X. Li, Z. Wang, H. Guo, P. Yue, Capacity fading reason of LiNi 0.5 Mn 1.5 O 4 with commercial electrolyte, Ionics, 19 (2013) 379-383.
    [41] J. Demeaux, D. Lemordant, H. Galiano, M. Caillon-Caravanier, B. Claude-Montigny, Impact of storage on the LiNi0. 4Mn1.6O4 high voltage spinel performances in alkylcarbonate-based electrolytes, Electrochimica Acta, 116 (2014) 271-277.
    [42] R. Miao, J. Yang, Z. Xu, J. Wang, Y. Nuli, L. Sun, A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries, Scientific reports, 6 (2016) 21771.
    [43] W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y.-M. Chiang, Y. Cui, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nature communications, 6 (2015) 7436.
    [44] X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S.-C. Liou, Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries, Nature nanotechnology, 13 (2018) 715.
    [45] M. Galiński, A. Lewandowski, I. Stępniak, Ionic liquids as electrolytes, Electrochimica acta, 51 (2006) 5567-5580.
    [46] L.T.M. Le, T.D. Vo, Q.D. Nguyen, S. Okada, F. Alloin, P.M.L. Le, High Performance Electrolyte Using Mixtures of Ionic Liquid–Solvent for Sodium-Ion Batteries, ECS Transactions, 85 (2018) 215-226.
    [47] G. Appetecchi, M. Montanino, S. Passerini, Ionic liquid-based electrolytes for high energy, safer lithium batteries, Ionic Liquids: Science and Applications, ACS Publications 2012, 67-128.
    [48] G.A. Giffin, Ionic liquid-based electrolytes for “beyond lithium” battery technologies, Journal of Materials Chemistry A, 4 (2016) 13378-13389.
    [49] J.S. Gnanaraj, M.D. Levi, Y. Gofer, D. Aurbach, M. Schmidt, LiPF3 (  CF 2 CF 3 ) 3 :  A Salt for Rechargeable Lithium Ion Batteries, Journal of The Electrochemical Society, 150 (2003) A445-A454.
    [50] N. Membreño, K. Park, J.B. Goodenough, K.J. Stevenson, Electrode/Electrolyte Interface of Composite α-Li3V2(PO4)3 Cathodes in a Nonaqueous Electrolyte for Lithium Ion Batteries and the Role of the Carbon Additive, Chemistry of Materials, 27 (2015) 3332-3340.
    [51] A.S. Wotango, W.-N. Su, E.G. Leggesse, A.M. Haregewoin, M.-H. Lin, T.A. Zegeye, J.-H. Cheng, B.-J. Hwang, Improved Interfacial Properties of MCMB Electrode by 1-(Trimethylsilyl)imidazole as New Electrolyte Additive To Suppress LiPF6 Decomposition, ACS Applied Materials & Interfaces, 9 (2017) 2410-2420.
    [52] G. Newman, R. Francis, L. Gaines, B. Rao, Hazard investigations of LiClO4/dioxolane electrolyte, Journal of The Electrochemical Society, 127 (1980) 2025-2027.
    [53] D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J.S. Gnanaraj, H.-J. Kim, Design of electrolyte solutions for Li and Li-ion batteries: a review, Electrochimica Acta, 50 (2004) 247-254.
    [54] T.R. Jow, K. Xu, O. Borodin, U. Makoto, Electrolytes for lithium and lithium-ion batteries, Springer 2014, ISBN 978-1-4939-0301-6.
    [55] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nature Nanotechnology, 12 (2017) 194.
    [56] D. Aurbach, Y. Cohen, The application of atomic force microscopy for the study of Li deposition processes, Journal of the Electrochemical Society, 143 (1996) 3525-3532.
    [57] Z. Li, J. Huang, B.Y. Liaw, V. Metzler, J. Zhang, A review of lithium deposition in lithium-ion and lithium metal secondary batteries, Journal of power sources, 254 (2014) 168-182.
    [58] B. Liu, J.-G. Zhang, W. Xu, Advancing lithium metal batteries, Joule, 2 (2018) 833-845.
    [59] J.-J. Woo, V.A. Maroni, G. Liu, J.T. Vaughey, D.J. Gosztola, K. Amine, Z. Zhang, Symmetrical impedance study on inactivation induced degradation of lithium electrodes for batteries beyond lithium-ion, Journal of The Electrochemical Society, 161 (2014) A827-A830.
    [60] W. Dong, W. Zhang, W. Zheng, X. Cui, T. Rojo, Q. Zhang, Towards High-Safe Lithium Metal Anodes: Suppressing Lithium Dendrites via Tuning Surface Energy, 4(2017) 1600168
    [61] X. Zhang, T.M. Devine, Passivation of aluminum in lithium-ion battery electrolytes with LiBOB, Journal of The Electrochemical Society, 153 (2006) B365-B369.
    [62] K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Review, 104 (2004) 4303−4417.
    [63] X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward safe lithium metal anode in rechargeable batteries: a review, Chemical reviews, 117 (2017) 10403-10473.
    [64] L.M. Suo, Y.S. Hu, H. Li, M. Armand, L.Q. Chen, A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries, Nat. Commun., 4 (2013) 1481.
    [65] M.M.U. Din, R. Murugan, Metal Coated Polypropylene Separator with Enhanced Surface Wettability for High Capacity Lithium Metal Batteries, Scientific reports, 9 (2019) 1-12.
    [66] G. Hou, Q. Sun, Q. Ai, X. Ren, X. Xu, H. Guo, S. Guo, L. Zhang, J. Feng, F. Ding, Growth direction control of lithium dendrites in a heterogeneous lithiophilic host for ultra-safe lithium metal batteries, Journal of Power Sources, 416 (2019) 141-147.
    [67] L.-L. Lu, J. Ge, J.-N. Yang, S.-M. Chen, H.-B. Yao, F. Zhou, S.-H. Yu, Free-standing copper nanowire network current collector for improving lithium anode performance, Nano letters, 16 (2016) 4431-4437.
    [68] X.B. Cheng, T.Z. Hou, R. Zhang, H.J. Peng, C.Z. Zhao, J.Q. Huang, Q. Zhang, Dendrite‐free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries, Advanced Materials, 28 (2016) 2888-2895.
    [69] A. von Cresce, K. Xu, Electrolyte additive in support of 5 V Li ion chemistry, Journal of The Electrochemical Society, 158 (2011) A337-A342.
    [70] B. Liang, Y. Liu, Y. Xu, Silicon-based materials as high capacity anodes for next generation lithium ion batteries, Journal of Power sources, 267 (2014) 469-490.
    [71] J. Wang, Y. Yamada, K. Sodeyama, C.H. Chiang, Y. Tateyama, A. Yamada, Superconcentrated electrolytes for a high-voltage lithium-ion battery, Nature communications, 7 (2016) 12032.
    [72] P. Liu, Q. Ma, Z. Fang, J. Ma, Y.-S. Hu, Z.-B. Zhou, H. Li, X.-J. Huang, L.-Q. Chen, Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes, Chin. Phys. B, 25 (2016) 078203.
    [73] Q. Pang, A. Shyamsunder, B. Narayanan, C.Y. Kwok, L.A. Curtiss, L.F. Nazar, Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries, Nature Energy, 3 (2018) 783-791.
    [74] L.D. Ellis, I.G. Hill, K.L. Gering, J.R. Dahn, Synergistic Effect of LiPF6 and LiBF4 as Electrolyte Salts in Lithium-Ion Cells, Journal of The Electrochemical Society, 164 (2017) A2426-A2433.
    [75] T.T. Beyene, W.-N. Su, H. Dai, B.-J. Hwang, Synergistic Effect of Cycling Strategies and Electrolyte for Effective Plating/Stripping of Anode Free Li Metal Batteries, Meeting Abstracts, MA2019-03 (2019) 250.
    [76] C. Wang, Y. Yang, X. Liu, H. Zhong, H. Xu, Z. Xu, H. Shao, F. Ding, Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries, ACS Applied Materials & Interfaces, 9 (2017) 13694-13702.
    [77] A. Schiele, B. Breitung, T. Hatsukade, B.B. Berkes, P. Hartmann, J. Janek, T. Brezesinski, The Critical Role of Fluoroethylene Carbonate in the Gassing of Silicon Anodes for Lithium-Ion Batteries, ACS Energy Letters, 10(2017) 2228-2233.
    [78] P. Verma, P. Maire, P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, 55 (2010) 6332-6341.
    [79] Y. Qian, S. Hu, X. Zou, Z. Deng, Y. Xu, Z. Cao, Y. Kang, Y. Deng, Q. Shi, K. Xu, Y. Deng, How electrolyte additives work in Li-ion batteries, Energy Storage Materials, 20 (2019): 208-215.
    [80] F. Lindgren, C. Xu, L. Niedzicki, M. Marcinek, T. Gustafsson, F. Björefors, K. Edström, R. Younesi, SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries, ACS Applied Materials & Interfaces, 8 (2016) 15758-15766.
    [81] A.L. Michan, B.S. Parimalam, M. Leskes, R.N. Kerber, T. Yoon, C.P. Grey, B.L. Lucht, Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation, Chemistry of Materials, 28 (2016) 8149-8159.
    [82] Z. Zhang, L. Hu, H. Wu, W. Weng, M. Koh, P.C. Redfern, L.A. Curtiss, K. Amine, Fluorinated electrolytes for 5 V lithium-ion battery chemistry, Energy & Environmental Science, 6 (2013) 1806-1810.
    [83] X. Fan, L. Chen, X. Ji, T. Deng, S. Hou, J. Chen, J. Zheng, F. Wang, J. Jiang, K. Xu, Highly fluorinated interphases enable high-voltage Li-metal batteries, Chem, 4 (2018) 174-185.
    [84] D. Lu, J. Tao, P. Yan, W.A. Henderson, Q. Li, Y. Shao, M.L. Helm, O. Borodin, G.L. Graff, B. Polzin, Formation of reversible solid electrolyte interface on graphite surface from concentrated electrolytes, Nano letters, 17 (2017) 1602-1609.
    [85] J. Zheng, J.A. Lochala, A. Kwok, Z.D. Deng, J. Xiao, Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications, Advanced Science, 4 (2017) 1700032.
    [86] C. Wang, Y.S. Meng, K. Xu, Perspective—Fluorinating Interphases, Journal of The Electrochemical Society, 166 (2019) A5184-A5186.
    [87] C.-K. Kim, K. Kim, K. Shin, J.-J. Woo, S. Kim, S.Y. Hong, N.-S. Choi, Synergistic Effect of Partially Fluorinated Ether and Fluoroethylene Carbonate for High-Voltage Lithium-Ion Batteries with Rapid Chargeability and Dischargeability, ACS applied materials & interfaces, 9 (2017) 44161-44172.
    [88] Y. Liu, S. Fang, P. Shi, D. Luo, L. Yang, S.-i. Hirano, Ternary mixtures of nitrile-functionalized glyme, non-flammable hydrofluoroether and fluoroethylene carbonate as safe electrolytes for lithium-ion batteries, Journal of Power Sources, 331 (2016) 445-451.
    [89] K. Westhoff, T. Bandhauer, A Multi-Functional Electrolyte for Lithium-Ion Batteries I. Non-Boiling Electrochemical Performance, Journal of The Electrochemical Society, 163 (2016) A1903-A1913.
    [90] L. Xia, Y. Xia, C. Wang, H. Hu, S. Lee, Q. Yu, H. Chen, Z. Liu, 5 V‐Class Electrolytes Based on Fluorinated Solvents for Li‐Ion Batteries with Excellent Cyclability, ChemElectroChem, 2 (2015) 1707-1712.
    [91] M. He, L. Hu, Z. Xue, C.C. Su, P. Redfern, L.A. Curtiss, B. Polzin, A. von Cresce, K. Xu, Z. Zhang, Fluorinated electrolytes for 5-V Li-ion chemistry: probing voltage stability of electrolytes with electrochemical floating test, Journal of The Electrochemical Society, 162 (2015) A1725-A1729.
    [92] J. Jiang, W. Shi, J. Zheng, P. Zuo, J. Xiao, X. Chen, W. Xu, J.-G. Zhang, Optimized operating range for large-format LiFePO4/graphite batteries, Journal of The Electrochemical Society, 161 (2014) A336-A341.
    [93] Y.-K. Sun, Z. Chen, H.-J. Noh, D.-J. Lee, H.-G. Jung, Y. Ren, S. Wang, C.S. Yoon, S.-T. Myung, K. Amine, Nanostructured high-energy cathode materials for advanced lithium batteries, Nature materials, 11 (2012) 942.
    [94] Jiangfeng Qian , Brian D. Adams , Jianming Zheng , W. Xu, Wesley A. Henderson , Jun Wang , Mark E. Bowden , Suochang Xu , Jianzhi Hu , J.-G. Zhang, Anode Free Rechargeable Lithium Metal abatteries, Advanced Functional Materials, 26 (2016) 7094–7102.
    [95] T.T. Hagos, B. Thirumalraj, C.-J. Huang, L.H. Abrha, T.M. Hagos, G.B. Berhe, H.K. Bezabh, J. Cherng, S.-F. Chiu, W.-N. Su, B.-J. Hwang, Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries, ACS Applied Materials & Interfaces, 11 (2019) 9955-9963.
    [96] T.T. Beyene, H.K. Bezabh, M.A. Weret, T.M. Hagos, C.-J. Huang, C.-H. Wang, W.-N. Su, H. Dai, B.-J. Hwang, Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries, Journal of The Electrochemical Society, 166 (2019) A1501-A1509.
    [97] M. Genovese, A.J. Louli, R. Weber, S. Hames, J.R. Dahn, Measuring the Coulombic Efficiency of Lithium Metal Cycling in Anode-Free Lithium Metal Batteries, Journal of The Electrochemical Society, 165 (2018) A3321-A3325.
    [98] R. Weber, M. Genovese, A. Louli, S. Hames, C. Martin, I.G. Hill, J. Dahn, Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte, Nature Energy, 4 (2019) 683-689.
    [99] J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson, J. Wang, M.E. Bowden, S. Xu, J. Hu, J.-G. Zhang, Anode-Free Rechargeable Lithium Metal Batteries, Advanced Functional Materials, 26 (2016) 7094-7102.
    [100] M. Genovese, A. Louli, R. Weber, S. Hames, J. Dahn, Measuring the Coulombic Efficiency of Lithium Metal Cycling in Anode-Free Lithium Metal Batteries, Journal of The Electrochemical Society, 165 (2018) A3321-A3325.
    [101] J. Luo, C.C. Fang, N.L. Wu, High Polarity Poly (vinylidene difluoride) Thin Coating for Dendrite‐Free and High‐Performance Lithium Metal Anodes, Advanced Energy Materials, 8 (2018) 1701482.
    [102] A.A. Assegie, J.-H. Cheng, L.-M. Kuo, W.-N. Su, B.-J. Hwang, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery, Nanoscale, 10 (2018) 6125-6138.
    [103] A.A. Assegie, C.-C. Chung, M.-C. Tsai, W.-N. Su, C.-W. Chen, B.-J. Hwang, Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries, Nanoscale, 11 (2019) 2710-2720.
    [104] A.P. Cohn, N. Muralidharan, R. Carter, K. Share, C.L. Pint, Anode-Free Sodium Battery through in Situ Plating of Sodium Metal, Nano Lett, 17 (2017) 1296-1301.
    [105] A. Rudola, S.R. Gajjela, P. Balaya, High energy density in - situ sodium plated battery with current collector foil as anode, Electrochemistry Communications, 86 (2018) 157-160.
    [106] D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries, Journal of Power Sources, 89 (2000) 206-218.
    [107] K. Xu, A. von Cresce, Interfacing electrolytes with electrodes in Li ion batteries, Journal of Materials Chemistry, 21 (2011) 9849-9864.
    [108] M. Winter, The solid electrolyte interphase–the most important and the least understood solid electrolyte in rechargeable Li batteries, Zeitschrift für physikalische Chemie, 223 (2009) 1395-1406.
    [109] C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical review B, 37 (1988) 785.
    [110] M. Armand, J.-M. Tarascon, Building better batteries, nature, 451 (2008) 652.
    [111] Y. Wang, Z. Feng, S.-Z. Yang, C. Gagnon, V. Gariépy, D. Laul, W. Zhu, R. Veillette, M.L. Trudeau, A. Guerfi, Layered oxides-LiNi1/3 Co1/3 Mn1/3 O2 as anode electrode for symmetric rechargeable lithium-ion batteries, Journal of Power Sources, 378 (2018) 516-521.
    [112] A.M. Tripathi, W.-N. Su, B.J. Hwang, In situ analytical techniques for battery interface analysis, Chemical Society Reviews, 47 (2018) 736-851.
    [113] J.-H. Cheng, A.A. Assegie, C.-J. Huang, M.-H. Lin, A.M. Tripathi, C.-C. Wang, M.-T. Tang, Y.-F. Song, W.-N. Su, B.J. Hwang, Visualization of lithium plating and stripping via in operando transmission x-ray microscopy, The Journal of Physical Chemistry C, 121 (2017) 7761-7766.
    [114] J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson, J. Wang, M.E. Bowden, S. Xu, J. Hu, J.G. Zhang, Anode‐free rechargeable lithium metal batteries, Advanced Functional Materials, 26 (2016) 7094-7102.
    [115] C.M. López, J.T. Vaughey, D.W. Dees, Morphological transitions on lithium metal anodes, Journal of the Electrochemical Society, 156 (2009) A726-A729.
    [116] R. Miao, J. Yang, X. Feng, H. Jia, J. Wang, Y. Nuli, Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility, Journal of Power Sources, 271 (2014) 291-297.
    [117] D. Aurbach, B. Markovsky, M. Levi, E. Levi, A. Schechter, M. Moshkovich, Y. Cohen, New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries, Journal of power sources, 81 (1999) 95-111.
    [118] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nature nanotechnology, 12 (2017) 194.
    [119] N.W. Li, Y.X. Yin, J.Y. Li, C.H. Zhang, Y.G. Guo, Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable Li plating/stripping, Advanced Science, 4 (2017) 1600400.
    [120] B. Neudecker, N. Dudney, J. Bates, “Lithium‐free” thin‐film battery with in situ plated Li anode, Journal of the Electrochemical Society, 147 (2000) 517-523.
    [121] N.W. Li, Y.X. Yin, C.P. Yang, Y.G. Guo, An artificial solid electrolyte interphase layer for stable lithium metal anodes, Advanced Materials, 28 (2016) 1853-1858.
    [122] N.W. Li, Y. Shi, Y.X. Yin, X.X. Zeng, J.Y. Li, C.J. Li, L.J. Wan, R. Wen, Y.G. Guo, A Flexible Solid Electrolyte Interphase Layer for Long‐Life Lithium Metal Anodes, Angewandte Chemie International Edition, 57 (2018) 1505-1509.
    [123] F. Croce, G. Appetecchi, L. Persi, B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries, Nature, 394 (1998) 456.
    [124] K.K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S.D. Lacey, J. Dai, Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface, Science Advances, 3 (2017) e1601659.
    [125] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Lithium metal anodes for rechargeable batteries, Energy & Environmental Science, 7 (2014) 513-537.
    [126] T. Doi, Y. Shimizu, M. Hashinokuchi, M. Inaba, Dilution of highly concentrated LiBF4/propylene carbonate electrolyte solution with fluoroalkyl ethers for 5-V LiNi0. 5Mn1. 5O4 positive electrodes, Journal of The Electrochemical Society, 164 (2017) A6412-A6416.
    [127] T. Doi, R. Masuhara, M. Hashinokuchi, Y. Shimizu, M. Inaba, Concentrated LiPF6/PC electrolyte solutions for 5-V LiNi0. 5Mn1. 5O4 positive electrode in lithium-ion batteries, Electrochimica Acta, 209 (2016) 219-224.
    [128] L. Suo, F. Zheng, Y.-S. Hu, L. Chen, FT-Raman spectroscopy study of solvent-in-salt electrolytes, Chinese Physics B, 25 (2015) 016101.
    [129] M. Nie, D.P. Abraham, D.M. Seo, Y. Chen, A. Bose, B.L. Lucht, Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate, The Journal of Physical Chemistry C, 117 (2013) 25381-25389.
    [130] D. Brouillette, D.E. Irish, N.J. Taylor, G. Perron, M. Odziemkowski, J.E. Desnoyers, Stable solvates in solution of lithium bis (trifluoromethylsulfone) imide in glymes and other aprotic solvents: Phase diagrams, crystallography and Raman spectroscopy, Physical Chemistry Chemical Physics, 4 (2002) 6063-6071.
    [131] D.M. Seo, O. Borodin, S.-D. Han, Q. Ly, P.D. Boyle, W.A. Henderson, Electrolyte Solvation and Ionic Association, Journal of The Electrochemical Society, 159 (2012) A553-A565.
    [132] M. Wang, L. Huai, G. Hu, S. Yang, F. Ren, S. Wang, Z. Zhang, Z. Chen, Z. Peng, C. Shen, Effect of LiFSI Concentrations To Form Thickness-and Modulus-Controlled SEI Layers on Lithium Metal Anodes, The Journal of Physical Chemistry C, 122 (2018) 9825-9834.
    [133] J. Hu, G. Long, S. Liu, G. Li, X. Gao, A LiFSI–LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li–S battery, Chemical Communications, 50 (2014) 14647-14650.
    [134] S. Chen, J. Zheng, D. Mei, K.S. Han, M.H. Engelhard, W. Zhao, W. Xu, J. Liu, J.G. Zhang, High‐Voltage Lithium‐Metal Batteries Enabled by Localized High‐Concentration Electrolytes, Advanced Materials, 30 (2018) 1706102.
    [135] K. Dokko, N. Tachikawa, K. Yamauchi, M. Tsuchiya, A. Yamazaki, E. Takashima, J.-W. Park, K. Ueno, S. Seki, N. Serizawa, Solvate ionic liquid electrolyte for Li–S batteries, Journal of The Electrochemical Society, 160 (2013) A1304-A1310.
    [136] A. von Wald Cresce, O. Borodin, K. Xu, Correlating Li+ solvation sheath structure with interphasial chemistry on graphite, The Journal of Physical Chemistry C, 116 (2012) 26111-26117.
    [137] H. Xiang, P. Shi, P. Bhattacharya, X. Chen, D. Mei, M.E. Bowden, J. Zheng, J.-G. Zhang, W. Xu, Enhanced charging capability of lithium metal batteries based on lithium bis (trifluoromethanesulfonyl) imide-lithium bis (oxalato) borate dual-salt electrolytes, Journal of Power Sources, 318 (2016) 170-177.
    [138] Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries, Journal of the American Chemical Society, 136 (2014) 5039-5046.
    [139] G. Yan, X. Li, Z. Wang, H. Guo, W. Peng, Q. Hu, J. Wang, Fluorinated solvents for high-voltage electrolyte in lithium-ion battery, Journal of Solid State Electrochemistry, 21 (2017) 1589-1597.
    [140] L.-M. Kuo, W.-T. Lo, B.-J. Hwang, J.-H. Cheng, W.-N. Su, A.A. Assegie, In Situ Observation of Lithium Dendrite Growth and SEI By Optical Microscopy and Raman Spectroscopy, Meeting Abstracts, The Electrochemical Society, 2017, 274-274.
    [141] Z. Feng, K. Higa, K.S. Han, V. Srinivasan, Evaluating Transport Properties and Ionic Dissociation of LiPF6 in Concentrated Electrolyte, Journal of The Electrochemical Society, 164 (2017) A2434-A2440.
    [142] Y. Yamada, Developing New Functionalities of Superconcentrated Electrolytes for Lithium-ion Batteries, Electrochemistry, 85 (2017) 559-565.
    [143] R. Aroca, M. Nazri, G. Nazri, A. Camargo, M. Trsic, Vibrational spectra and ion-pair properties of lithium hexafluorophosphate in ethylene carbonate based mixed-solvent systems for lithium batteries, Journal of Solution Chemistry, 29 (2000) 1047-1060.
    [144] B. Klassen, R. Aroca, M. Nazri, G. Nazri, Raman spectra and transport properties of lithium perchlorate in ethylene carbonate based binary solvent systems for lithium batteries, The Journal of Physical Chemistry B, 102 (1998) 4795-4801.
    [145] R. Petibon, L. Madec, D. Abarbanel, J. Dahn, Effect of LiPF6 concentration in Li [Ni0. 4Mn0. 4Co0. 2] O2/graphite pouch cells operated at 4.5 V, Journal of Power Sources, 300 (2015) 419-429.
    [146] Y. Yamada, K. Usui, C.H. Chiang, K. Kikuchi, K. Furukawa, A. Yamada, General Observation of Lithium Intercalation into Graphite in Ethylene-Carbonate-Free Superconcentrated Electrolytes, ACS Applied Materials & Interfaces, 6 (2014) 10892-10899.
    [147] Y. Pan, G. Wang, B.L. Lucht, Cycling performance and surface analysis of Lithium bis (trifluoromethanesulfonyl) imide in propylene carbonate with graphite, Electrochimica Acta, 217 (2016) 269-273.
    [148] D. Aurbach, B. Markovsky, I. Weissman, E. Levi, Y. Ein-Eli, On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries, Electrochimica acta, 45 (1999) 67-86.
    [149] X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries, Advanced Functional Materials, 27 (2017) 1605989.
    [150] S. Jiao, X. Ren, R. Cao, M.H. Engelhard, Y. Liu, D. Hu, D. Mei, J. Zheng, W. Zhao, Q. Li, Stable cycling of high-voltage lithium metal batteries in ether electrolytes, Nature Energy, 3 (2018) 739.
    [151] L. Chen, X. Fan, E. Hu, X. Ji, J. Chen, S. Hou, T. Deng, J. Li, D. Su, X. Yang, Achieving High Energy Density through Increasing the Output Voltage: A Highly Reversible 5.3 V Battery, Chem, 5 (2019) 896-912.
    [152] Z.L. Brown, S. Jurng, C.C. Nguyen, B.L. Lucht, Effect of Fluoroethylene Carbonate Electrolytes on the Nanostructure of the Solid Electrolyte Interphase and Performance of Lithium Metal Anodes, ACS Applied Energy Materials, 1 (2018) 3057-3062.
    [153] T.M. Hagos, G.B. Berhe, T.T. Hagos, H.K. Bezabh, L.H. Abrha, T.T. Beyene, C.-J. Huang, Y.-W. Yang, W.-N. Su, H. Dai, Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries, Electrochimica Acta, 316 (2019) 52-59.
    [154] A.S. Wotango, W.-N. Su, E.G. Leggesse, A.M. Haregewoin, M.-H. Lin, T.A. Zegeye, J.-H. Cheng, B.-J. Hwang, Improved interfacial properties of MCMB electrode by 1-(trimethylsilyl) imidazole as new electrolyte additive to suppress LiPF6 decomposition, ACS applied materials & interfaces, 9 (2017) 2410-2420.
    [155] S.S. Zhang, X. Fan, C. Wang, A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery, Electrochimica Acta, 258 (2017) 1201-1207.
    [156] T.T. Hagos, B. Thirumalraj, C.-J. Huang, L.H. Abrha, T.M. Hagos, G.B. Berhe, H.K. Bezabh, J. Cherng, S.-F. Chiu, W.-N. Su, Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries, ACS applied materials & interfaces, 11 (2019) 9955-9963.
    [157] N.A. Sahalie, A.A. Assegie, W.-N. Su, Z.T. Wondimkun, B.A. Jote, B. Thirumalraj, C.-J. Huang, Y.-W. Yang, B.-J. Hwang, Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte, Journal of Power Sources, 437 (2019) 226912.
    [158] J. Steiger, D. Kramer, R. Mönig, Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution, Electrochimica Acta, 136 (2014) 529-536.
    [159] D. Lu, Y. Shao, T. Lozano, W.D. Bennett, G.L. Graff, B. Polzin, J. Zhang, M.H. Engelhard, N.T. Saenz, W.A. Henderson, Failure mechanism for fast‐charged lithium metal batteries with liquid electrolytes, Advanced Energy Materials, 5 (2015) 1400993.
    [160] L. Suo, W. Xue, M. Gobet, S.G. Greenbaum, C. Wang, Y. Chen, W. Yang, Y. Li, J. Li, Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries, Proceedings of the National Academy of Sciences, 115 (2018) 1156-1161.
    [161] Y. Lu, Z. Tu, L.A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nature Materials, 13 (2014) 961.
    [162] Z. Liu, Y. Qi, Y. Lin, L. Chen, P. Lu, L. Chen, Interfacial study on solid electrolyte interphase at Li metal anode: implication for Li dendrite growth, Journal of The Electrochemical Society, 163 (2016) A592-A598.
    [163] J. Arai, Nonflammable methyl nonafluorobutyl ether for electrolyte used in lithium secondary batteries, Journal of the Electrochemical Society, 150 (2003) A219-A228.
    [164] Y.-M. Song, C.-K. Kim, K.-E. Kim, S.Y. Hong, N.-S. Choi, Exploiting chemically and electrochemically reactive phosphite derivatives for high-voltage spinel LiNi0. 5Mn1. 5O4 cathodes, Journal of Power Sources, 302 (2016) 22-30.
    [165] G. Nagasubramanian, C.J. Orendorff, Hydrofluoroether electrolytes for lithium-ion batteries: Reduced gas decomposition and nonflammable, Journal of Power Sources, 196 (2011) 8604-8609.
    [166] K. Xu, S. Zhang, J.L. Allen, T.R. Jow, Nonflammable electrolytes for Li-ion batteries based on a fluorinated phosphate, Journal of The Electrochemical Society, 149 (2002) A1079-A1082.
    [167] W. Zhang, H.L. Zhuang, L. Fan, L. Gao, Y. Lu, A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries, Science Advances, 4 (2018) eaar4410.
    [168] E. Markevich, G. Salitra, F. Chesneau, M. Schmidt, D. Aurbach, Very Stable Lithium Metal Stripping–Plating at a High Rate and High Areal Capacity in Fluoroethylene Carbonate-Based Organic Electrolyte Solution, ACS Energy Letters, 2 (2017) 1321-1326.
    [169] G. Yang, R.L. Sacci, I.N. Ivanov, R.E. Ruther, K.A. Hays, Y. Zhang, P.-F. Cao, G.M. Veith, N.J. Dudney, T. Saito, Probing Electrolyte Solvents at Solid/Liquid Interface Using Gap-Mode Surface-Enhanced Raman Spectroscopy, Journal of The Electrochemical Society, 166 (2019) A178-A187.
    [170] A. Andersson, D. Abraham, R. Haasch, S. MacLaren, J. Liu, K. Amine, Surface characterization of electrodes from high power lithium-ion batteries, Journal of The Electrochemical Society, 149 (2002) A1358-A1369.
    [171] Q. Zhang, J. Pan, P. Lu, Z. Liu, M.W. Verbrugge, B.W. Sheldon, Y.-T. Cheng, Y. Qi, X. Xiao, Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries, Nano letters, 16 (2016) 2011-2016.
    [172] K. Leung, Electronic structure modeling of electrochemical reactions at electrode/electrolyte interfaces in lithium ion batteries, The Journal of Physical Chemistry C, 117 (2012) 1539-1547.
    [173] C. Yan, Y.X. Yao, X. Chen, X.B. Cheng, X.Q. Zhang, J.Q. Huang, Q. Zhang, Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High‐Voltage Lithium Metal Batteries, Angewandte Chemie, 130 (2018) 14251-14255.
    [174] Q. Ma, B. Tong, Z. Fang, X. Qi, W. Feng, J. Nie, Y.-S. Hu, H. Li, X. Huang, L. Chen, Impact of Anionic Structure of Lithium Salt on the Cycling Stability of Lithium-Metal Anode in Li-S Batteries, Journal of The Electrochemical Society, 163 (2016) A1776-A1783.
    [175] B.S. Parimalam, B.L. Lucht, Reduction Reactions of Electrolyte Salts for Lithium Ion Batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI, Journal of The Electrochemical Society, 165 (2018) A251-A255.
    [176] N. Dupré, P. Moreau, E. De Vito, L. Quazuguel, M. Boniface, A. Bordes, C. Rudisch, P. Bayle-Guillemaud, D. Guyomard, Multiprobe study of the solid electrolyte interphase on silicon-based electrodes in full-cell configuration, Chemistry of Materials, 28 (2016) 2557-2572.
    [177] A. Yoshino, The birth of the lithium‐ion battery, Angewandte Chemie International Edition, 51 (2012) 5798-5800.
    [178] D. Wang, F. Yang, Y. Zhao, K.-L. Tsui, Battery remaining useful life prediction at different discharge rates, Microelectronics Reliability, 78 (2017) 212-219.
    [179] J.-G. Zhang, W. Xu, W.A. Henderson, Characterization and Modeling of Lithium Dendrite Growth, Lithium Metal Anodes and Rechargeable Lithium Metal Batteries, Springer2017, pp. 5-43, ISNB-978-981-3200-75-3
    [180] A. Gupta, J.H. Seo, X. Zhang, W. Du, A.M. Sastry, W. Shyy, Effective transport properties of LiMn2O4 electrode via particle-scale modeling, Journal of The Electrochemical Society, 158 (2011) A487-A497.
    [181] G. Ning, B. Haran, B.N. Popov, Capacity fade study of lithium-ion batteries cycled at high discharge rates, Journal of Power Sources, 117 (2003) 160-169.
    [182] M. Rashid, A. Gupta, Effect of Resting Periods over Cycling Performance of a Li-Ion Battery, Meeting Abstracts, The Electrochemical Society, 2014, pp. 606-606.
    [183] M. Rashid, A. Gupta, Effect of relaxation periods over cycling performance of a Li-ion battery, Journal of The Electrochemical Society, 162 (2015) A3145-A3153.
    [184] Y. He, X. Ren, Y. Xu, M. Engelhard, X. Li, J. Xiao, J. Liu, J. Zhang, W. Xu, C. Wang, Origin of lithium whisker formation and growth under stress, Nature nanotechnology, 11 (2019): 1042-1047.
    [185] E. Redondo-Iglesias, P. Venet, S. Pelissier, Global model for self-discharge and capacity fade in lithium-ion batteries based on the generalized eyring relationship, IEEE Transactions on Vehicular Technology, 67 (2017) 104-113.

    無法下載圖示 全文公開日期 2025/01/20 (校內網路)
    全文公開日期 2025/01/20 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE