簡易檢索 / 詳目顯示

研究生: Teklay T.M.
Teklay Mezgebe Hagos
論文名稱: 電解質化學增強無陽極鋰金屬電池的電化學性能
Electrolyte Chemistry to Boost Electrochemical Performance of Anode-Free Lithium Metal Batteries
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 黃炳照
BING-JOE HWANG
蘇威年
WEI-NIEN SU
吳溪煌
SHE-HUANG WU
吳乃立
Nae-Lih Wu
鄧熙聖
Hsisheng Teng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 203
中文關鍵詞: 無陽極鋰金屬電池KPF6-TMSP電解質添加劑鋰枝晶電化學性能不易燃的電解質相位不穩定性氧化穩定性速率容量低溫黏度離子電導率羧酸酯溶劑
外文關鍵詞: anode free lithium metal battery, KPF6-TMSP, electrolyte additives, lithium dendrite, electrochemical performance, nonflammable electrolyte, phase instability, oxidative stability, rate capability, low temperature, viscosity, ionic conductivity, carboxylate ester solvents
相關次數: 點閱:469下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 與傳統的鋰金屬電池(LMB)和鋰離子電池(LIB)相比,無陽極鋰金屬電池(AFLMB)的能量密度高且生產相對容易,因此是一個具有前景的新儲能裝置。 此外,AFLMB也可被用作評估方法,能夠在短時間內篩選出適合的功能電解質。
    六氟磷酸鉀和三(三甲基甲矽烷基)亞磷酸酯被用作電解質添加劑,以增強基於Cu || NMC111電池構型的無陽極鋰金屬電池(AFLMB)的電化學性能。已經使用市售碳酸鹽電解質(1M LiPF6-EC / DEC(1∶1,以體積計))研究了雙添加劑的協同作用。在此,我們報導了具有2(按重量計)KPF6-2(按體積計)TMSP的雙重添加劑電解質可顯著改善Cu || NMC111電池配置的充放電容量、平均庫侖效率和保留容量。在第20個循環中,含有2種(按重量計)KPF6-2種(按體積計)TMSP添加劑的AFLMB電池保留了其初始容量的48%,而帶有市售電解質且不含添加劑的參考電池僅達到了14%。使用自製的電解質可提高性能,這歸因於KPF6的自癒靜電屏蔽(SHES)效果,可防止枝晶生長,使用TMSP進行沖洗並通過五氟化磷(PF5)的反應除去商用LiPF6碳酸鹽電解質產生的氫氟酸(HF)。這項研究為開發無陽極鋰金屬電池的功能性電解質添加劑提供了更廣闊的視野。
    在我們的第二項工作中,溶解在氟化碳酸鹽(碳酸氟亞乙酯(FEC))和部分氟化醚(1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚(TTE))中的LiPF6已據報導,由於其較寬的電化學窗口與不可燃的特性以及穩定的富LiF固體電解質界面,在LMB的開發中是氟化電解質。但是,其相不穩定和高黏度限制了其實際應用。在這項工作中,開發了一種高級的碳酸甲乙酯(EMC)基氟化電解質(FEC / TTE / EMC中為1 M LiPF6(按體積計為3:5:2)),該電解質無相不穩定性並且具有更高的離子導電性、氧化穩定性和不燃性。與鋰金屬電池的無EMC電解液(Li || NCM111)相比,它具有更高的氧化電勢> 5.3 V,並且具有更高的倍率性能。同時,三元電解質還可在室溫下2.5-4.5 V的電位範圍內增強無陽極鋰金屬電池(AFLMB)的循環性能。在FEC / TTE / EMC(體積比為3:5:2)電解質中具有1 M LiPF6的Cu || NMC111電池可在充電和放電電流密度分別為 0.2和0.5 mA / cm2時, 時的截止電壓中 4.5V,80個循環後提供40%的優異容量保持率和98.30%的平均庫侖效率(av. CE)。因此,我們使用無陽極的全電池配置(Cu || NMC111),開發了一種具有相穩定性的,堅固的,不可燃的,無相不穩定的電解質,該電解質具有較寬的氧化穩定性,較高的倍率能力和良好的循環性能。
    在最終的工作中,充放電性能報告六氟磷酸鋰(LiPF6)在氟代碳酸亞乙酯(FEC),1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚(TTE)和碳酸乙基甲基酯(EMC)的混合物電解質用作開發鋰金屬電池的電解質。 相對於商用電解質,它具有良好的鈍化能力、相穩定以及寬的電化學窗口,已被報導用作開發鋰金屬電池的電解質。相反地,由於其較低的離子電導率,高成本和高粘度阻礙了實際應用。因此,發展具有四元溶劑的電解質在EA / FEC / TTE / EMC中為1 M LiPF6(按體積計2:1:5:2),在MA / FEC / TTE / EMC中為1 M LiPF6(2:1:5: 2)分別通過加入乙酸乙酯(EA)和乙酸甲酯(MA)溶劑顯影:體積比為2:2)。值得注意的是,與FEC / TTE / EMC中的1 M LiPF6(按體積計3:5:2)和EC / DEC中1 M LiPF6的市售電解質(按體積計1:1)相比,電解質表現出較低的粘度和較高的離子電導率,擴大了AFLMB的使用溫度範圍。在0°C時,EA / FEC / TTE / EMC中的1 M LiPF6(以體積計為2:1:5:2)使用Cu‖NMC111經過40個循環後,電流密度為0.2 mA / cm2,可以保持電容的30%和平均庫侖效率95%(平均CE)。在室溫下的充電和放電電流密度分別為0.2和0.5 mA / cm2時,其截止電壓為4.5V,使用MA / FEC / TTE / EMC(體積比為2:1:5:2)中的1 M LiPF6電解質經過30個循環後的電池表現出58.50%的容量保持率和97.40%的平均庫侖效率。此外,EA / FEC / TTE / EMC中的1 M LiPF6(按體積計為2:1:5:2)在MCMB‖NMC111電池中具有出色的循環性能。


    Anode free lithium metal battery (AFLMB) is an impressive and recent phenomenon in the era of energy storage devices due to their high energy density and relative ease of production compared to the traditional LMBs and LIBs. Also, AFLMB can be used as an evaluating method for screening out suitable functional electrolytes within a short time.
    Potassium hexafluorophosphate and tris (trimethylsilyl) phosphite are applied as electrolyte additives to enhance the electrochemical performance of an AFLMB based on a Cu||NMC111 cell configuration. The synergistic effect of the dual additives has been investigated using a commercial carbonate electrolyte (1 M LiPF6-EC/DEC (1:1 by vol.)). Herein, we report that an electrolyte with the dual additive of 2 (by wt.) KPF6 - 2 (by vol.) TMSP significantly improves the charge/discharge capacity, average Coulombic efficiency (av. CE), and capacity retention of a Cu||NMC111 cell configuration. An AFLMB cell with 2 (by wt.) KPF6 - 2 (by vol.) TMSP additives retained 48% of their initial capacity at the 20th cycle, while the reference cell with the commercial electrolyte in the absence of additives reached only 14%. The enhanced performance using the prepared electrolyte is attributed to the self-healing electrostatic shielding (SHES) effect of KPF6 to prevent dendrite growth and the removal of hydrofluoric acid (HF) produced from the commercial LiPF6 carbonate electrolytes by the reaction of phosphorus pentafluoride (PF5) with water using TMSP. This study provides a broader vision in developing functional electrolyte additives for an anode-free lithium metal battery.
    In our second work, the LiPF6 dissolved in fluorinated carbonate (fluoroethylene carbonate (FEC)) and partially fluorinated ether (1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE)) solvents has been reported to be a fluorinated electrolyte in the development of LMBs because of their wide electrochemical windows, nonflammable characteristics, and stable LiF-rich solid electrolyte interface. However, its phase instability and high viscosity limit its practical application. In this work, an advanced ethyl methyl carbonate (EMC)-based fluorinated electrolyte (1 M LiPF6 in FEC/TTE/EMC (3:5:2 by vol.)) is developed, which is free of phase instability and has higher ionic-conductivity, oxidative stability, and nonflammability. It has a higher oxidation potential > 5.3 V and better rate capabilities than the EMC-free electrolyte for lithium metal batteries (Li||NCM111). Meanwhile, the ternary electrolyte also enhances the cycling performance of anode-free lithium metal batteries (AFLMBs) within the potential range of 2.5-4.5 V at room temperature. The Cu||NMC111 cell with 1 M LiPF6 in FEC/TTE/EMC (3:5:2 by vol.) electrolyte delivers superior capacity retention of 40% and av. CE of 98.30% for 80 cycles with a cut-off voltage of 4.5 V at the charge and discharges current densities of 0.2 and 0.5 mA/cm2, respectively. Hence, we develop a robust nonflammable electrolyte free of phase instability having wider oxidative stability, high rate capability, and good cyclic performance using an anode-free full cell configuration (Cu||NMC111).

    In the final work, the charge/discharge performance of an electrolyte consisting of lithium hexafluorophosphate (LiPF6) in a mixture of fluoroethylene carbonate (FEC), 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), and ethyl methyl carbonate (EMC) has been reported to be used as an electrolyte for the development of lithium metal batteries. It has a good passivating capability, phase stable, wide electrochemical windows relative to the commercial electrolyte. Conversely, its lower ionic conductivity, high cost, and high viscosity impeded from practical application. Hence, an electrolyte with the quaternary solvent of 1 M LiPF6 in EA/FEC/TTE/EMC (2:1:5:2 by vol.) and 1 M LiPF6 in MA/FEC/TTE/EMC (2:1:5:2 by vol.) is developed by adding ethyl acetate (EA) and methyl acetate (MA) solvent, respectively. Remarkably, thus electrolytes exhibit a lower viscosity and high ionic conductivity in comparison to 1 M LiPF6 in FEC/TTE/EMC (3:5:2 by vol.) and commercial electrolyte of 1 M LiPF6 in EC/DEC (1:1 by vol.) which extend the service-temperature range of AFLMB. At 0 °C, 1 M LiPF6 in EA/FEC/TTE/EMC (2:1:5:2 by vol.) provides capacity retention of 30 and 95% of the av. CE using the Cu||NMC111 after 40 cycles at a current density of 0.2 mA/cm2. The cell cycled with an electrolyte of 1 M LiPF6 in MA/FEC/TTE/EMC (2:1:5:2 by vol.) exhibits 58.50% capacity retention and 97.40% of the av. CE after 30 cycles with a cut-off voltage of 4.5 V at the charge and discharge current densities of 0.2 and 0.5 mA/cm2 at room temperature, respectively. Furthermore, 1 M LiPF6 in EA/FEC/TTE/EMC (2:1:5:2 by vol.) excellent cyclic performance in an MCMB‖NMC111 cell.

    中文摘要 i Abstract iii Acknowledgment vii Table of contents ix Index of figures xiii Index of tables xxiii Index of units and abbreviations xxv Chapter 1: Introduction 1 1.1 Energy sources 1 1.2 Batteries as electrochemical energy storage systems 4 1.3 Lithium-based secondary rechargeable batteries 9 1.4 Electrolyte components for lithium-based rechargeable batteries 10 1.4.1 Solvents 11 1.4.2 Salts 13 Chapter 2: The attraction of lithium and its challenge for Li-metal based batteries 15 2.1 Lithium metal batteries 15 2.2 Challenges in Li-metal based batteries 17 2.2.1 Reactivity of Li Metal 18 2.2.2 Volume changes in Li Metal 18 2.2.3 Growth of Li dendrites 20 2.2.4 The SEI on a Li metal anode 22 2.3 Engineering for stabilizing lithium metal batteries 23 2.3.1 Designing advanced electrolytes 24 2.3.2 Surface engineering on current collectors 24 2.3.3 Electrolyte additives 28 2.3.4 Artificial SEI engineering 33 2.4 Electrolyte chemistry for lithium metal batteries 34 2.4.1 Carbonate electrolytes 34 2.4.2 Ether-based electrolytes 35 2.4.3 High salt concentration electrolytes 36 2.4.4 Localized high concentration electrolytes 37 2.4.6 Fluorinated electrolytes 40 2.4.6 Single solvent and single salt electrolyte 41 2.5 Anode free lithium metal battery 43 2.6 Motivation and objectives of the study 51 2.6.1 Motivation 51 2.6.3 Objectives 53 Chapter 3: Experimental section and characterization 55 3.1 Chemicals and reagents 55 3.2 Electrode fabrication 56 3.2.1 Cathode material 57 3.2.2 Anode current collector preparation 57 3.2.3 Electrolyte preparation 58 3.3 Physicochemical and flammability properties 59 3.4 Electrochemical measurement and characterization 60 3.4.1 Electrochemical measurements 60 3.4.2 Lithium morphology characterization 63 3.4.3 Surface composition characterization 63 3.4.4 Computational investigations 64 Chapter 4: Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries 65 4.1 Introduction 65 4.2 Results and discussion 68 4.2.1 Li||Cu half-cell performance 68 4.2.2 Anode morphological evolution during cycling 71 4.2.3 Cu||NMC111 anode free full cells 73 4.2.4 Surface chemistry of the electrodes 80 4.4 Summary 85 Chapter 5: Resolving the phase instability of a fluorinated ether, carbonate based electrolyte for the safe operation of anode-free lithium metal battery 87 5.1 Introduction 87 5.2 Results and discussion 90 5.2.1 Viscosity and conductivity measurements 90 5.2.2 Extended cycling performance of Cu||NMC111 using different electrolytes 93 5.2.3 Electrochemical stability and flammability test 101 5.2.4 Ionic conductivity and rate capability 104 5.2.5 Anode morphological evaluations of Li formed in situ on the Cu foil 107 5.2.6 Surface chemistry of the electrodes 108 5.2.7 Electrochemical performance of the MCMB||NMC111 full cell 111 5.3 Summary 115   Chapter 6: Tolerance of low-temperature electrolyte for anode-free lithium metal battery 117 6.1 Introduction 117 6.2 Results and discussion 120 6.2.1 Viscosity and conductivity measurements 120 6.2.2 The wide temperature performance of electrolytes using Cu||NMC111 122 6.2.3 In situ plated lithium morphology on Cu substrate 131 6.2.5 Electrochemical performance of the MCMB||NMC111 full cell 133 6.3 Summary 134 Chapter 7: Conclusions and future outlooks 135 7.1 Conclusions 135 7.2 Future outlooks 137 Reference 141 List of publication 171 Conference presentation 173

    1. Goodenough, J. B., Energy storage materials: a perspective. Energy Storage Materials 2015, 1, 158-161.
    2. González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R., Review on supercapacitors: technologies and materials. Renewable and Sustainable Energy Reviews 2016, 58, 1189-1206.
    3. Hosseini, S. E.; Wahid, M. A., Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development. Renewable and Sustainable Energy Reviews 2016, 57, 850-866.
    4. Bulut, U., The impacts of non-renewable and renewable energy on CO 2 emissions in Turkey. Environmental Science and Pollution Research 2017, 24 (18), 15416-15426.
    5. Molina, M. G., Energy storage and power electronics technologies: A strong combination to empower the transformation to the smart grid. Proceedings of the IEEE 2017, 105 (11), 2191-2219.
    6. Faisal, M.; Hannan, M. A.; Ker, P. J.; Hussain, A.; Mansor, M. B.; Blaabjerg, F., Review of energy storage system technologies in microgrid applications: Issues and challenges. Ieee Access 2018, 6, 35143-35164.
    7. Amrouche, S. O.; Rekioua, D.; Rekioua, T.; Bacha, S., Overview of energy storage in renewable energy systems. International Journal of Hydrogen Energy 2016, 41 (45), 20914-20927.
    8. Betz, J.; Bieker, G.; Meister, P.; Placke, T.; Winter, M.; Schmuch, R., Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Advanced Energy Materials 2019, 9 (6), 1803170.
    9. Choi, N. S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G., Challenges facing lithium batteries and electrical double‐layer capacitors. Angewandte Chemie International Edition 2012, 51 (40), 9994-10024.
    10. Panwar, N.; Kaushik, S.; Kothari, S., Role of renewable energy sources in environmental protection: A review. Renewable and sustainable energy reviews 2011, 15 (3), 1513-1524.
    11. Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. In Nanoscience and technology: a collection of reviews from Nature journals, World Scientific: 2010; pp 320-329.
    12. Khan, N.; Dilshad, S.; Khalid, R.; Kalair, A. R.; Abas, N., Review of energy storage and transportation of energy. Energy Storage 2019, 1 (3), e49.
    13. Das, C. K.; Bass, O.; Kothapalli, G.; Mahmoud, T. S.; Habibi, D., Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. Renewable and Sustainable Energy Reviews 2018, 91, 1205-1230.
    14. Scrosati, B., Modern batteries: an introduction to electrochemical power sources. Arnold: 1997.
    15. Vincent, C.; Scrosati, B., Rechargeable Lithium Cells− Modern Batteries: An Introduction to Electrochemical Power Sources. Arnold Press, London: 1997.
    16. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P., Insertion electrode materials for rechargeable lithium batteries. Advanced materials 1998, 10 (10), 725-763.
    17. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
    18. Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. In Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific: 2011; pp 171-179.
    19. Liang, Y.; Zhao, C. Z.; Yuan, H.; Chen, Y.; Zhang, W.; Huang, J. Q.; Yu, D.; Liu, Y.; Titirici, M. M.; Chueh, Y. L., A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1 (1), 6-32.
    20. J.M Tarascon, M. A., Issues and challenges facing rechargeable batteries. Nature 2001, 414, 359-367.
    21. Meutzner, F.; de Vivanco, M. U. In Electrolytes-Technology review, AIP Conference Proceedings, American Institute of Physics: 2014; pp 185-195.
    22. Goodenough, J. B.; Kim, Y., Challenges for rechargeable Li batteries. Chemistry of materials 2010, 22 (3), 587-603.
    23. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews 2004, 104 (10), 4303−4417.
    24. Jaumann, T.; Balach, J.; Langklotz, U.; Sauchuk, V.; Fritsch, M.; Michaelis, A.; Teltevskij, V.; Mikhailova, D.; Oswald, S.; Klose, M.; Stephani, G.; Hauser, R.; Eckert, J.; Giebeler, L., Lifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes. Energy Storage Materials 2017, 6, 26-35.
    25. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond. Chemical reviews 2014, 114 (23), 11503-11618.
    26. Wotango, A. S.; Su, W.-N.; Leggesse, E. G.; Haregewoin, A. M.; Lin, M.-H.; Zegeye, T. A.; Cheng, J.-H.; Hwang, B.-J., Improved Interfacial Properties of MCMB Electrode by 1-(Trimethylsilyl)imidazole as New Electrolyte Additive To Suppress LiPF6 Decomposition. ACS Applied Materials & Interfaces 2017, 9 (3), 2410-2420.
    27. Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y., Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy & Environment 2016, 1 (1), 18-42.
    28. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 1988, 37 (2), 785-789.
    29. Appetecchi, G. B., Safer electrolyte components for rechargeable batteries. Physical Sciences Reviews 2018, 4 (3).
    30. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nature nanotechnology 2017, 12, 194.
    31. Aurbach, D.; Cohen, Y., The application of atomic force microscopy for the study of Li deposition processes. Journal of the Electrochemical Society 1996, 143 (11), 3525-3532.
    32. Li, Z.; Huang, J.; Liaw, B. Y.; Metzler, V.; Zhang, J., A review of lithium deposition in lithium-ion and lithium metal secondary batteries. Journal of power sources 2014, 254, 168-182.
    33. Liu, D.-H.; Bai, Z.; Li, M.; Yu, A.; Luo, D.; Liu, W.; Yang, L.; Lu, J.; Amine, K.; Chen, Z., Developing high safety Li-metal anodes for future high-energy Li-metal batteries: strategies and perspectives. Chemical Society Reviews 2020, 49 (15), 5407-5445.
    34. Kamali-Heidari, E.; Kamyabi-Gol, A.; Heydarzadeh Sohi, M.; Ataie, A. J. J. o. U. G.; Materials, N., Electrode materials for lithium ion batteries: a review. 2018, 51 (1), 1-12.
    35. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nature nanotechnology 2017, 12 (3), 194.
    36. Pu, K. C.; Zhang, X.; Qu, X. L.; Hu, J. J.; Li, H. W.; Gao, M. X.; Pan, H. G.; Liu, Y. F., Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Metals 2020, 39 (6), 616–635.
    37. Zhang, Y.; Zuo, T.-T.; Popovic, J.; Lim, K.; Yin, Y.-X.; Maier, J.; Guo, Y.-G., Towards better Li metal anodes: challenges and strategies. Materials Today 2020, 33, 56-74.
    38. Liu, B.; Zhang, J.-G.; Xu, W., Advancing lithium metal batteries. Joule 2018, 2 (5), 833-845.
    39. Ghazi, Z. A.; Sun, Z.; Sun, C.; Qi, F.; An, B.; Li, F.; Cheng, H. M. J. S., Key aspects of lithium metal anodes for lithium metal batteries. 2019, 15 (32), 1900687.
    40. Ye, H.; Zhang, Y.; Yin, Y.-X.; Cao, F.-F.; Guo, Y.-G., An Outlook on Low-Volume-Change Lithium Metal Anodes for Long-Life Batteries. ACS Central Science 2020, 6 (5), 661-671.
    41. Jiao, S.; Ren, X.; Cao, R.; Engelhard, M. H.; Liu, Y.; Hu, D.; Mei, D.; Zheng, J.; Zhao, W.; Li, Q.; Liu, N.; Adams, B. D.; Ma, C.; Liu, J.; Zhang , J.-G.; Xu , W., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy 2018, 3 (9), 739-746.
    42. Jana, A.; Garcia, R. E., Lithium dendrite growth mechanisms in liquid electrolytes. Nano Energy 2017, 41, 552-565.
    43. Chen, W.; Lei, T.; Wu, C.; Deng, M.; Gong, C.; Hu, K.; Ma, Y.; Dai, L.; Lv, W.; He, W.; Liu, X.; Xiong, J.; Yan, C., Designing Safe Electrolyte Systems for a High‐Stability Lithium–Sulfur Battery. Advanced Energy Materials 2018, 8 (10), 1702348.
    44. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q., Toward safe lithium metal anode in rechargeable batteries: a review. Chemical reviews 2017, 117 (15), 10403-10473.
    45. Aurbach, D., The electrochemical behavior of active metal electrodes in nonaqueous solutions. Marcel Dekker: New York: 1999.
    46. Dey, A.; Sullivan, B., The electrochemical decomposition of propylene carbonate on graphite. Journal of The Electrochemical Society 1970, 117 (2), 222.
    47. Peled, E., The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model. Journal of The Electrochemical Society 1979, 126 (12), 2047.
    48. Li, S.; Jiang, M.; Xie, Y.; Xu, H.; Jia, J.; Li, J., Developing high‐performance lithium metal anode in liquid electrolytes: challenges and Progress. Advanced materials 2018, 30 (17), 1706375.
    49. Peled, E., Film forming reaction at the lithium/electrolyte interface. Journal of Power Sources 1983, 9 (3), 253-266.
    50. Peled, E.; Golodnitsky, D.; Ardel, G., Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. Journal of the Electrochemical Society 1997, 144 (8), L208.
    51. Wang, J.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature communications 2016, 7, 12032.
    52. Miao, R.; Yang, J.; Xu, Z.; Wang, J.; Nuli, Y.; Sun, L., A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries. Scientific reports 2016, 6, 21771.
    53. Liu, P.; Ma, Q.; Fang, Z.; Ma, J.; Hu, Y.-S.; Zhou, Z.-B.; Li, H.; Huang, X.-J.; Chen, L.-Q., Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes. Chin. Phys. B 2016, 25, 078203.
    54. Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C. Y.; Curtiss, L. A.; Nazar, L. F., Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nature Energy 2018, 3 (9), 783-791.
    55. Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y.-M.; Cui, Y., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nature Communications 2015, 6, 7436.
    56. Ellis, L. D.; Hill, I. G.; Gering, K. L.; Dahn, J. R., Synergistic Effect of LiPF6 and LiBF4 as Electrolyte Salts in Lithium-Ion Cells. Journal of The Electrochemical Society 2017, 164 (12), A2426-A2433.
    57. Beyene, T. T.; Su, W.-N.; Dai, H.; Hwang, B.-J., Synergistic Effect of Cycling Strategies and Electrolyte for Effective Plating/Stripping of Anode Free Li Metal Batteries. Meeting Abstracts 2019, MA2019-03 (2), 250.
    58. Wang, C.; Yang, Y.; Liu, X.; Zhong, H.; Xu, H.; Xu, Z.; Shao, H.; Ding, F., Suppression of Lithium Dendrite Formation by Using LAGP-PEO (LiTFSI) Composite Solid Electrolyte and Lithium Metal Anode Modified by PEO (LiTFSI) in All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces 2017, 9 (15), 13694-13702.
    59. Schiele, A.; Breitung, B.; Hatsukade, T.; Berkes, B. B.; Hartmann, P.; Janek, J.; Brezesinski, T., The Critical Role of Fluoroethylene Carbonate in the Gassing of Silicon Anodes for Lithium-Ion Batteries. ACS Energy Letters 2017, 2228-2233.
    60. Zuo, T. T.; Wu, X. W.; Yang, C. P.; Yin, Y. X.; Ye, H.; Li, N. W.; Guo, Y. G., Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Advanced materials 2017, 29 (29), 1700389.
    61. Yang, C.-P.; Yin, Y.-X.; Zhang, S.-F.; Li, N.-W.; Guo, Y.-G., Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature Communications 2015, 6 (1), 8058.
    62. Yun, Q.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B.; Kang, F.; Yang, Q. H. J. A. m., Chemical dealloying derived 3D porous current collector for Li metal anodes. Advanced materials 2016, 28 (32), 6932-6939.
    63. Lu, L.-L.; Ge, J.; Yang, J.-N.; Chen, S.-M.; Yao, H.-B.; Zhou, F.; Yu, S.-H., Free-standing copper nanowire network current collector for improving lithium anode performance. Nano letters 2016, 16 (7), 4431-4437.
    64. Chen, K. H.; Sanchez, A. J.; Kazyak, E.; Davis, A. L.; Dasgupta, N. P., Synergistic effect of 3D current collectors and ALD surface modification for high coulombic efficiency lithium metal anodes. Advanced Energy Material 2019, 9 (4), 1802534.
    65. Yan, K.; Lee, H.-W.; Gao, T.; Zheng, G.; Yao, H.; Wang, H.; Lu, Z.; Zhou, Y.; Liang, Z.; Liu, Z.; Chu, S.; Cui, Y., Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano letters 2014, 14 (10), 6016-6022.
    66. Liang, Z.; Zheng, G.; Liu, C.; Liu, N.; Li, W.; Yan, K.; Yao, H.; Hsu, P.-C.; Chu, S.; Cui, Y., Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano letters 2015, 15 (5), 2910-2916.
    67. Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q., Dendrite‐free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Advanced materials 2016, 28 (15), 2888-2895.
    68. Lindgren, F.; Xu, C.; Niedzicki, L.; Marcinek, M.; Gustafsson, T.; Björefors, F.; Edström, K.; Younesi, R., SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries. ACS Applied Materials & Interfaces 2016, 8 (24), 15758-15766.
    69. Michan, A. L.; Parimalam, B. S.; Leskes, M.; Kerber, R. N.; Yoon, T.; Grey, C. P.; Lucht, B. L., Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation. Chemistry of Materials 2016, 28 (22), 8149-8159.
    70. Qian, Y.; Hu, S.; Zou, X.; Deng, Z.; Xu, Y.; Cao, Z.; Kang, Y.; Deng, Y.; Shi, Q.; Xu, K., How electrolyte additives work in Li-ion batteries. Energy storage materials 2019, 20, 208-215.
    71. Wang, H.; He, J.; Liu, J.; Qi, S.; Wu, M.; Wen, J.; Chen, Y.; Feng, Y.; Ma, J., Electrolytes enriched by crown ethers for lithium metal batteries. Advanced Functional Materials 2020, 2002578.
    72. Li, S.; Zhang, W.; Wu, Q.; Fan, L.; Wang, X.; Wang, X.; Shen, Z.; He, Y.; Lu, Y., Synergistic Dual‐Additives Electrolyte enables Practical Lithium Metal Batteries. Angewandte Chemie International Edition 2020, 59 (35).
    73. Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J.; Liu, X.; Sushko, P. V.; Liu, J.; Zhang, J.-G., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. Journal of the American Chemical Society 2013, 135 (11), 4450-4456.
    74. Um, J. H.; Kim, K.; Park, J.; Sung, Y.-E.; Yu, S.-H., Revisiting the strategies for stabilizing lithium metal anodes. Journal of Materials Chemistry A 2020, 8 (28), 13874-13895.
    75. Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y.-M.; Cui, Y., The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nature Communications 2015, 6 (1), 7436.
    76. Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X.; Shao, Y.; Engelhard, M. H.; Nie, Z.; Xiao, J., Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. Journal of the American Chemical Society 2013, 135 (11), 4450-4456.
    77. Li, S.; Jiang, M.; Xie, Y.; Xu, H.; Jia, J.; Li, J., Developing High-Performance Lithium Metal Anode in Liquid Electrolytes: Challenges and Progress. Advanced Materials 2018, 30 (17), 1706375.
    78. Assegie, A. A.; Cheng, J.-H.; Kuo, L.-M.; Su, W.-N.; Hwang, B.-J., Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 2018, 10 (13), 6125-6138.
    79. Zhang, X.-Q.; Cheng, X.-B.; Zhang, Q., Advances in Interfaces between Li Metal Anode and Electrolyte. Advanced Materials Interfaces 2018, 5 (2), 1701097.
    80. Wang, J.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A., Fire-extinguishing organic electrolytes for safe batteries. Nature Energy 2018, 3, 22-29.
    81. Eshetu, G. G.; Bertrand, J.-P.; Lecocq, A.; Grugeon, S.; Laruelle, S.; Armand, M.; Marlair, G., Fire behavior of carbonates-based electrolytes used in Li-ion rechargeable batteries with a focus on the role of the LiPF6 and LiFSI salts. Journal of Power Sources 2014, 269, 804-811.
    82. Lin, S.; Zhao, J., Functional Electrolyte of Fluorinated Ether and Ester for Stabilizing Both 4.5 V LiCoO2 Cathode and Lithium Metal Anode. ACS Applied Materials and Interfaces 2020, 12 (7), 8316-8323.
    83. Chen, S.; Wen, K.; Fan, J.; Bando, Y.; Golberg, D., Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. Journal of Materials Chemistry A 2018, 6, 11631-11663.
    84. Miao, R.; Yang, J.; Xu, Z.; Wang, J.; Nuli, Y.; Sun, L., A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries. Scientific reports 2016, 6, 1-9.
    85. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews 2004, 104 (10), 4303-4418.
    86. Hagen, M.; Hanselmann, D.; Ahlbrecht, K.; Maça, R.; Gerber, D.; Tübke, J., Lithium–sulfur cells: the gap between the state‐of‐the‐art and the requirements for high energy battery cells. Advanced Energy Materials 2015, 5 (16), 1401986.
    87. Park, M. S.; Ma, S. B.; Lee, D. J.; Im, D.; Doo, S.-G.; Yamamoto, O., A Highly Reversible Lithium Metal Anode. Scientific Reports 2014, 4 (1), 3815.
    88. Li, L.; Wang, L.; Liu, R., Effect of Ether-Based and Carbonate-Based Electrolytes on the Electrochemical Performance of Li–S Batteries. Arabian Journal for Science and Engineering 2019, 44 (7), 6361-6371.
    89. Miao, R.; Yang, J.; Xu, Z.; Wang, J.; Nuli, Y.; Sun, L., A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries. Scientific Reports 2016, 6 (1), 21771.
    90. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium metal anodes for rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 513-537.
    91. Fan, X.; Chen, L.; Ji, X.; Deng, T.; Hou, S.; Chen, J.; Zheng, J.; Wang, F.; Jiang, J.; Xu, K.; Wang, C., Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 2018, 4 (1), 174-185.
    92. Zhang, X.-Q.; Chen, X.; Hou, L.-P.; Li, B.-Q.; Cheng, X.-B.; Huang, J.-Q.; Zhang, Q., Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries. ACS Energy Letters 2019, 4 (2), 411-416.
    93. Jiao, S.; Ren, X.; Cao, R.; Engelhard, M. H.; Liu, Y.; Hu, D.; Mei, D.; Zheng, J.; Zhao, W.; Li, Q.; Liu, N.; Adams, B. D.; Ma, C.; Liu, J.; Zhang, J.-G.; Xu, W., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy 2018, 3 (9), 739-746.
    94. Ren, X.; Chen, S.; Lee, H.; Mei, D.; Engelhard, M. H.; Burton, S. D.; Zhao, W.; Zheng, J.; Li, Q.; Ding, M. S.; Schroeder, M.; Alvarado, J.; Xu, K.; Meng, Y. S.; Liu, J.; Zhang, J.-G.; Xu, W., Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 2018, 4 (8), 1877-1892.
    95. Xia, L.; Lee, S.; Jiang, Y.; Li, S.; Liu, Z.; Yu, L.; Hu, D.; Wang, S.; Liu, Y.; Chen, G. Z., Physicochemical and Electrochemical Properties of 1, 1, 2, 2‐Tetrafluoroethyl‐2, 2, 3, 3‐Tetrafluoropropyl Ether as a Co‐Solvent for High‐Voltage Lithium‐Ion Electrolytes. ChemElectroChem 2019, 6 (14), 3747-3755.
    96. Chen, S.; Zheng, J.; Mei, D.; Han, K. S.; Engelhard, M. H.; Zhao, W.; Xu, W.; Liu, J.; Zhang, J. G., High‐Voltage Lithium‐Metal Batteries Enabled by Localized High‐Concentration Electrolytes. Advanced materials 2018, 30 (21), 1706102.
    97. Yu, L.; Chen, S.; Lee, H.; Zhang, L.; Engelhard, M. H.; Li, Q.; Jiao, S.; Liu, J.; Xu, W.; Zhang, J.-G., A localized high-concentration electrolyte with optimized solvents and lithium difluoro (oxalate) borate additive for stable lithium metal batteries. ACS Energy Letters 2018, 3 (9), 2059-2067.
    98. Chen, S.; Zheng, J.; Yu, L.; Ren, X.; Engelhard, M. H.; Niu, C.; Lee, H.; Xu, W.; Xiao, J.; Liu, J.; Zhang, J.-G., High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2018, 2 (8), 1548-1558.
    99. Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A., Advances and issues in developing salt-concentrated battery electrolytes. Nature Energy 2019, 4 (4), 269-280.
    100. Wang, C.; Meng, Y. S.; Xu, K., Perspective—Fluorinating Interphases. Journal of The Electrochemical Society 2019, 166 (3), A5184-A5186.
    101. Kim, C.-K.; Kim, K.; Shin, K.; Woo, J.-J.; Kim, S.; Hong, S. Y.; Choi, N.-S., Synergistic Effect of Partially Fluorinated Ether and Fluoroethylene Carbonate for High-Voltage Lithium-Ion Batteries with Rapid Chargeability and Dischargeability. ACS applied materials & interfaces 2017, 9 (50), 44161-44172.
    102. Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C.; Liou, S.-C.; Amine, K.; Xu, K.; Wang, C., Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology 2018, 13 (8), 715-722.
    103. Liu, Y.; Fang, S.; Shi, P.; Luo, D.; Yang, L.; Hirano, S.-i., Ternary mixtures of nitrile-functionalized glyme, non-flammable hydrofluoroether and fluoroethylene carbonate as safe electrolytes for lithium-ion batteries. Journal of Power Sources 2016, 331, 445-451.
    104. Westhoff, K.; Bandhauer, T., A Multi-Functional Electrolyte for Lithium-Ion Batteries I. Non-Boiling Electrochemical Performance. Journal of The Electrochemical Society 2016, 163 (9), A1903-A1913.
    105. Zhang, Z.; Hu, L.; Wu, H.; Weng, W.; Koh, M.; Redfern, P. C.; Curtiss, L. A.; Amine, K., Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy & Environmental Science 2013, 6 (6), 1806-1810.
    106. Xia, L.; Xia, Y.; Wang, C.; Hu, H.; Lee, S.; Yu, Q.; Chen, H.; Liu, Z., 5 V‐Class Electrolytes Based on Fluorinated Solvents for Li‐Ion Batteries with Excellent Cyclability. ChemElectroChem 2015, 2 (11), 1707-1712.
    107. Liang, B.; Liu, Y.; Xu, Y., Silicon-based materials as high capacity anodes for next generation lithium ion batteries. Journal of Power sources 2014, 267, 469-490.
    108. He, M.; Hu, L.; Xue, Z.; Su, C. C.; Redfern, P.; Curtiss, L. A.; Polzin, B.; von Cresce, A.; Xu, K.; Zhang, Z., Fluorinated electrolytes for 5-V Li-ion chemistry: probing voltage stability of electrolytes with electrochemical floating test. Journal of The Electrochemical Society 2015, 162 (9), A1725-A1729.
    109. von Cresce, A.; Xu, K., Electrolyte additive in support of 5 V Li ion chemistry. Journal of The Electrochemical Society 2011, 158 (3), A337-A342.
    110. Yu, Z.; Wang, H.; Kong, X.; Huang, W.; Tsao, Y.; Mackanic, D. G.; Wang, K.; Wang, X.; Huang, W.; Choudhury, S.; Zheng, Y.; Amanchukwu, C. V.; Hung , S. T.; Ma, Y.; Lomeli, E. G.; Qin, J.; Cui , Y.; Bao, Z., Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nature Energy 2020, 5 (7), 526-533.
    111. Amanchukwu, C. V.; Yu, Z.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z., A new class of ionically conducting fluorinated ether electrolytes with high electrochemical stability. Journal of the American Chemical Society 2020, 142 (16), 7393-7403.
    112. Jiang, J.; Shi, W.; Zheng, J.; Zuo, P.; Xiao, J.; Chen, X.; Xu, W.; Zhang, J.-G., Optimized operating range for large-format LiFePO4/graphite batteries. Journal of The Electrochemical Society 2014, 161 (3), A336-A341.
    113. Sun, Y.-K.; Chen, Z.; Noh, H.-J.; Lee, D.-J.; Jung, H.-G.; Ren, Y.; Wang, S.; Yoon, C. S.; Myung, S.-T.; Amine, K., Nanostructured high-energy cathode materials for advanced lithium batteries. Nature materials 2012, 11 (11), 942-947.
    114. Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J. G., Anode‐free rechargeable lithium metal batteries. Advanced Functional Materials 2016, 26 (39), 7094-7102.
    115. Beyene, T. T.; Bezabh, H. K.; Weret, M. A.; Hagos, T. M.; Huang, C.-J.; Wang, C.-H.; Su, W.-N.; Dai, H.; Hwang, B.-J., Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free li-metal batteries. Journal of The Electrochemical Society 2019, 166 (8), A1501.
    116. Genovese, M.; Louli, A.; Weber, R.; Hames, S.; Dahn, J., Measuring the coulombic efficiency of lithium metal cycling in anode-free lithium metal batteries. Journal of The Electrochemical Society 2018, 165 (14), A3321.
    117. Zhang, J.-G., Anode-less. Nature Energy 2019, 4 (8), 637-638.
    118. Woo, J.-J.; Maroni, V. A.; Liu, G.; Vaughey, J. T.; Gosztola, D. J.; Amine, K.; Zhang, Z., Symmetrical impedance study on inactivation induced degradation of lithium electrodes for batteries beyond lithium-ion. Journal of The Electrochemical Society 2014, 161 (5), A827-A830.
    119. Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J.-G., Anode-Free Rechargeable Lithium Metal Batteries. Advanced Functional Materials 2016, 26 (39), 7094-7102.
    120. Yan, C.; Cheng, X.-B.; Tian, Y.; Chen, X.; Zhang, X.-Q.; Li, W.-J.; Huang, J.-Q.; Zhang, Q., Dual-Layered Film Protected Lithium Metal Anode to Enable Dendrite-Free Lithium Deposition. Advanced Materials 2018, 30 (25), 1707629.
    121. Hagos, T. T.; Thirumalraj, B.; Huang, C.-J.; Abrha, L. H.; Hagos, T. M.; Berhe, G. B.; Bezabh, H. K.; Cherng, J.; Chiu, S.-F.; Su, W.-N.; Hwang, B.-J., Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces 2019, 11 (10), 9955-9963.
    122. Sahalie, N. A.; Assegie, A. A.; Su, W.-N.; Wondimkun, Z. T.; Jote, B. A.; Thirumalraj, B.; Huang, C.-J.; Yang, Y.-W.; Hwang, B.-J., Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte. Journal of Power Sources 2019, 437, 226912.
    123. Beyene, T. T.; Jote, B. A.; Wondimkun, Z. T.; Olbassa, B. W.; Huang, C.-J.; Thirumalraj, B.; Wang, C.-H.; Su, W.-N.; Dai, H.; Hwang, B.-J., Effects of concentrated salt and resting protocol on solid electrolyte interface formation for improved cycle stability of anode-free lithium metal batteries. ACS Applied Materials and Interfaces 2019, 11 (35), 31962-31971.
    124. Genovese, M.; Louli, A.; Weber, R.; Hames, S.; Dahn, J., Measuring the Coulombic Efficiency of Lithium Metal Cycling in Anode-Free Lithium Metal Batteries. Journal of The Electrochemical Society 2018, 165 (14), A3321-A3325.
    125. Weber, R.; Genovese, M.; Louli, A.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy 2019, 4 (8), 683-689.
    126. Abrha, L. H.; Zegeye, T. A.; Hagos, T. T.; Sutiono, H.; Hagos, T. M.; Berhe, G. B.; Huang, C.-J.; Jiang, S.-K.; Su, W.-N.; Yang, Y.-W.; Hwang, B.-J., Li7La2. 75Ca0. 25Zr1. 75Nb0. 25O12@ LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery. Electrochimica Acta 2019, 325, 134825.
    127. Wondimkun, Z. T.; Beyene, T. T.; Weret, M. A.; Sahalie, N. A.; Huang, C.-J.; Thirumalraj, B.; Jote, B. A.; Wang, D.; Su, W.-N.; Wang, C.-H.; Brunklaus, G.; Winter, M.; Hwang, B.-J., Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries. Journal of Power Sources 2020, 450, 227589.
    128. Luo, J.; Fang, C. C.; Wu, N. L., High Polarity Poly (vinylidene difluoride) Thin Coating for Dendrite‐Free and High‐Performance Lithium Metal Anodes. Advanced Energy Materials 2018, 8 (2), 1701482.
    129. Assegie, A. A.; Chung, C.-C.; Tsai, M.-C.; Su, W.-N.; Chen, C.-W.; Hwang, B.-J., Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries. Nanoscale 2019, 11 (6), 2710-2720.
    130. Cohn, A. P.; Muralidharan, N.; Carter, R.; Share, K.; Pint, C. L., Anode-Free Sodium Battery through in Situ Plating of Sodium Metal. Nano Lett 2017, 17 (2), 1296-1301.
    131. Rudola, A.; Gajjela, S. R.; Balaya, P., High energy density in - situ sodium plated battery with current collector foil as anode. Electrochemistry Communications 2018, 86, 157-160.
    132. Aurbach, D., Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. Journal of Power Sources 2000, 89 (2), 206-218.
    133. Xu, K.; von Cresce, A., Interfacing electrolytes with electrodes in Li ion batteries. Journal of Materials Chemistry 2011, 21 (27), 9849-9864.
    134. Winter, M., The solid electrolyte interphase–the most important and the least understood solid electrolyte in rechargeable Li batteries. Zeitschrift für physikalische Chemie 2009, 223 (10-11), 1395-1406.
    135. Zhang, Y.; Liu, N., Nanostructured electrode materials for high-energy rechargeable Li, Na and Zn batteries. Chemistry of Materials 2017, 29 (22), 9589-9604.
    136. Goodenough, J. B.; Park, K.-S., The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society 2013, 135 (4), 1167-1176.
    137. Liu, W.; Song, M. S.; Kong, B.; Cui, Y., Flexible and stretchable energy storage: recent advances and future perspectives. Advanced Materials 2017, 29 (1), 1603436.
    138. Sun, Y.; Liu, N.; Cui, Y., Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy 2016, 1 (7), 16071.
    139. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M., Li–O 2 and Li–S batteries with high energy storage. Nature materials 2012, 11 (1), 19-29.
    140. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium metal anodes for rechargeable batteries. Energy & Environmental Science 2014, 7 (2), 513-537.
    141. Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y., Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy & Environment 2016, 1 (1), 18-42.
    142. Wotango, A. S.; Su, W.-N.; Leggesse, E. G.; Haregewoin, A. M.; Lin, M.-H.; Zegeye, T. A.; Cheng, J.-H.; Hwang, B.-J., Improved interfacial properties of MCMB electrode by 1-(trimethylsilyl) imidazole as new electrolyte additive to suppress LiPF6 decomposition. ACS applied materials & interfaces 2017, 9 (3), 2410-2420.
    143. Zheng, G.; Lee, S. W.; Liang, Z.; Lee, H.-W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y., Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nature nanotechnology 2014, 9 (8), 618-623.
    144. Lu, D.; Shao, Y.; Lozano, T.; Bennett, W. D.; Graff, G. L.; Polzin, B.; Zhang, J.; Engelhard, M. H.; Saenz, N. T.; Henderson, W. A.; Bhattacharya, P.; Liu, J.; Xiao, J., Failure mechanism for fast‐charged lithium metal batteries with liquid electrolytes. Advanced Energy Materials 2015, 5 (3), 1400993.
    145. Zhang, S. S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources 2006, 162 (2), 1379-1394.
    146. Markevich, E.; Salitra, G.; Chesneau, F.; Schmidt, M.; Aurbach, D., Very stable lithium metal stripping–plating at a high rate and high areal capacity in fluoroethylene carbonate-based organic electrolyte solution. ACS Energy Letters 2017, 2 (6), 1321-1326.
    147. Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q., Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Advanced Functional Materials 2017, 27 (10), 1605989.
    148. Markevich, E.; Salitra, G.; Aurbach, D., Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries. ACS Energy Letters 2017, 2 (6), 1337-1345.
    149. Guo, J.; Wen, Z.; Wu, M.; Jin, J.; Liu, Y., Vinylene carbonate–LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochemistry Communications 2015, 51, 59-63.
    150. Jia, W.; Fan, C.; Wang, L.; Wang, Q.; Zhao, M.; Zhou, A.; Li, J., Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery. ACS applied materials & interfaces 2016, 8 (24), 15399-15405.
    151. Wu, H.; Cao, Y.; Geng, L.; Wang, C., In situ formation of stable interfacial coating for high performance lithium metal anodes. Chemistry of Materials 2017, 29 (8), 3572-3579.
    152. Ren, X.; Zhang, Y.; Engelhard, M. H.; Li, Q.; Zhang, J.-G.; Xu, W., Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF6 and Cyclic Carbonate Additives. ACS Energy Letters 2017, 3 (1), 14-19.
    153. Peebles, C.; Sahore, R.; Gilbert, J. A.; Garcia, J. C.; Tornheim, A.; Bareño, J.; Iddir, H.; Liao, C.; Abraham, D. P., Tris(trimethylsilyl) Phosphite (TMSPi) and Triethyl Phosphite (TEPi) as Electrolyte Additives for Lithium Ion Batteries: Mechanistic Insights into Differences during LiNi0.5Mn0.3Co0.2O2-Graphite Full Cell Cycling. Journal of The Electrochemical Society 2017, 164 (7), A1579-A1586.
    154. Song, Y.-M.; Han, J.-G.; Park, S.; Lee, K. T.; Choi, N.-S., A multifunctional phosphite-containing electrolyte for 5 V-class LiNi 0.5 Mn 1.5 O 4 cathodes with superior electrochemical performance. Journal of Materials Chemistry A 2014, 2 (25), 9506-9513.
    155. Miao, R.; Yang, J.; Feng, X.; Jia, H.; Wang, J.; Nuli, Y., Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. Journal of Power Sources 2014, 271, 291-297.
    156. Jana, A.; Ely, D. R.; García, R. E., Dendrite-separator interactions in lithium-based batteries. Journal of Power Sources 2015, 275, 912-921.
    157. Han, Y.-K.; Yoo, J.; Yim, T., Why is tris(trimethylsilyl) phosphite effective as an additive for high-voltage lithium-ion batteries? Journal of Materials Chemistry A 2015, 3 (20), 10900-10909.
    158. Koo, B.; Lee, J.; Lee, Y.; Kim, J. K.; Choi, N.-S., Vinylene carbonate and tris (trimethylsilyl) phosphite hybrid additives to improve the electrochemical performance of spinel lithium manganese oxide/graphite cells at 60° C. Electrochimica Acta 2015, 173, 750-756.
    159. Aurbach, D.; Markovsky, B.; Weissman, I.; Levi, E.; Ein-Eli, Y., On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochimica acta 1999, 45 (1-2), 67-86.
    160. Chan, C. K.; Ruffo, R.; Hong, S. S.; Cui, Y., Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes. Journal of Power Sources 2009, 189 (2), 1132-1140.
    161. Parimalam, B. S.; Lucht, B. L., Reduction Reactions of Electrolyte Salts for Lithium Ion Batteries: LiPF6, LiBF4, LiDFOB, LiBOB, and LiTFSI. Journal of The Electrochemical Society 2018, 165 (2), A251-A255.
    162. Li, B.; Wang, Y.; Rong, H.; Wang, Y.; Liu, J.; Xing, L.; Xu, M.; Li, W., A novel electrolyte with the ability to form a solid electrolyte interface on the anode and cathode of a LiMn 2 O 4/graphite battery. Journal of Materials Chemistry A 2013, 1 (41), 12954-12961.
    163. Matadi, B. P.; Geniès, S.; Delaille, A.; Chabrol, C.; De Vito, E.; Bardet, M.; Martin, J.-F.; Daniel, L.; Bultel, Y., Irreversible capacity loss of Li-Ion batteries cycled at low temperature due to an untypical layer hindering Li diffusion into graphite electrode. Journal of The Electrochemical Society 2017, 164 (12), A2374-A2389.
    164. Kautz, D. J.; Tao, L.; Mu, L.; Nordlund, D.; Feng, X.; Zheng, Z.; Lin, F., Understanding the critical chemistry to inhibit lithium consumption in lean lithium metal composite anodes. Journal of Materials Chemistry A 2018, 6 (33), 16003-16011.
    165. Herstedt, M.; Abraham, D. P.; Kerr, J. B.; Edström, K., X-ray photoelectron spectroscopy of negative electrodes from high-power lithium-ion cells showing various levels of power fade. Electrochimica Acta 2004, 49 (28), 5097-5110.
    166. Li, J.; Xing, L.; Zhang, R.; Chen, M.; Wang, Z.; Xu, M.; Li, W., Tris (trimethylsilyl) borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte. Journal of Power Sources 2015, 285, 360-366.
    167. Wang, F.-M.; Yu, M.-H.; Hsiao, Y.-J.; Tsai, Y.; Hwang, B.-J.; Wang, Y.-Y.; Wan, C.-C., Aging effects to solid electrolyte interface (SEI) membrane formation and the performance analysis of lithium ion batteries. Int. J. Electrochem. Sci 2011, 6, 1014-1026.
    168. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G., High rate and stable cycling of lithium metal anode. Nature communications 2015, 6 (1), 1-9.
    169. Etacheri, V.; Haik, O.; Goffer, Y.; Roberts, G. A.; Stefan, I. C.; Fasching, R.; Aurbach, D., Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir 2011, 28 (1), 965-976.
    170. Xu, M.; Zhou, L.; Xing, L.; Li, W.; Lucht, B. L., Experimental and theoretical investigations on 4, 5-dimethyl-[1, 3] dioxol-2-one as solid electrolyte interface forming additive for lithium-ion batteries. Electrochimica Acta 2010, 55 (22), 6743-6748.
    171. Wotango, A. S.; Su, W.-N.; Leggesse, E. G.; Haregewoin, A. M.; Lin, M.-H.; Zegeye, T. A.; Cheng, J.-H.; Hwang, B.-J., Improved interfacial properties of MCMB electrode by 1-(trimethylsilyl) imidazole as new electrolyte additive to suppress LiPF6 decomposition. ACS Applied Materials and Interfaces 2017, 9 (3), 2410-2420.
    172. Zhang, Y.; Liu, N., Nanostructured electrode materials for high-energy rechargeable Li, Na and Zn batteries. Chemistry of Materials 2017, 29, 9589-9604.
    173. Goodenough, J. B.; Park, K.-S., The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society 2013, 135, 1167-1176.
    174. Liu, W.; Song, M. S.; Kong, B.; Cui, Y., Flexible and stretchable energy storage: recent advances and future perspectives. Advanced materials 2017, 29, 1603436.
    175. Zhang, Y.; Zuo, T.-T.; Popovic, J.; Lim, K.; Yin, Y.-X.; Maier, J.; Guo, Y.-G., Towards better Li metal anodes: Challenges and strategies. Materials Today 2019, 33, 56-74.
    176. Manthiram, A., A reflection on lithium-ion battery cathode chemistry. Nature Communications 2020, 11, 1-9.
    177. Sun, Y.; Liu, N.; Cui, Y., Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy 2016, 1, 16071.
    178. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M., Erratum: Li-O 2 and Li-S batteries with high energy storage. Nature Materials 2012, 11, 19-29.
    179. Betz, J.; Bieker, G.; Meister, P.; Placke, T.; Winter, M.; Schmuch, R., Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems. Advanced Energy Materials 2019, 9, 1803170.
    180. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q., Toward safe lithium metal anode in rechargeable batteries: a review. Chemical reviews 2017, 117, 10403-10473.
    181. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium metal anodes for rechargeable batteries. Energy & Environmental Science 2014, 7, 513-537.
    182. Bai, P.; Li, J.; Brushett, F. R.; Bazant, M. Z., Transition of lithium growth mechanisms in liquid electrolytes. Energy & Environmental Science 2016, 9, 3221-3229.
    183. Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J. G., Anode‐free rechargeable lithium metal batteries. Advanced Functional Materials 2016, 26, 7094-7102.
    184. Assegie, A. A.; Cheng, J.-H.; Kuo, L.-M.; Su, W.-N.; Hwang, B.-J., Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale 2018, 10, 6125-6138.
    185. Nanda, S.; Gupta, A.; Manthiram, A., Anode‐Free Full Cells: A Pathway to High‐Energy Density Lithium‐Metal Batteries. Advanced Energy Materials 2020, 10, 2000804.
    186. Li, S.; Leng, D.; Li, W.; Qie, L.; Dong, Z.; Cheng, Z.; Fan, Z., Recent progress in developing Li2S cathodes for Li–S batteries. Energy Storage Materials 2020, 27, 279-296.
    187. Hagos, T. T.; Su, W.-N.; Huang, C.-J.; Thirumalraj, B.; Chiu, S.-F.; Abrha, L. H.; Hagos, T. M.; Bezabh, H. K.; Berhe, G. B.; Tegegne, W. A.; Cherng, J.-Y.; Yang, Y.-W.; Hwang, B.-J., Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration. Journal of Power Sources 2020, 461, 228053.
    188. Hagos, T. M.; Berhe, G. B.; Hagos, T. T.; Bezabh, H. K.; Abrha, L. H.; Beyene, T. T.; Huang, C.-J.; Yang, Y.-W.; Su, W.-N.; Dai, H.; Hwang, B.-J., Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries. Electrochimica Acta 2019, 316, 52-59.
    189. Yan, K.; Lee, H.-W.; Gao, T.; Zheng, G.; Yao, H.; Wang, H.; Lu, Z.; Zhou, Y.; Liang, Z.; Liu, Z.; Steven, C.; Cui, Y., Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano letters 2014, 14, 6016-6022.
    190. Lin, S.; Zhao, J., A functional electrolyte of fluorinated ether and ester for stabilizing both 4.5 V LiCoO2 cathode and lithium metal anode. ACS Applied Materials & Interfaces 2020, 12, 8316-8323.
    191. Yamada, Y.; Yamada, A., Superconcentrated electrolytes for lithium batteries. Journal of The Electrochemical Society 2015, 162, A2406-A2423.
    192. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G., High rate and stable cycling of lithium metal anode. Nature communications 2015, 6, 1-9.
    193. Ding, M. S.; von Cresce, A.; Xu, K., Conductivity, viscosity, and their correlation of a super-concentrated aqueous electrolyte. The Journal of Physical Chemistry C 2017, 121, 2149-2153.
    194. Jote, B. A.; Beyene, T. T.; Sahalie, N. A.; Weret, M. A.; Olbassa, B. W.; Wondimkun, Z. T.; Berhe, G. B.; Huang, C.-J.; Su, W.-N.; Hwang, B. J., Effect of diethyl carbonate solvent with fluorinated solvents as electrolyte system for anode free battery. Journal of Power Sources 2020, 461, 228102.
    195. Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C.; Liou, S.-C.; Amine, K.; Xu, K.; Wang, C., Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature nanotechnology 2018, 13, 715-722.
    196. Li, T.; Zhang, X.-Q.; Shi, P.; Zhang, Q., Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries. Joule 2019, 3, 2647-2661.
    197. Zeng, G.; An, Y.; Xiong, S.; Feng, J., Nonflammable Fluorinated Carbonate Electrolyte with High Salt-to-Solvent Ratios Enables Stable Silicon-Based Anode for Next-Generation Lithium-Ion Batteries. ACS applied materials & interfaces 2019, 11, 23229-23235.
    198. Fan, X.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F.; Yue, J.; Piao, N.; Wang, R.; Zhou, X.; Xiao, X.; Chen, L.; Wang, C., All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nature Energy 2019, 4, 882-890.
    199. Dong, Y.; Zhang, N.; Li, C.; Zhang, Y.; Jia, M.; Wang, Y.; Zhao, Y.; Jiao, L.; Cheng, F.; Xu, J., Fire-retardant phosphate-based electrolytes for high-performance lithium metal batteries. ACS Applied Energy Materials 2019, 2, 2708-2716.
    200. Bian, X.; Dong, Y.; Zhao, D.; Ma, X.; Qiu, M.; Xu, J.; Jiao, L.; Cheng, F.; Zhang, N.; Interfaces, Microsized Antimony as a Stable Anode in Fluoroethylene Carbonate Containing Electrolytes for Rechargeable Lithium-/Sodium-Ion Batteries. ACS Applied Materials 2019, 12, 3554-3562.
    201. Iwama, E.; Shimodate, F.; Oki, Y.; Naoi, K. J. E., Super-enhanced lithium-ion transport by an effective shift of solvation shell structure in branched hydrofluoroether electrolyte. Electrochemistry 2010, 78, 266-272.
    202. Åvall, G.; Mindemark, J.; Brandell, D.; Johansson, P., Sodium‐Ion Battery Electrolytes: Modeling and Simulations. Advanced Energy Materials 2018, 8, 1703036.
    203. Sahalie, N. A.; Assegie, A. A.; Su, W.-N.; Wondimkun, Z. T.; Jote, B. A.; Thirumalraj, B.; Huang, C.-J.; Yang, Y.-W.; Hwang, B.-J., Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte. Journal of Power Sources 2019, 437, 226912.
    204. Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C.; Liou, S.-C., Author Correction: Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature nanotechnology 2018, 13, 1191-1191.
    205. Zhang, S. S.; Fan, X.; Wang, C., A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery. Electrochimica Acta 2017, 258, 1201-1207.
    206. Brown, Z. L.; Heiskanen, S.; Lucht, B. L., Using Triethyl Phosphate to Increase the Solubility of LiNO3 in Carbonate Electrolytes for Improving the Performance of the Lithium Metal Anode. Journal of The Electrochemical Society 2019, 166, A2523.
    207. Piao, N.; Ji, X.; Xu, H.; Fan, X.; Chen, L.; Liu, S.; Garaga, M. N.; Greenbaum, S. G.; Wang, L.; Wang, C.; He, X., Countersolvent Electrolytes for Lithium‐Metal Batteries. Advanced Energy Materials 2020, 10, 1903568.
    208. Sun, H.-H.; Dolocan, A.; Weeks, J. A.; Rodriguez, R.; Heller, A.; Mullins, C. B., In situ formation of a multicomponent inorganic-rich SEI layer provides a fast charging and high specific energy Li-metal battery. Journal of Materials Chemistry A 2019, 7, 17782-17789.
    209. Yang, J.; Shkrob, I.; Liu, K.; Connell, J.; Rago, N. L. D.; Zhang, Z.; Liao, C., 4-(Trimethylsilyl) Morpholine as a Multifunctional Electrolyte Additive in High Voltage Lithium Ion Batteries. Journal of The Electrochemical Society 2020, 167, 070533.
    210. Su, C.-C.; He, M.; Amine, R.; Rojas, T.; Cheng, L.; Ngo, A. T.; Amine, K., Solvating power series of electrolyte solvents for lithium batteries. Energy & Environmental Science 2019, 12, 1249-1254.
    211. Zhang, Q.; Pan, J.; Lu, P.; Liu, Z.; Verbrugge, M. W.; Sheldon, B. W.; Cheng, Y.-T.; Qi, Y.; Xiao, X., Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries. Nano letters 2016, 16, 2011-2016.
    212. Yuan, Y.; Wu, F.; Bai, Y.; Li, Y.; Chen, G.; Wang, Z.; Wu, C., Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode. Energy Storage Materials 2019, 16, 411-418.
    213. Ren, X.; Zhang, Y.; Engelhard, M. H.; Li, Q.; Zhang, J.-G.; Xu, W., Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives. ACS Energy Letters 2017, 3, 14-19.
    214. Dai, H.; Gu, X.; Dong, J.; Wang, C.; Lai, C.; Sun, S., Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation. Nature Communications 2020, 11, 1-11.
    215. Pan, J.; Cheng, Y.-T.; Qi, Y., General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes. Physical Review B 2015, 91, 134116.
    216. Pathak, R.; Chen, K.; Gurung, A.; Reza, K. M.; Bahrami, B.; Pokharel, J.; Baniya, A.; He, W.; Wu, F.; Zhou, Y.; Xu, K.; Qiao, Q., Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nature Communications 2020, 11, 93.
    217. Wu, M.-S.; Liao, T.-L.; Wang, Y.-Y.; Wan, C.-C., Assessment of the wettability of porous electrodes for lithium-ion batteries. Journal of applied electrochemistry 2004, 34, 797-805.
    218. Gupta, A.; Manthiram, A., Designing Advanced Lithium‐Based Batteries for Low‐Temperature Conditions. Advanced Energy Materials 2020, 10 (38), 2001972.
    219. Holoubek, J.; Yu, M.; Yu, S.; Li, M.; Wu, Z.; Xia, D.; Bhaladhare, P.; Gonzalez, M. S.; Pascal, T. A.; Liu, P.; Chen, Z., An All-Fluorinated Ester Electrolyte for Stable High-Voltage Li Metal Batteries Capable of Ultra-Low-Temperature Operation. ACS Energy Letters 2020, 5 (5), 1438-1447.
    220. Li, S.; Li, X.; Liu, J.; Shang, Z.; Cui, X., A low-temperature electrolyte for lithium-ion batteries. Ionics 2015, 21 (4), 901-907.
    221. Smart, M.; Ratnakumar, B.; Surampudi, S., Electrolytes for Low‐Temperature Lithium Batteries Based on Ternary Mixtures of Aliphatic Carbonates. Journal of the Electrochemical Society 1999, 146 (2), 486.
    222. Jones, J.-P.; Smart, M. C.; Krause, F. C.; Bugga, R. V., The Effect of Electrolyte Additives upon Lithium Plating during Low Temperature Charging of Graphite-LiNiCoAlO2 Lithium-Ion Three Electrode Cells. Journal of The Electrochemical Society 2020, 167 (2), 020536.
    223. Ouyang, D.; He, Y.; Weng, J.; Liu, J.; Chen, M.; Wang, J., Influence of low temperature conditions on lithium-ion batteries and the application of an insulation material. RSC advances 2019, 9 (16), 9053-9066.
    224. Logan, E.; Dahn, J., Electrolyte Design for Fast-Charging Li-Ion Batteries. Trends in Chemistry 2020, 2 (4), 354-366.
    225. Logan, E.; Tonita, E. M.; Gering, K.; Li, J.; Ma, X.; Beaulieu, L.; Dahn, J., A study of the physical properties of Li-Ion battery electrolytes containing esters. Journal of The Electrochemical Society 2018, 165 (2), A21.
    226. Zonouz, A. F.; Mosallanejad, B., Use of ethyl acetate for improving low-temperature performance of lithium-ion battery. Monatshefte für Chemie-Chemical Monthly 2019, 150 (6), 1041-1047.
    227. Holoubek, J.; Yin, Y.; Li, M.; Yu, M.; Meng, Y. S.; Liu, P.; Chen, Z., Exploiting Mechanistic Solvation Kinetics for Dual‐Graphite Batteries with High Power Output at Extremely Low Temperature. Angewandte Chemie International Edition 2019, 58 (52), 18892-18897.
    228. Hagos, T. M.; Hagos, T. T.; Bezabh, H. K.; Berhe, G. B.; Abrha, L. H.; Chiu, S.-F.; Huang, C.-J.; Su, W.-N.; Dai, H.; Hwang, B. J., Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery. ACS Applied Energy Materials 2020, 3 (11), 10722–10733.
    229. Genovese, M.; Louli, A.; Weber, R.; Martin, C.; Taskovic, T.; Dahn, J., Hot formation for improved low temperature cycling of anode-free lithium metal batteries. Journal of The Electrochemical Society 2019, 166 (14), A3342.

    無法下載圖示 全文公開日期 2026/02/05 (校內網路)
    全文公開日期 2026/02/05 (校外網路)
    全文公開日期 2026/02/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE