簡易檢索 / 詳目顯示

研究生: 楊萊麗
Nur Layli Amanah
論文名稱: 用於富鋰層狀氧化物LMNCO(Li1.2Mn0.54Ni0.1Co0.13O2和Li1.4Mn0.6Ni0.2Co0.2O2.4)的醯亞胺基添加之電解質(Li-BZ和Li-IZ)的性能和建議機制用於鋰離子電池應用
Performance and Propose Mechanism of Imide-Based Additive Electrolyte (Li-BZ and Li-IZ) for Lithium-Rich Layered Oxide LMNCO (Li1.2Mn0.54Ni0.13Co0.13O2 and Li1.4Mn0.6Ni0.2Co0.2O2.4) for Lithium-Ion Battery Application
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 王復民
Fu-Ming Wang
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 101
外文關鍵詞: Li-Imidazole, Li-Benzimidazole, Additive Salt Electrolyte, Lithium-rich cathode material, LMNCO, Li1.2 Mn0.54 Ni0.13 Co0.13 O2, Li1.4 Mn0.6 Ni0.2 Co0.2 O2.4
相關次數: 點閱:198下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Due to its capacity to store energy, power devices, and carry objects, lithium-ion batteries are now more prevalent than ever in technology. As a result of this increased demand, it is essential to continue developing lithium-ion batteries with greater safety, reduced expenses, and increased energy and power density. Lithium-rich materials provide a viable cathode because of their low cost, little effect on the environment, and excellent specificity. However, the weak cycle stability of these batteries can negatively impact their lifespan. This issue is often caused by structural collapse during cycling, a common problem encountered with Li1.2Mn0.54Ni0.13Co0.13O2 (Tu80) and Li1.4Mn0.6Ni0.2Co0.2O2.4 (NFU80). One can utilize varying electrolyte compositions and additives to prevent issues.

    This study examines Li-IZ additive salt electrolytes as new imide-based electrolytes, confirmed by NMR and Mass spectroscopy characteristics. Fresh Li-IZ additive salt will be compared with Li-BZ additive salt from the previous research group, where Li-BZ has been shown to enhance the efficiency of the LLNMO and MCMB as cathode and anode material. Electrolyte performance was performed by adding 0.1wt% Li-BZ and 0.1wt% Li-IZ to 1M LiPF6 base electrolyte in EC: EMC (3:7 vol%) through cyclic voltammetry and linear sweep voltammetry galvanostatic test. Ionic conductivity measurements were also carried out to evaluate ion transfer with and without additive salt electrolytes.

    Comparative studies of performance on lithium-ion battery systems reported that with the addition of Li-BZ and Li-IZ, they experienced an increase in discharge capacity and columbic efficiency for both material differences (TU80 and NFU80) and temperature differences. Long cycle performance (100 cycles) also shows increased capacity retention with adding additive salt, drastically occurring in the NFU80 material with Li-BZ with a value of 84.96% and 76.56% with Li-IZ from 58.38% in the base electrolyte, thus in the TU80 material, slightly increasing capacity retention from 76.63% in base electrolyte to 77.43% with Li-IZ, and 79.04% with Li-BZ. Also, in the end, C1s and N1s spectra with the addition of Li-BZ and Li-IZ salt electrolytes demonstrated the existence of C=C, C=N, and C-N bonds through XPS analysis. Meanwhile, the proposed mechanism for the reaction of Li-BZ and Li-IZ additive salt electrolytes can be evaluated by analyzing F1s, O1s, and P2p spectra. The evidence has shown the effectiveness of Li-BZ as an additive salt electrolyte with a benzene ring content which helps in electron delocalization to speed up the degradation process in the NFU80 material.

    Master’s Thesis Recommendation Form ii Qualification From by Master’s Degree Examination Committee iii ABSTRACT iv ACKNOWLEDGMENT vi TABLE OF CONTENT viii LIST OF FIGURES xii LIST OF TABLES xv LIST OF SCHEMES xvi CHAPTER I 1 INTRODUCTION 1 1.1 Background 1 1.2 Problem Formulation 4 1.3 Research Purpose 5 CHAPTER II 7 LITERATURE REVIEW 7 2.1 Internal Structure of Lithium-Ion Battery 7 2.2 Lithium Rich Cathode Material 27 2.3 Imide-based Salt Additive Electrolyte 30 2.4 Characterization of Li-IZ Additive Salt Electrolyte 33 2.5 Electrochemical Measurement 38 2.6 Surface Characterization 41 CHAPTER III 43 RESEARCH AND METHODOLOGY 43 3.1 Research Design 43 3.2 Materials 45 3.3 Equipment 45 3.4 Experimental Procedures 46 CHAPTER IV 56 RESULT AND DISCUSSION 56 4.1 Synthesis and Characteristics of Lithium Imidazole Salt Additive Electrolyte 56 4.2 Characteristic Electrochemical Performance of Additive Salt Electrolytes 60 4.3 Lithium-Ion Battery Performance Analysis 63 4.4 Surface Characteristic 70 CHAPTER V 79 CONCLUSION 79 REFERENCE 80

    [1] X. Yu, A. Manthiram, Sustainable Battery Materials for Next-Generation Electrical Energy Storage, Adv. Energy Sustain. Res. 2 (2021) 2000102. https://doi.org/https://doi.org/10.1002/aesr.202000102.
    [2] Y. Lu, Q. Zhang, F. Li, J. Chen, Emerging Lithiated Organic Cathode Materials for Lithium-Ion Full Batteries, Angew. Chemie Int. Ed. 62 (2023) e202216047. https://doi.org/https://doi.org/10.1002/anie.202216047.
    [3] H.-J. Kim, T.N. V Krishna, K. Zeb, V. Rajangam, C.V.V.M. Gopi, S. Sambasivam, K. V Raghavendra, I.M. Obaidat, A Comprehensive Review of Li-Ion Battery Materials and Their Recycling Techniques, Electronics. 9 (2020). https://doi.org/10.3390/electronics9071161.
    [4] C. Du, F. Zhang, C. Ma, J. Wu, Z. Tang, X. Zhang, D. Qu, Synthesis and electrochemical properties of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for lithium-ion battery, Ionics (Kiel). 22 (2016) 209–218. https://doi.org/10.1007/s11581-015-1541-9.
    [5] M. Akhilash, P.S. Salini, B. John, T.D. Mercy, A journey through layered cathode materials for lithium-ion cells – From lithium cobalt oxide to lithium-rich transition metal oxides, J. Alloys Compd. 869 (2021) 159239. https://doi.org/https://doi.org/10.1016/j.jallcom.2021.159239.
    [6] Y. Zhu, X. Luo, M. Xu, L. Zhang, L. Yu, W. Fan, W. Li, Failure mechanism of layered lithium-rich oxide/graphite cell and its solution by using electrolyte additive, J. Power Sources. 317 (2016) 65–73. https://doi.org/https://doi.org/10.1016/j.jpowsour.2016.03.090.
    [7] S.J. Shi, J.P. Tu, Y.Y. Tang, X.Y. Liu, Y.Q. Zhang, X.L. Wang, C.D. Gu, Enhanced cycling stability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification of MgO with melting impregnation method, Electrochim. Acta. 88 (2013) 671–679. https://doi.org/https://doi.org/10.1016/j.electacta.2012.10.111.
    [8] Y. Bei, Y. Zhang, Y. Li, Y. Song, L. Liu, J. Ma, J. Liu, Controlled preparation of nano-Al2O3/PPy composite coatings to compensate surface structural defects of lithium-rich layered oxides, J. Alloys Compd. 928 (2022) 167140. https://doi.org/https://doi.org/10.1016/j.jallcom.2022.167140.
    [9] D. Chen, F. Zheng, L. Li, M. Chen, X. Zhong, W. Li, L. Lu, Effect of Li3PO4 coating of layered lithium-rich oxide on electrochemical performance, J. Power Sources. 341 (2017) 147–155. https://doi.org/https://doi.org/10.1016/j.jpowsour.2016.11.020.
    [10] S.A. Pradanawati, F.-M. Wang, J. Rick, In Situ formation of pentafluorophosphate benzimidazole anion stabilizes high-temperature performance of lithium-ion batteries, Electrochim. Acta. 135 (2014) 388–395. https://doi.org/https://doi.org/10.1016/j.electacta.2014.05.038.
    [11] Y. Li, G.M. Veith, K.L. Browning, J. Chen, D.K. Hensley, M.P. Paranthaman, S. Dai, X.-G. Sun, Lithium malonatoborate additives enabled stable cycling of 5V lithium metal and lithium-ion batteries, Nano Energy. 40 (2017) 9–19. https://doi.org/https://doi.org/10.1016/j.nanoen.2017.07.051.
    [12] Q. Ouyang, J. Chen, Lithium-Ion Battery Charging Technologies: Fundamental Concepts, in Adv. Model. Charg. Control Lithium-Ion Batter., Springer, 2023: pp. 15–23.
    [13] B. Pan, D. Dong, J. Wang, J. Nie, S. Liu, Y. Cao, Y. Jiang, Aging mechanism diagnosis of lithium-ion battery by open circuit voltage analysis, Electrochim. Acta. 362 (2020) 137101. https://doi.org/https://doi.org/10.1016/j.electacta.2020.137101.
    [14] C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries, Mater. Today. 19 (2016) 109–123. https://doi.org/https://doi.org/10.1016/j.mattod.2015.10.009.
    [15] X. Shen, X.-Q. Zhang, F. Ding, J.-Q. Huang, R. Xu, X. Chen, C. Yan, F.-Y. Su, C.-M. Chen, X. Liu, Q. Zhang, Advanced Electrode Materials in Lithium Batteries: Retrospect and Prospect, Energy Mater. Adv. 2021 (2023). https://doi.org/10.34133/2021/1205324.
    [16] M. Osiak, H. Geaney, E. Armstrong, C. O’Dwyer, Structuring materials for lithium-ion batteries: advancements in nanomaterial structure, composition, and defined assembly on cell performance, J. Mater. Chem. A. 2 (2014) 9433–9460. https://doi.org/10.1039/C4TA00534A.
    [17] Z. Chen, I. Belharouak, Y.-K. Sun, K. Amine, Titanium-Based Anode Materials for Safe Lithium-Ion Batteries, Adv. Funct. Mater. 23 (2013) 959–969. https://doi.org/https://doi.org/10.1002/adfm.201200698.
    [18] J. Zhu, D. Yang, Z. Yin, Q. Yan, H. Zhang, Graphene and Graphene-Based Materials for Energy Storage Applications, Small. 10 (2014) 3480–3498. https://doi.org/https://doi.org/10.1002/smll.201303202.
    [19] H. Fujimoto, K. Tokumitsu, A. Mabuchi, N. Chinnasamy, T. Kasuh, The anode performance of the hard carbon for the lithium-ion battery derived from the oxygen-containing aromatic precursors, J. Power Sources. 195 (2010) 7452–7456. https://doi.org/https://doi.org/10.1016/j.jpowsour.2010.05.041.
    [20] J. Yang, X. Zhou, J. Li, Y. Zou, J. Tang, Study of nano-porous hard carbons as anode materials for lithium-ion batteries, Mater. Chem. Phys. 135 (2012) 445–450. https://doi.org/https://doi.org/10.1016/j.matchemphys.2012.05.006.
    [21] J. Zhao, A. Buldum, J. Han, J. Ping Lu, First-Principles Study of Li-Intercalated Carbon Nanotube Ropes, Phys. Rev. Lett. 85 (2000) 1706–1709. https://doi.org/10.1103/PhysRevLett.85.1706.
    [22] C.M. Schauerman, M.J. Ganter, G. Gaustad, C.W. Babbitt, R.P. Raffaelle, B.J. Landi, Recycling single-wall carbon nanotube anodes from lithium-ion batteries, J. Mater. Chem. 22 (2012) 12008–12015. https://doi.org/10.1039/C2JM31971C.
    [23] J.R. Szczech, S. Jin, Nanostructured silicon for high capacity lithium battery anodes, Energy Environ. Sci. 4 (2011) 56–72. https://doi.org/10.1039/C0EE00281J.
    [24] J. Yang, Y. Takeda, N. Imanishi, C. Capiglia, J.Y. Xie, O. Yamamoto, SiOx-based anodes for secondary lithium batteries, Solid State Ionics. 152–153 (2002) 125–129. https://doi.org/https://doi.org/10.1016/S0167-2738(02)00362-4.
    [25] A.M. Chockla, K.C. Klavetter, C.B. Mullins, B.A. Korgel, Solution-Grown Germanium Nanowire Anodes for Lithium-Ion Batteries, ACS Appl. Mater. Interfaces. 4 (2012) 4658–4664. https://doi.org/10.1021/am3010253.
    [26] P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chemie, Int. Ed. 47 (2008) 2930–2946. https://doi.org/10.1002/anie.200702505.
    [27] Z. Wang, L. Zhou, X.W. (David) Lou, Metal Oxide Hollow Nanostructures for Lithium-ion Batteries, Adv. Mater. 24 (2012) 1903–1911. https://doi.org/https://doi.org/10.1002/adma.201200469.
    [28] Q. Wang, B. Liu, Y. Shen, J. Wu, Z. Zhao, C. Zhong, W. Hu, Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries, Adv. Sci. 8 (2021) 2101111. https://doi.org/https://doi.org/10.1002/advs.202101111.
    [29] F. Schipper, P.K. Nayak, E.M. Erickson, S.F. Amalraj, O. Srur-Lavi, T.R. Penki, M. Talianker, J. Grinblat, H. Sclar, O. Breuer, C.M. Julien, N. Munichandraiah, D. Kovacheva, M. Dixit, D.T. Major, B. Markovsky, D. Aurbach, Study of Cathode Materials for Lithium-Ion Batteries: Recent Progress and New Challenges, Inorganics. 5 (2017). https://doi.org/10.3390/inorganics5020032.
    [30] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Mater. Today. 18 (2015) 252–264.
    [31] Y. Wang, S. Cai, Z. Sun, Q. Hou, H. Huang, J. Cheng, J. Fan, M. Zheng, Q. Dong, An Active-Oxygen-Scavenging Oriented Cathode-Electrolyte-Interphase for Long-Life Lithium-Rich Cathode Materials, Small. 18 (2022) 2106072. https://doi.org/https://doi.org/10.1002/smll.202106072.
    [32] B. Ramasubramanian, S. Sundarrajan, V. Chellappan, M. V Reddy, S. Ramakrishna, K. Zaghib, Recent Development in Carbon-LiFePO4 Cathodes for Lithium-Ion Batteries: A Mini Review, Batteries. 8 (2022). https://doi.org/10.3390/batteries8100133.
    [33] A. Manthiram, A reflection on lithium-ion battery cathode chemistry, Nat. Commun. 11 (2020) 1550. https://doi.org/10.1038/s41467-020-15355-0.
    [34] T.R. Somo, T.E. Mabokela, D.M. Teffu, T.K. Sekgobela, B. Ramogayana, M.J. Hato, K.D. Modibane, A Comparative Review of Metal Oxide Surface Coatings on Three Families of Cathode Materials for Lithium Ion Batteries, Coatings. 11 (2021). https://doi.org/10.3390/coatings11070744.
    [35] Y. Fan, W. Zhang, Y. Zhao, Z. Guo, Q. Cai, Fundamental understanding and practical challenges of lithium-rich oxide cathode materials: Layered and disordered-rocksalt structure, Energy Storage Mater. 40 (2021) 51–71. https://doi.org/https://doi.org/10.1016/j.ensm.2021.05.005.
    [36] A. Chakraborty, S. Kunnikuruvan, S. Kumar, B. Markovsky, D. Aurbach, M. Dixit, D.T. Major, Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1–x–yCoxMnyO2 and LiNi1–x–yCoxAlyO2, Chem. Mater. 32 (2020) 915–952. https://doi.org/10.1021/acs.chemmater.9b04066.
    [37] A. Purwanto, C.S. Yudha, U. Ubaidillah, H. Widiyandari, T. Ogi, H. Haerudin, NCA cathode material: synthesis methods and performance enhancement efforts, Mater. Res. Express. 5 (2018) 122001. https://doi.org/10.1088/2053-1591/aae167.
    [38] S.-L. Cui, Y.-Y. Wang, S. Liu, G.-R. Li, X.-P. Gao, Evolution mechanism of phase transformation of Li-rich cathode materials in cycling, Electrochim. Acta. 328 (2019) 135109. https://doi.org/https://doi.org/10.1016/j.electacta.2019.135109.
    [39] R.K. Petla, B. Nageswara Rao, P. Muralidharan, N. Satyanarayana, M. Venkateswarlu, Fast and Facile Synthesis of LiMn2O4 Nanorods for Li-Ion Battery by Microwave-Assisted Hydrothermal and Solid State Reaction Methods, Int. J. Electrochem. Sci. 9 (2014) 1207–1220.
    [40] P.B. Samarasingha, N.H. Andersen, M.H. Sørby, S. Kumar, O. Nilsen, H. Fjellvåg, Neutron diffraction and Raman analysis of LiMn1.5Ni0.5O4 spinel type oxides for use as lithium-ion battery cathode and their capacity enhancements, Solid State Ionics. 284 (2016) 28–36. https://doi.org/https://doi.org/10.1016/j.ssi.2015.11.018.
    [41] R. Amin, N. Muralidharan, R.K. Petla, H. Ben Yahia, S.A. Jassim Al-Hail, R. Essehli, C. Daniel, M.A. Khaleel, I. Belharouak, Research advances on cobalt-free cathodes for Li-ion batteries - The high voltage LiMn1.5Ni0.5O4 as an example, J. Power Sources. 467 (2020) 228318. https://doi.org/https://doi.org/10.1016/j.jpowsour.2020.228318.
    [42] B. Lung-Hao Hu, F.-Y. Wu, C.-T. Lin, A.N. Khlobystov, L.-J. Li, Graphene-modified LiFePO4 cathode for lithium-ion battery beyond theoretical capacity, Nat. Commun. 4 (2013) 1687. https://doi.org/10.1038/ncomms2705.
    [43] A.M. Hashambhoy, J.F. Whitacre, Li Diffusivity and Phase Change in LiFe0.5Mn0.5PO4: AComparative Study using Galvanostatic Intermittent Titration and Cyclic Voltammetry, J. Electrochem. Soc. 158 (2011) A390. https://doi.org/10.1149/1.3545972.
    [44] H.-F. Lin, S.-T. Cheng, D.-Z. Chen, N.-Y. Wu, Z.-X. Jiang, C.-T. Chang, Stabilizing Li-Rich Layered Cathode Materials Using a LiCoMnO4 Spinel Nanolayer for Li-Ion Batteries, Nanomaterials. 12 (2022) 3425. https://doi.org/https://doi.org/10.3390/nano12193425.
    [45] M. Dahbi, F. Ghamouss, F. Tran-Van, D. Lemordant, M. Anouti, Ester based electrolyte with lithium bis(trifluoromethane sulfonyl) imide salt for electrochemical storage devices: Physicochemical and electrochemical characterization, Electrochim. Acta. 86 (2012) 287–293. https://doi.org/https://doi.org/10.1016/j.electacta.2012.02.080.
    [46] W.-J. Kwak, Rosy, D. Sharon, C. Xia, H. Kim, L.R. Johnson, P.G. Bruce, L.F. Nazar, Y.-K. Sun, A.A. Frimer, M. Noked, S.A. Freunberger, D. Aurbach, Lithium–Oxygen Batteries and Related Systems: Potential, Status, and Future, Chem. Rev. 120 (2020) 6626–6683. https://doi.org/10.1021/acs.chemrev.9b00609.
    [47] W. Tu, P. Xia, X. Zheng, C. Ye, M. Xu, W. Li, Insight into the interaction between layered lithium-rich oxide and additive-containing electrolyte, J. Power Sources. 341 (2017) 348–356. https://doi.org/https://doi.org/10.1016/j.jpowsour.2016.12.012.
    [48] K. Kim, H. Ma, S. Park, N.-S. Choi, Electrolyte-Additive-Driven Interfacial Engineering for High-Capacity Electrodes in Lithium-Ion Batteries: Promise and Challenges, ACS Energy Lett. 5 (2020) 1537–1553. https://doi.org/10.1021/acsenergylett.0c00468.
    [49] F.-M. Wang, S.A. Pradanawati, N.-H. Yeh, S.-C. Chang, Y.-T. Yang, S.-H. Huang, P.-L. Lin, J.-F. Lee, H.-S. Sheu, M.-L. Lu, C.-K. Chang, A. Ramar, C.-H. Su, Robust Benzimidazole-Based Electrolyte Overcomes High-Voltage and High-Temperature Applications in 5 V Class Lithium Ion Batteries, Chem. Mater. 29 (2017) 5537–5549. https://doi.org/10.1021/acs.chemmater.7b00824.
    [50] R.R. Forseth, F.C. Schroeder, NMR-spectroscopic analysis of mixtures: from structure to function, Curr. Opin. Chem. Biol. 15 (2011) 38–47. https://doi.org/https://doi.org/10.1016/j.cbpa.2010.10.010.
    [51] J.L. Jungnickel, J.W. Forbes, Quantitative Measurement of Hydrogen Types by Intergrated Nuclear Magnetic Resonance Intensities., Anal. Chem. 35 (1963) 938–942. https://doi.org/10.1021/ac60201a005.
    [52] S.K. Bharti, R. Roy, Quantitative 1H NMR spectroscopy, TrAC Trends Anal. Chem. 35 (2012) 5–26. https://doi.org/https://doi.org/10.1016/j.trac.2012.02.007.
    [53] E.J. Finehout, K.H. Lee, An introduction to mass spectrometry applications in biological research, Biochem. Mol. Biol. Educ. 32 (2004) 93–100. https://doi.org/https://doi.org/10.1002/bmb.2004.494032020331.
    [54] M.V. Portales, A.R. Lazo Fraga, A.M. Díaz García, O. García-Zaldívar, A. Peláiz Barranco, M.A. Aguilar Frutis, Cyclic voltammetry and impedance spectroscopy analysis for graphene-modified solid-state electrode transducers, J. Solid State Electrochem. 22 (2018) 471–478. https://doi.org/10.1007/s10008-017-3776-z.
    [55] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A Practical Beginner’s Guide to Cyclic Voltammetry, J. Chem. Educ. 95 (2018) 197–206. https://doi.org/10.1021/acs.jchemed.7b00361.
    [56] G. Bontempelli, N. Dossi, R.B.T.-R.M. in C. Toniolo Molecular Sciences and Chemical Engineering, Linear Sweep and Cyclic☆, in Elsevier, 2016. https://doi.org/https://doi.org/10.1016/B978-0-12-409547-2.12200-0.
    [57] B. Rowden, N. Garcia-Araez, Estimating lithium-ion battery behavior from half-cell data, Energy Reports. 7 (2021) 97–103. https://doi.org/https://doi.org/10.1016/j.egyr.2021.02.048.
    [58] H. Ji, J. Wu, Z. Cai, J. Liu, D.-H. Kwon, H. Kim, A. Urban, J.K. Papp, E. Foley, Y. Tian, M. Balasubramanian, H. Kim, R.J. Clément, B.D. McCloskey, W. Yang, G. Ceder, Ultrahigh power and energy density in partially ordered lithium-ion cathode materials, Nat. Energy. 5 (2020) 213–221. https://doi.org/10.1038/s41560-020-0573-1.
    [59] M. Gaberšček, Impedance spectroscopy of battery cells: Theory versus experiment, Curr. Opin. Electrochem. 32 (2022) 100917. https://doi.org/https://doi.org/10.1016/j.coelec.2021.100917.
    [60] N. Meddings, M. Heinrich, F. Overney, J.-S. Lee, V. Ruiz, E. Napolitano, S. Seitz, G. Hinds, R. Raccichini, M. Gaberšček, J. Park, Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review, J. Power Sources. 480 (2020) 228742. https://doi.org/https://doi.org/10.1016/j.jpowsour.2020.228742.
    [61] T. Pajkossy, R. Jurczakowski, Electrochemical impedance spectroscopy in interfacial studies, Curr. Opin. Electrochem. 1 (2017) 53–58. https://doi.org/https://doi.org/10.1016/j.coelec.2017.01.006.
    [62] V. Khorwal, B. Sadhu, A. Dey, M. Sundararajan, A. Datta, Modulation of Protonation–Deprotonation Processes of 2-(4′-Pyridyl)benzimidazole in Its Inclusion Complexes with Cyclodextrins, J. Phys. Chem. B. 117 (2013) 8603–8610. https://doi.org/10.1021/jp403476n.
    [63] Y. Wu, M. Li, W. Wahyudi, G. Sheng, X. Miao, T.D. Anthopoulos, K.-W. Huang, Y. Li, Z. Lai, Performance and Stability Improvement of Layered NCM Lithium-Ion Batteries at High Voltage by a Microporous Al2O3 Sol-Gel Coating, ACS Omega. 4 (2019) 13972–13980. https://doi.org/10.1021/acsomega.9b01706.
    [64] M. ABE, Y. KANZAKI, R. CHITRAKAR, APPLICATION OF NMR FOR INTERPRETATION OF ION EXCHANGE SELECTIVITIES, in A. Dyer, M.J. Hudson, P.A.B.T.-P. In, I.E., Williams (Eds.), Woodhead Publishing, 1997: pp. 430–438. https://doi.org/https://doi.org/10.1533/9781845698652.5.430.
    [65] C. Zhang, J. Jiang, Y. Gao, W. Zhang, Q. Liu, X. Hu, Charging optimization in lithium-ion batteries based on temperature rise and charge time, Appl. Energy. 194 (2017) 569–577. https://doi.org/https://doi.org/10.1016/j.apenergy.2016.10.059.
    [66] D.J. Xiong, T. Hynes, J.R. Dahn, Dramatic Effects of Low Salt Concentrations on Li-Ion Cells Containing EC-Free Electrolytes, J. Electrochem. Soc. 164 (2017) A2089. https://doi.org/10.1149/2.1381709jes.
    [67] A.S. Samsudin, M.I.N. Isa, Study of the ionic conduction mechanism based on carboxymethyl cellulose biopolymer electrolytes, J. Korean Phys. Soc. 65 (2014) 1441–1447. https://doi.org/10.3938/jkps.65.1441.

    無法下載圖示 全文公開日期 2025/08/22 (校內網路)
    全文公開日期 2028/08/22 (校外網路)
    全文公開日期 2025/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE