簡易檢索 / 詳目顯示

研究生: 陳思維
Szu-Wei Chen
論文名稱: 共聚交聯聚丙烯腈摻和聚偏氟乙烯-六氟丙烯的固態高分子電解質與其在鋰離子電池之應用
Solid polymer electrolytes based on copolymerized/cross-linked polyacrylonitrile blended with PVdF-HFP and their application in lithium-ion batteries
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 陳崇賢
Chorng-Shyan Chern
范國泰
Quoc-Thai Pham
許榮木
Jung-Mu Shu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 125
中文關鍵詞: 聚丙烯腈交聯劑溶液聚合法固態高分子電解質固態鋰離子電池
外文關鍵詞: polyacrylonitrile, cross-linking agent, solution polymerization, solid polymer electrolyte, solid state lithium ion battery
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 i Abstract iii 致謝 v 目錄 vi 圖目錄 ix 表目錄 xiv 第1章- 緒論 1 1-1. 前言 1 1-2. 研究背景 3 1-2.1. 鋰離子電池工作原理 3 1-2.2. 正極材料 4 1-2.3. 電解質 5 1-2.4. 隔離膜 7 1-2.5. 負極材料 7 第2章- 研究動機 9 2-1. 固態電解質 9 2-1.1. 有機固態電解質(Organic Solid Electrolyte) 10 2-1.2. 無機固態電解質(Inorganic Solid Electrolyte) 14 2-1.3. 複合固態電解質(Composite Solid Electrolyte) 15 2-2. 聚氧化乙烯 16 2-3. 聚丙烯腈 20 2-4. 固態高分子電解質之交聯 24 2-5. 高分子合成機制 31 第3章- 實驗藥品、器材與方法 32 3-1. 實驗藥品 32 3-2. 實驗儀器與器材 34 3-3. 實驗方法 35 3-3.1. 高分子產物之合成 36 3-3.2. DSC 樣品製備 37 3-3.3. TGA 樣品製備 38 3-3.4. GPC 樣品製備 38 3-3.5. 本質黏度樣品製備 39 3-3.6. FT-IR 樣品製備 39 3-3.7. 機械性能測試樣品製備 39 3-3.8. 鋰離子電導率樣品製備 40 3-3.9. 線性掃描伏安法樣品製備 43 3-3.10. 鋰離子遷移常數以及界面穩定性樣品製備 44 3-3.11. 電極漿料製備 45 3-3.12. 鈕扣型電池組裝方法 46 3-3.13. 電化學測量之樣品組裝示意圖 47 第4章- 結果與討論 48 4-1. 差示掃描量熱分析 48 4-2. 熱重分析 53 4-3. 凝膠滲透層析分析 55 4-4. 本質黏度分析 57 4-5. 傅立葉轉換紅外光譜分析 60 4-6. 機械性能測試 62 4-7. 鋰離子電導率 64 4-8. 線性掃描伏安法 76 4-9. 鋰離子遷移常數 79 4-10. 鋰金屬固態電解質之界面穩定性 83 4-11. 充放電循環性能之電池測試 86 第5章- 結論 97 參考文獻 99 附錄 105

    1.Tarascon, J.-M. and M. Armand, Issues and challenges facing rechargeable lithium batteries, in Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. 2011, World Scientific. p. 171-179.
    2.Xu, W., et al., Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014. 7(2): p. 513-537.
    3.Goodenough, J.B. and Y. Kim, Challenges for rechargeable Li batteries. Chemistry of materials, 2010. 22(3): p. 587-603.
    4.Morales, J., C. Perez-Vicente, and J. Tirado, Cation distribution and chemical deintercalation of Li1-xNi1+ xO2. Materials Research Bulletin, 1990. 25(5): p. 623-630.
    5.Nitta, N., et al., Li-ion battery materials: present and future. Materials today, 2015. 18(5): p. 252-264.
    6.Mizushima, K., et al., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
    7.Ding, Y., et al., Enhanced elevated-temperature performance of Al-doped single-crystalline LiMn2O4 nanotubes as cathodes for lithium ion batteries. The Journal of Physical Chemistry C, 2011. 115(19): p. 9821-9825.
    8.Padhi, A.K., K.S. Nanjundaswamy, and J.B. Goodenough, Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries. Journal of the electrochemical society, 1997. 144(4): p. 1188.
    9.Zaghib, K., et al., Review and analysis of nanostructured olivine-based lithium recheargeable batteries: Status and trends. Journal of Power Sources, 2013. 232: p. 357-369.
    10.Yao, J., et al., Characterisation of olivine-type LiMnxFe1− xPO4 cathode materials. Journal of alloys and compounds, 2006. 425(1-2): p. 362-366.
    11.Barbosa, J.C., et al., Metal–organic frameworks and zeolite materials as active fillers for lithium-ion battery solid polymer electrolytes. Materials Advances, 2021. 2(12): p. 3790-3805.
    12.Ping, W., et al., A silicon anode for garnet-based all-solid-state batteries: Interfaces and nanomechanics. Energy Storage Materials, 2019. 21: p. 246-252.
    13.Chen, R., et al., Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chemical reviews, 2019. 120(14): p. 6820-6877.
    14.Knauth, P., Inorganic solid Li ion conductors: An overview. Solid State Ionics, 2009. 180(14-16): p. 911-916.
    15.Bachman, J.C., et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical reviews, 2016. 116(1): p. 140-162.
    16.Ma, F., et al., Solid polymer electrolyte based on polymerized ionic liquid for high performance all-solid-state lithium-ion batteries. ACS Sustainable Chemistry & Engineering, 2019. 7(5): p. 4675-4683.
    17.Dirican, M., et al., Composite solid electrolytes for all-solid-state lithium batteries. Materials Science and Engineering: R: Reports, 2019. 136: p. 27-46.
    18.Brandt, K., Historical development of secondary lithium batteries. Solid State Ionics, 1994. 69(3-4): p. 173-183.
    19.Wu, Y., E. Rahm, and R. Holze, Carbon anode materials for lithium ion batteries. Journal of power sources, 2003. 114(2): p. 228-236.
    20.Takami, N., et al., High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications. Journal of power sources, 2013. 244: p. 469-475.
    21.Manthiram, A., X. Yu, and S. Wang, Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2017. 2(4): p. 1-16.
    22.Wright, P.V., Electrical conductivity in ionic complexes of poly (ethylene oxide). British polymer journal, 1975. 7(5): p. 319-327.
    23.Armand, M., J. Chabagno, and M. Duclot, Second international meeting on solid electrolytes. St Andrews, Scotland, 1978: p. 20-22.
    24.Daigle, J.-C., et al., Lithium battery with solid polymer electrolyte based on comb-like copolymers. Journal of Power Sources, 2015. 279: p. 372-383.
    25.Song, D., et al., Toward higher energy conversion efficiency for solid polymer electrolyte dye-sensitized solar cells: ionic conductivity and TiO2 pore-filling. The journal of physical chemistry letters, 2014. 5(7): p. 1249-1258.
    26.Stephan, A.M., Review on gel polymer electrolytes for lithium batteries. European polymer journal, 2006. 42(1): p. 21-42.
    27.Walker, C.W. and M. Salomon, Improvement of ionic conductivity in plasticized PEO‐based solid polymer electrolytes. Journal of the Electrochemical Society, 1993. 140(12): p. 3409.
    28.Cheng, X., et al., Gel polymer electrolytes for electrochemical energy storage. Advanced Energy Materials, 2018. 8(7): p. 1702184.
    29.Armand, M., W. Gorecki, and R. Andreani, Proceedings of the 2nd International Meeting on Polymer Electrolytes. 1989, Elsevier London.
    30.Song, J., Y. Wang, and C. Wan, Conductivity study of porous plasticized polymer electrolytes based on poly (vinylidene fluoride) a comparison with polypropylene separators. Journal of The Electrochemical Society, 2000. 147(9): p. 3219.
    31.Kanno, R. and M. Murayama, Lithium ionic conductor thio-LISICON: the Li2 S GeS2 P 2 S 5 system. Journal of the electrochemical society, 2001. 148(7): p. A742.
    32.Wang, Y., et al., Facile design of sulfide‐based all solid‐state lithium metal battery: in situ polymerization within self‐supported porous argyrodite skeleton. Advanced Functional Materials, 2021. 31(28): p. 2101523.
    33.Gao, Z., et al., Promises, challenges, and recent progress of inorganic solid‐state electrolytes for all‐solid‐state lithium batteries. Advanced materials, 2018. 30(17): p. 1705702.
    34.Chen, L., et al., PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy, 2018. 46: p. 176-184.
    35.Yuan, F., et al., PAN–PEO solid polymer electrolytes with high ionic conductivity. Materials chemistry and physics, 2005. 89(2-3): p. 390-394.
    36.Carlsson, P., et al., The segmental dynamics of a polymer electrolyte investigated by coherent quasielastic neutron scattering. The Journal of Chemical Physics, 2001. 114(21): p. 9645-9656.
    37.Hu, P., et al., Progress in nitrile-based polymer electrolytes for high performance lithium batteries. Journal of Materials Chemistry A, 2016. 4(26): p. 10070-10083.
    38.Howard, W., The glass temperatures of polyacrylonitrile and acrylonitrile–vinyl acetate copolymers. Journal of Applied Polymer Science, 1961. 5(15): p. 303-307.
    39.Prasanth, R., V. Aravindan, and M. Srinivasan, Novel polymer electrolyte based on cob-web electrospun multi component polymer blend of polyacrylonitrile/poly (methyl methacrylate)/polystyrene for lithium ion batteries—Preparation and electrochemical characterization. Journal of Power Sources, 2012. 202: p. 299-307.
    40.Zhang, X., et al., Effects of Li6. 75La3Zr1. 75Ta0. 25O12 on chemical and electrochemical properties of polyacrylonitrile-based solid electrolytes. Solid State Ionics, 2018. 327: p. 32-38.
    41.Kuo, P.-L., et al., High performance of transferring lithium ion for polyacrylonitrile-interpenetrating crosslinked polyoxyethylene network as gel polymer electrolyte. ACS applied materials & interfaces, 2014. 6(5): p. 3156-3162.
    42.Alloin, F., J. Sanchez, and M. Armand, New solvating cross-linked polyether for lithium batteries. Journal of power sources, 1995. 54(1): p. 34-39.
    43.Kang, Y., et al., A study of cross-linked PEO gel polymer electrolytes using bisphenol A ethoxylate diacrylate: ionic conductivity and mechanical properties. Journal of power sources, 2003. 119: p. 432-437.
    44.Khurana, R., et al., Suppression of lithium dendrite growth using cross-linked polyethylene/poly (ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. Journal of the American Chemical Society, 2014. 136(20): p. 7395-7402.
    45.Daigle, J.-C., et al., Exceptionally stable polymer electrolyte for a lithium battery based on cross-linking by a residue-free process. Journal of Power Sources, 2016. 332: p. 213-221.
    46.Lu, Q., et al., Dendrite‐free, high‐rate, long‐life lithium metal batteries with a 3D cross‐linked network polymer electrolyte. Advanced Materials, 2017. 29(13): p. 1604460.
    47.Xu, D., et al., High-strength internal cross-linking bacterial cellulose-network-based gel polymer electrolyte for dendrite-suppressing and high-rate lithium batteries. ACS applied materials & interfaces, 2018. 10(21): p. 17809-17819.
    48.Yan, H., et al., Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion. Food Hydrocolloids, 2017. 72: p. 127-135.
    49.Yao, J., et al., Macrofibers with high mechanical performance based on aligned bacterial cellulose nanofibers. ACS applied materials & interfaces, 2017. 9(24): p. 20330-20339.
    50.Cleland, R.L. and W.H. Stockmayer, An intrinsic viscosity‐molecular weight relation for polyacrylonitrile. Journal of Polymer Science, 1955. 17(86): p. 473-477.
    51.Li, Y., et al., Bacterial cellulose composite solid polymer electrolyte with high tensile strength and lithium dendrite inhibition for long life battery. Energy & Environmental Materials, 2021. 4(3): p. 434-443.
    52.Li, D., et al., 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS applied materials & interfaces, 2018. 10(8): p. 7069-7078.
    53.Deivanayagam, R. and R. Shahbazian‐Yassar, Electrochemical methods and protocols for characterization of ceramic and polymer electrolytes for rechargeable batteries. Batteries & Supercaps, 2021. 4(4): p. 596-606.
    54.Ramesh, S. and H. Ng, An investigation on PAN–PVC–LiTFSI based polymer electrolytes system. Solid State Ionics, 2011. 192(1): p. 2-5.
    55.Evans, J., C.A. Vincent, and P.G. Bruce, Electrochemical measurement of transference numbers in polymer electrolytes. Polymer, 1987. 28(13): p. 2324-2328.
    56.Choe, H., et al., Characterization of some polyacrylonitrile-based electrolytes. Chemistry of materials, 1997. 9(1): p. 369-379.
    57.Takeda, Y., O. Yamamoto, and N. Imanishi, Lithium dendrite formation on a lithium metal anode from liquid, polymer and solid electrolytes. Electrochemistry, 2016. 84(4): p. 210-218.
    58.Cao, D., et al., Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter, 2020. 3(1): p. 57-94.
    59.Barai, P., K. Higa, and V. Srinivasan, Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. Physical Chemistry Chemical Physics, 2017. 19(31): p. 20493-20505.
    60.Lin, Z., X. Guo, and H. Yu, Amorphous modified silyl-terminated 3D polymer electrolyte for high-performance lithium metal battery. Nano Energy, 2017. 41: p. 646-653.
    61.Fu, K.K., et al., Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries. Proceedings of the National Academy of Sciences, 2016. 113(26): p. 7094-7099.

    無法下載圖示 全文公開日期 2024/08/10 (校內網路)
    全文公開日期 2024/08/10 (校外網路)
    全文公開日期 2024/08/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE