簡易檢索 / 詳目顯示

研究生: 陳志翔
Chih-Hsiang Chen
論文名稱: 可撓式硫化物固態電解質複合膜之技術開發
Scalable fabrication of flexible composite sulfide-based solid electrolyte film
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
吳乃立
Nae-Lih Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 129
中文關鍵詞: 硫化物固態電解質、複合電解質大規模製造可撓式電解質固態電池
外文關鍵詞: sulfide solid electrolyte, scalable manufacturing, flexible electrolyte, solid-state battery, composite electrolyte
相關次數: 點閱:280下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I ABSTRACT IV 目錄 VII 圖目錄 IX 表目錄 XIII 第 1 章 緒論 1 1.1 前言 1 1.2 鋰離子二次電池發展 3 1.3 鋰離子電池工作原理 6 1.4 鋰離子電池元件介紹 9 1.4.1 正極(陰極)材料 10 1.4.2 負極(陽極)材料 13 1.5 電解質 16 1.5.1 有機電解液 16 1.5.2 固態電解質 19 1.6 研究動機與目的 20 第 2 章 文獻回顧 25 2.1 固態電解質之介紹與機制 25 2.1.1 LISICON-like 28 2.1.2 Argyrodite 30 2.1.3 Perovskite 33 2.2 固態電解質之發展瓶頸 35 2.3 可放大製程之設計 37 2.3.1 高分子網狀膜 37 2.3.2 無高分子片狀膜 38 2.3.3 溶液澆鑄成膜 41 第 3 章 實驗方法及實驗儀器 47 3.1 儀器設備 47 3.2 實驗藥品 49 3.3 實驗步驟與方法 50 3.3.1 硫化物固態電解質的合成 50 3.3.2 硫化物固態電解質錠片製備 51 3.3.3 硫化物固態電解質塗層製備 53 3.4 電化學效能測試 54 3.4.1 鈕扣型電池組裝 54 3.4.2 KP-cell型電池組裝 56 3.4.3 充放電測試 57 3.4.4 交流阻抗分析 57 3.4.5 循環伏安分析 58 3.5 材料結構及特性分析 59 3.5.1 熱重分析儀 (TGA) 59 3.5.2 場發射掃描式電子顯微鏡 (FE-SEM) 59 3.5.3 X光能量色散圖譜分析 (EDS) 60 3.5.4 非臨場X射線繞射(ex-situ XRD)之晶格結構變化分析 60 3.5.5 拉曼散射光譜分析儀 (Raman) 62 第 4 章 結果與討論 63 4.1 建立硫化物固態電解質之合成平台及優化 63 4.1.1 Li7P3S11合成與討論 63 4.1.2 球磨時間之影響 64 4.1.3 鍛燒製程之優化 65 4.1.4 壓力對於EIS量測之影響 68 4.1.5 鍛燒溫度之影響 72 4.1.6 Li/SSE/Li循環測試 74 4.2 以溶液成膜法製備複合膜 76 4.2.1 溶劑的選擇 77 4.2.2 高分子的選擇 86 4.2.3 複合膜之製備參數 89 4.2.4 複合膜的結構特徵 94 4.2.5 固態電解質之電化學特性 97 第 5 章 結論 105 第 6 章 未來展望 107 第 7 章 參考文獻 109

    1. Tarascon, J.-M.; Armand, M., Issues and challenges facing rechargeable lithium batteries. In Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific: 2011; pp 171-179.
    2. Liu, D., Lithium Ion Battery Pack Technologies – Li-Ion and LiFePO4 Battery Pack Systems From China. 2019.
    3. Frith, J., Battery Pack Prices Fall As Market Ramps Up With Market Average At $156/kWh In 2019. Bloomberg New Energy Finance 2019, (Finance).
    4. 李柏翰, 鋰電池發明40年. 2019.
    5. Whittingham, M. S., Electrical energy storage and intercalation chemistry. Science 1976, 192 (4244), 1126-1127.
    6. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., LixCoO2 (0< x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
    7. Fray, A. R. K. a. D. J., Review on Carbon and Silicon Based Materials as Anode Materials for Lithium Ion Batteries. journal of new materials for electrochemical systems 2010, 13 (2), 83-160.
    8. Verma, P.; Maire, P.; Novák, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 2010, 55 (22), 6332-6341.
    9. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243-3262.
    10. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem 2004, 104 (10), 4303−4417.
    11. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-ion battery materials: present and future. Materials today 2015, 18 (5), 252-264.
    12. Abram, C.; Shan, J.; Yang, X.; Yan, C.; Steingart, D.; Ju, Y., Flame Aerosol Synthesis and Electrochemical Characterization of Ni-Rich Layered Cathode Materials for Li-Ion Batteries. ACS Applied Energy Materials 2019, 2 (2), 1319-1329.
    13. Amatucci, G. G.; Tarascon, J.-M., Rechargeable battery cell having surface-treated lithiated intercalation positive electrode. Google Patents: 1998.
    14. Noh, H.-J.; Youn, S.; Yoon, C. S.; Sun, Y.-K., Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of Power Sources 2013, 233, 121-130.
    15. 馬振基(民103年)。鋰離子電池原理與技術。台北:五南
    16. Cho, J.; Kim, Y. W.; Kim, B.; Lee, J. G.; Park, B., A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AlPO4 nanoparticles. Angew Chem Int Ed Engl 2003, 42 (14), 1618-21.
    17. Lee, M. J.; Lee, S.; Oh, P.; Kim, Y.; Cho, J., High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries. Nano Lett 2014, 14 (2), 993-9.
    18. Yamada, A.; Chung, S. C.; Hinokuma, K., Optimized LiFePO[sub 4] for Lithium Battery Cathodes. Journal of The Electrochemical Society 2001, 148 (3).
    19. Yamada, Y.; Usui, K.; Chiang, C. H.; Kikuchi, K.; Furukawa, K.; Yamada, A., General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes. ACS Appl Mater Interfaces 2014, 6 (14), 10892-9.
    20. D. Doughty, E. P. R., A general discussion of Li ion battery safety. The Electrochemical Society Interface 2012, 2, 37-44.
    21. Colin, J.-F.; Godbole, V.; Novák, P., In situ neutron diffraction study of Li insertion in Li4Ti5O12. Electrochemistry Communications 2010, 12 (6), 804-807.
    22. Teshima, K.; Inagaki, H.; Tanaka, S.; Yubuta, K.; Hozumi, M.; Kohama, K.; Shishido, T.; Oishi, S., Growth of Well-Developed Li4Ti5O12Crystals by the Cooling of a Sodium Chloride Flux. Crystal Growth & Design 2011, 11 (10), 4401-4405.
    23. Watanabe, M.; Thomas, M. L.; Zhang, S.; Ueno, K.; Yasuda, T.; Dokko, K., Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chem Rev 2017, 117 (10), 7190-7239.
    24. Song, J.; Wang, Y.; Wan, C. C., Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of power sources 1999, 77 (2), 183-197.
    25. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y., Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem Rev 2016, 116 (1), 140-62.
    26. 高瑞楠, 黑科技:鋰電池被嫌棄,全固態電池會成為救世主嗎?. 每日頭條 2017, (3C).
    27. Yu, C.; Ganapathy, S.; Hageman, J.; van Eijck, L.; van Eck, E. R. H.; Zhang, L.; Schwietert, T.; Basak, S.; Kelder, E. M.; Wagemaker, M., Facile Synthesis toward the Optimal Structure-Conductivity Characteristics of the Argyrodite Li6PS5Cl Solid-State Electrolyte. ACS Appl Mater Interfaces 2018, 10 (39), 33296-33306.
    28. Oh, D. Y.; Kim, D. H.; Jung, S. H.; Han, J.-G.; Choi, N.-S.; Jung, Y. S., Single-step wet-chemical fabrication of sheet-type electrodes from solid-electrolyte precursors for all-solid-state lithium-ion batteries. J. Mater. Chem. A 2017, 5 (39), 20771-20779.
    29. Tan, D. H. S.; Banerjee, A.; Chen, Z.; Meng, Y. S., From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat Nanotechnol 2020, 15 (3), 170-180.
    30. Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M., Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 2011, 182 (1), 116-119.
    31. Schnell, J.; Günther, T.; Knoche, T.; Vieider, C.; Köhler, L.; Just, A.; Keller, M.; Passerini, S.; Reinhart, G., All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production. Journal of Power Sources 2018, 382, 160-175.
    32. Park, K. H.; Bai, Q.; Kim, D. H.; Oh, D. Y.; Zhu, Y.; Mo, Y.; Jung, Y. S., Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries. Advanced Energy Materials 2018, 8 (18).
    33. Sakuda, A.; Hayashi, A.; Takigawa, Y.; Higashi, K.; Tatsumisago, M., Evaluation of elastic modulus of Li2S^|^ndash;P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test. Journal of the Ceramic Society of Japan 2013, 121 (1419), 946-949.
    34. Sakuda, A.; Hayashi, A.; Tatsumisago, M., Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci Rep 2013, 3, 2261.
    35. Kerman, K.; Luntz, A.; Viswanathan, V.; Chiang, Y.-M.; Chen, Z., Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries. Journal of The Electrochemical Society 2017, 164 (7), A1731-A1744.
    36. Kato, Y.; Shiotani, S.; Morita, K.; Suzuki, K.; Hirayama, M.; Kanno, R., All-Solid-State Batteries with Thick Electrode Configurations. J Phys Chem Lett 2018, 9 (3), 607-613.
    37. Busche, M. R.; Weber, D. A.; Schneider, Y.; Dietrich, C.; Wenzel, S.; Leichtweiss, T.; Schröder, D.; Zhang, W.; Weigand, H.; Walter, D.; Sedlmaier, S. J.; Houtarde, D.; Nazar, L. F.; Janek, J., In Situ Monitoring of Fast Li-Ion Conductor Li7P3S11 Crystallization Inside a Hot-Press Setup. Chemistry of Materials 2016, 28 (17), 6152-6165.
    38. Cheng, L.; Crumlin, E. J.; Chen, W.; Qiao, R.; Hou, H.; Franz Lux, S.; Zorba, V.; Russo, R.; Kostecki, R.; Liu, Z.; Persson, K.; Yang, W.; Cabana, J.; Richardson, T.; Chen, G.; Doeff, M., The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Phys Chem Chem Phys 2014, 16 (34), 18294-300.
    39. Sakuda, A.; Hayashi, A.; Hama, S.; Tatsumisago, M., Preparation of Highly Lithium-Ion Conductive 80Li2S·20P2S5Thin-Film Electrolytes Using Pulsed Laser Deposition. Journal of the American Ceramic Society 2010, 93 (3), 765-768.
    40. Tao, X.; Liu, Y.; Liu, W.; Zhou, G.; Zhao, J.; Lin, D.; Zu, C.; Sheng, O.; Zhang, W.; Lee, H. W.; Cui, Y., Solid-State Lithium-Sulfur Batteries Operated at 37 degrees C with Composites of Nanostructured Li7La3Zr2O12/Carbon Foam and Polymer. Nano Lett 2017, 17 (5), 2967-2972.
    41. Zheng, J.; Tang, M.; Hu, Y. Y., Lithium Ion Pathway within Li7 La3 Zr2 O12 -Polyethylene Oxide Composite Electrolytes. Angew Chem Int Ed Engl 2016, 55 (40), 12538-42.
    42. Guo, Q.; Han, Y.; Wang, H.; Xiong, S.; Li, Y.; Liu, S.; Xie, K., New Class of LAGP-Based Solid Polymer Composite Electrolyte for Efficient and Safe Solid-State Lithium Batteries. ACS Appl Mater Interfaces 2017, 9 (48), 41837-41844.
    43. A.R. RODGER, J. K. a. A. R. W., Li+ ion conducting γ solid solutions in the systems Li4XO4-Li3YO4: X=Si, Ge, Ti; Y=P, As, V; Li4XO4-LiZO2: Z=Al, Ga, Cr and Li4GeO4-Li2CaGeO4. Solid State Ionics 1985, 15 (3), 185-198.
    44. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A., A lithium superionic conductor. Nat Mater 2011, 10 (9), 682-6.
    45. Thangadurai, V.; Pinzaru, D.; Narayanan, S.; Baral, A. K., Fast Solid-State Li Ion Conducting Garnet-Type Structure Metal Oxides for Energy Storage. J Phys Chem Lett 2015, 6 (2), 292-9.
    46. Bates, J. B., Dudney, N J, Gruzalski, G R, Zuhr, R A, Choudhury, A, Luck, C F, and Robertson, J D., Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. Journal of Power Sources 1993, 43 (1), 103-110.
    47. Inaguma, Y. L., C.; Itoh, M.; Nakamura, T.; Uchida, T.; Ikuta, H.; Wakihara, M., High ionic conductivity in lithium lanthanum titanate. solid State Ionics 1993, 86 (10), 689-693.
    48. West, A. R., Crystal Chemistry of Some Tetrahedral Oxides. 1975, 141, 422-436.
    49. Meesala, Y.; Jena, A.; Chang, H.; Liu, R.-S., Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries. ACS Energy Letters 2017, 2 (12), 2734-2751.
    50. Bron, P.; Johansson, S.; Zick, K.; Schmedt auf der Gunne, J.; Dehnen, S.; Roling, B., Li10SnP2S12: an affordable lithium superionic conductor. J Am Chem Soc 2013, 135 (42), 15694-7.
    51. Whiteley, J. M.; Woo, J. H.; Hu, E.; Nam, K.-W.; Lee, S.-H., Empowering the Lithium Metal Battery through a Silicon-Based Superionic Conductor. Journal of The Electrochemical Society 2014, 161 (12), A1812-A1817.
    52. Liu, D.; Zhu, W.; Feng, Z.; Guerfi, A.; Vijh, A.; Zaghib, K., Recent progress in sulfide-based solid electrolytes for Li-ion batteries. Materials Science and Engineering: B 2016, 213, 169-176.
    53. Lian, P.-J.; Zhao, B.-S.; Zhang, L.-Q.; Xu, N.; Wu, M.-T.; Gao, X.-P., Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. Journal of Materials Chemistry A 2019, 7 (36), 20540-20557.
    54. Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiss, T.; Schlosser, M., Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed Engl 2008, 47 (4), 755-8.
    55. Rao, R. P.; Adams, S., Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. physica status solidi (a) 2011, 208 (8), 1804-1807.
    56. Boulineau, S.; Courty, M.; Tarascon, J.-M.; Viallet, V., Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 2012, 221, 1-5.
    57. Deiseroth, H.-J.; Maier, J.; Weichert, K.; Nickel, V.; Kong, S.-T.; Reiner, C., Li7PS6 and Li6PS5X (X: Cl, Br, I): Possible Three-dimensional Diffusion Pathways for Lithium Ions and Temperature Dependence of the Ionic Conductivity by Impedance Measurements. Zeitschrift für anorganische und allgemeine Chemie 2011, 637 (10), 1287-1294.
    58. Yu, C.; van Eijck, L.; Ganapathy, S.; Wagemaker, M., Synthesis, structure and electrochemical performance of the argyrodite Li 6 PS 5 Cl solid electrolyte for Li-ion solid state batteries. Electrochimica Acta 2016, 215, 93-99.
    59. Wang, S.; Zhang, Y.; Zhang, X.; Liu, T.; Lin, Y. H.; Shen, Y.; Li, L.; Nan, C. W., High-Conductivity Argyrodite Li6PS5Cl Solid Electrolytes Prepared via Optimized Sintering Processes for All-Solid-State Lithium-Sulfur Batteries. ACS Appl Mater Interfaces 2018, 10 (49), 42279-42285.
    60. Boulineau, S.; Tarascon, J.-M.; Leriche, J.-B.; Viallet, V., Electrochemical properties of all-solid-state lithium secondary batteries using Li-argyrodite Li6PS5Cl as solid electrolyte. Solid State Ionics 2013, 242, 45-48.
    61. F. Stadlera, C. F., Crystalline Halide Substituted Li-Argyrodites as Solid Electrolytes for Lithium Secondary Batteries. The Electrochemical Society Interface 2010, 25 (36), 177-183.
    62. Ma, Z.; Xue, H.-G.; Guo, S.-P., Recent achievements on sulfide-type solid electrolytes: crystal structures and electrochemical performance. Journal of Materials Science 2017, 53 (6), 3927-3938.
    63. Kong, S. T.; Deiseroth, H. J.; Reiner, C.; Gun, O.; Neumann, E.; Ritter, C.; Zahn, D., Lithium argyrodites with phosphorus and arsenic: order and disorder of lithium atoms, crystal chemistry, and phase transitions. Chemistry 2010, 16 (7), 2198-206.
    64. Nakayama, M.; Ikuta, H.; Uchimoto, Y.; Wakihara, M., Ionic conduction of lithium in B-site substituted perovskite compounds, (Li0.1La0.3)yMxNb1 – xO3 (M = Zr, Ti, Ta). Journal of Materials Chemistry 2002, 12 (5), 1500-1504.
    65. Itoh, M.; Inaguma, Y.; Jung, W.-H.; Chen, L.; Nakamura, T., High lithium ion conductivity in the perovskite-type compounds Ln12Li12TiO3 (Ln= La, Pr, Nd, Sm). Solid State Ionics 1994, 70, 203-207.
    66. Kwon, W. J.; Kim, H.; Jung, K.-N.; Cho, W.; Kim, S. H.; Lee, J.-W.; Park, M.-S., Enhanced Li+ conduction in perovskite Li 3x La 2/3− x□ 1/3− 2x TiO 3 solid-electrolytes via microstructural engineering. Journal of Materials Chemistry A 2017, 5 (13), 6257-6262.
    67. Kwon, W. J.; Kim, H.; Jung, K.-N.; Cho, W.; Kim, S. H.; Lee, J.-W.; Park, M.-S., Enhanced Li+ conduction in perovskite Li3xLa2/3−x□1/3−2xTiO3 solid-electrolytes via microstructural engineering. Journal of Materials Chemistry A 2017, 5 (13), 6257-6262.
    68. Navrotsky, A., Energetics and Crystal Chemical Systematics among Ilmenite, Lithium Niobate, and Perovskite Structures. Chemistry of Materials 1998, 10, 2787-2793.
    69. Ohtomo, T.; Hayashi, A.; Tatsumisago, M.; Kawamoto, K., Glass Electrolytes with High Ion Conductivity and High Chemical Stability in the System LiI-Li2O-Li2S-P2S5. Electrochemistry 2013, 81 (6), 428-431.
    70. Nam, Y. J.; Cho, S. J.; Oh, D. Y.; Lim, J. M.; Kim, S. Y.; Song, J. H.; Lee, Y. G.; Lee, S. Y.; Jung, Y. S., Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. Nano Lett 2015, 15 (5), 3317-23.
    71. Kim, D. H.; Lee, Y.-H.; Song, Y. B.; Kwak, H.; Lee, S.-Y.; Jung, Y. S., Thin and Flexible Solid Electrolyte Membranes with Ultrahigh Thermal Stability Derived from Solution-Processable Li Argyrodites for All-Solid-State Li-Ion Batteries. ACS Energy Letters 2020, 5 (3), 718-727.
    72. Yamamoto, M.; Terauchi, Y.; Sakuda, A.; Takahashi, M., Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities. Sci Rep 2018, 8 (1), 1212.
    73. Lee, K.; Kim, S.; Park, J.; Park, S. H.; Coskun, A.; Jung, D. S.; Cho, W.; Choi, J. W., Selection of Binder and Solvent for Solution-Processed All-Solid-State Battery. Journal of The Electrochemical Society 2017, 164 (9), A2075-A2081.
    74. Tan, D. H. S.; Banerjee, A.; Deng, Z.; Wu, E. A.; Nguyen, H.; Doux, J.-M.; Wang, X.; Cheng, J.-h.; Ong, S. P.; Meng, Y. S.; Chen, Z., Enabling Thin and Flexible Solid-State Composite Electrolytes by the Scalable Solution Process. ACS Applied Energy Materials 2019, 2 (9), 6542-6550.
    75. Lee, K.; Lee, J.; Choi, S.; Char, K.; Choi, J. W., Thiol–Ene Click Reaction for Fine Polarity Tuning of Polymeric Binders in Solution-Processed All-Solid-State Batteries. ACS Energy Letters 2018, 4 (1), 94-101.
    76. Hippauf, F.; Schumm, B.; Doerfler, S.; Althues, H.; Fujiki, S.; Shiratsuchi, T.; Tsujimura, T.; Aihara, Y.; Kaskel, S., Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Materials 2019, 21, 390-398.
    77. Syzdek, J. S.; Armand, M. B.; Falkowski, P.; Gizowska, M.; Karłowicz, M.; Łukaszuk, Ł.; Marcinek, M. Ł.; Zalewska, A.; Szafran, M.; Masquelier, C.; Tarascon, J. M.; Wieczorek, W. G.; Żukowska, Z. G., Reversed Phase Composite Polymeric Electrolytes Based on Poly(oxyethylene). Chemistry of Materials 2011, 23 (7), 1785-1797.
    78. Xue, Z.; He, D.; Xie, X., Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (38), 19218-19253.
    79. Ibrahim, S.; Yasin, S. M. M.; Ahmad, R.; Johan, M. R., Conductivity, thermal and morphology studies of PEO based salted polymer electrolytes. Solid State Sciences 2012, 14 (8), 1111-1116.
    80. Chen, B.; Huang, Z.; Chen, X.; Zhao, Y.; Xu, Q.; Long, P.; Chen, S.; Xu, X., A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery. Electrochimica Acta 2016, 210, 905-914.
    81. Zhao, Y.; Wu, C.; Peng, G.; Chen, X.; Yao, X.; Bai, Y.; Wu, F.; Chen, S.; Xu, X., A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. Journal of Power Sources 2016, 301, 47-53.

    無法下載圖示 全文公開日期 2025/08/26 (校內網路)
    全文公開日期 2025/08/26 (校外網路)
    全文公開日期 2025/08/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE