簡易檢索 / 詳目顯示

研究生: 謝承翰
Cheng-Han Hsieh
論文名稱: 氮氯雙摻雜硫銀鍺礦硫化物固態電解質之空氣穩定性及介面穩定性研究
N, Cl Dual-doped argyrodite Li6PS5Cl sulfides for enhanced air stability and interface stability
指導教授: 黃炳照
Bing-Joe Hwang
吳溪煌
She-Huang Wu
蘇威年
Wei-Nien Su
口試委員: 黃炳照
Bing-Joe Hwang
吳溪煌
She-Huang Wu
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 151
中文關鍵詞: 固態電解質硫化物硫銀鍺礦雙摻雜空氣穩定性離子電導率
外文關鍵詞: solid electrolyte, sulfide, argyrodite, dual doping, air stability, ionic conductivity
相關次數: 點閱:245下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,全固態鋰金屬電池因其高能量密度和更高的安全性而得到廣泛的研究。在固態電解質中,硫化物基固態電解質的離子電導率較高,因此比其他型態的固態電解質更受到關注。近來許多團隊將研究硫化物固態電解質的方向著重於介面以及空氣穩定性,使電解質保留原先的離子電導率。然而,硫化物基固態電解質的高濕度敏感特性,在接觸水氣時會產生有毒的硫化氫氣體,使其合成時需要在極低水氣的條件下,才能維持樣品的穩定性及再現性。
    在本論文中,第一部分我們以Li6PS5Cl (LPSC)為基底將S2-用Cl- 取代,並藉由機械球磨和固態燒結製備而成,再利用同步輻射中心的 in-situ XRD 來探討燒結溫度對結晶度及雜相的影響,進一步優化燒結條件,再以液態氮快速降溫,證明可以保留固態電解質在高溫下的晶相,開發出過量氯Li5.4PS4.4Cl1.6,超越商業用LPSC的離子電導率,從2 mS/cm提升到8 mS/cm,第二部分我們以過量氯Li5.4PS4.4Cl1.6為基底將S2-用N3-取代,合成出雙摻雜於argyrodite之硫化物固態電解質:Li5.4+y PS4.4-y Ny Cl1.6 ( 0≦y≦0.2) 。這項工作表明,固體電解質的離子電導率可以透過用氯離子取代硫離子來提高,而且在摻雜氮離子到過量氯中後發現離子電導率不會下降很多,同時可以提高空氣穩定性以及提高介面穩定性,第三部分我們會探討如何要將1g製程放大成5g製程,實驗中發現進行放大製程時,必須減少球磨的速率和時間,否則球磨速率和時間太長會導致粉末在球磨後沉積在球磨罐中,使粉末回收率大幅下降,在多次實驗後可以獲得相近的導離率和導電率,這樣就可以確定合成平台的穩定性,並且解決同一批粉末在進行測試時會有不夠的問題。不論是過量氯或是有摻雜的固態電解質,都可以利用放大製程來製備。同時為了避免壓碇碎裂的問題,在此也有探討將粉末與PTFE進行混合,最終在導離率與粉末碎裂問題的抉擇下,採用粉末+0.1 (wt%) PTFE作為最佳值。


    In recent years, all-solid-state lithium metal batteries (ASSLMBs) have been extensively studied due to their high energy density and improved safety. Among solid-state electrolytes, sulfide-based solid-state electrolytes have higher ionic conductivity, so they have attracted more attention than other types of solid-state electrolytes. Recently, many teams have focused on the direction of the research on sulfide solid-state electrolytes, focusing on interfacial stability and air stability and enabling the electrolyte to retain the original conductivity. However, the high humidity sensitivity of sulfide-based solid electrolytes will produce toxic hydrogen sulfide gas when exposed to moisture, so that the stability and reproducibility of the sample must be maintained under extremely low moisture conditions during synthesis.
    In the first part, we used Li6PS5Cl (LPSC) as the substrate to replace S2- with Cl-, and prepared it by mechanical ball milling and solid-state sintering. The influence of crystallinity and impurity phase, further optimize the sintering conditions, and then prove that the crystal phase of the solid electrolyte at high temperature can be preserved by rapid cooling of liquid nitrogen, and develop chlorine-rich Li5.4PS4.4Cl1.6, which exceeds the conductivity of commercial LPSC, from 2 mS/cm to 8 mS/cm. In the second part, we use chlorine-rich Li5.4PS4.4Cl1.6 as the substrate to replace S2- with N3-, and synthesize dual-doped: Li5.4+y PS4.4-y NyCl1.6 (0≦y≦0.2). This work shows that the ionic conductivity of solid electrolytes can be improved by substituting chlorine ions for sulfur, and that the conductivity does not decrease much after doping nitrogen ions, while improving water-oxygen stability and interface stability. In the third part, we will discuss how to scale up the 1g process into a 5g process. In the experiment, we found that the speed and time of ball milling must be reduced when the process is scaled up. Otherwise, the speed and time of ball milling will be too long, and the powder will be deposited in the ball mill tank after ball milling, so the powder recovery rate dropped significantly.Similar conductivity and conductivity can be obtained after multiple experiments, so that the stability of the synthesis platform can be confirmed, and the problem of insufficient testing of the same batch of powder can be solved. Both chlorine-rich and dual-doped solid electrolytes can be prepared using scale-up processes. At the same time, in order to avoid the problem of pallet crushing, it is also discussed here to mix the powder with PTFE. Finally, under the choice of conductivity and powder fragmentation, the powder + 0.1 (wt%) PTFE is used as the optimal value.

    目錄 摘要................................................................................i ABSTRACT......................................................................... iii 致謝................................................................................v 目錄..............................................................................vii 圖目錄............................................................................xi 表目錄...........................................................................xvii 第一章 緒論.........................................................................1 1.1 鋰離子電池發展...................................................................1 1.2 全固態電池......................................................................3 1.3 固態電解質......................................................................5 1.3.1氧化物固態電解質........................................................7 1.3.2硫化物固態電解質........................................................8 1.3.3鹵化物固態電解質.......................................................10 第二章 文獻回顧.....................................................................13 2.1 硫銀鍺礦固態電解質..............................................................13 2.1.1發展歷程......................................................................13 2.1.2晶格結構......................................................................14 2.1.3鋰離子在結構中傳導途徑.........................................................14 2.2 硫銀鍺礦之合成方式..............................................................18 2.2.1熔體淬火法....................................................................18 2.2.2機械式球磨法...................................................................18 2.2.3濕化學合成法...................................................................19 2.3 硫銀鍺礦之改質..................................................................21 2.3.1陰離子摻雜-鋰空位 .............................................................21 2.3.2陽離子摻雜-錯位 ...............................................................24 2.3.3雙離子摻雜....................................................................26 2.4 全固態電池之未來展望及挑戰.......................................................30 2.5 研究動機與目的..................................................................31 2.6 Roadmap....................................................................32 第三章 實驗方法及實驗儀器............................................................33 3.1 實驗藥品.......................................................................33 3.2 實驗儀器設備及配件..............................................................34 3.3 實驗步驟.......................................................................35 3.3.1 Li6+xPS5-xNxCl (x=0.05, 0.1, 0.15, 0.2)合成..................................35 3.3.2 Li5.4+yPS4.4-yNyCl1.6 (y=0.05, 0.1, 0.15, 0.2)合成...........................36 3.3.3 Li5.4+yPS4.4-yNyCl1.6 (y = 0, 0.05, 0.1, 0.15, 0.2) 放大製程.................38 3.3.4硫化物固態電解質錠片之製備.....................................................40 3.4 KP-cell 型電池組裝 ...........................................................41 3.4.1鋰對稱電池組裝.................................................................41 3.4.2混合正極之製備與半電池組裝......................................................42 3.5 材料結構及特性鑑定分析...........................................................43 3.5.1非臨場X射線繞射 (Ex-situ XRD)分析..............................................43 3.5.2原位X射線繞射 (In-situ XRD)分析...............................................45 3.5.3拉曼散射光譜分析儀.............................................................46 3.5.4空氣穩定性測試.................................................................47 3.6 材料電化學特性分析..............................................................49 3.6.1交流阻抗分析...................................................................49 3.6.2鋰對鋰對稱電池充放電測試........................................................49 3.6.3循環伏安分析...................................................................50 3.6.4線性掃描伏安法.................................................................50 3.7 材料表面分析............................................................51 3.7.1 X射線光電子能譜...............................................................51 第四章 結果與討論...................................................................53 4.1 由原位X射線繞射優化合成條件......................................................53 4.2 氮摻雜於硫銀鍺礦................................................................58 4.2.1氮摻雜比例對結構的影響..........................................................58 4.2.2氮摻雜比例對振動頻率的影響之分析................................................70 4.2.3氮摻雜比例與電導率之關係........................................................71 4.2.4空氣穩定性測試.................................................................74 4.3 氮氯雙摻雜於硫銀鍺礦............................................................76 4.3.1氮摻雜比例對結構的影響..........................................................76 4.3.2氮摻雜比例對振動頻率的影響之分析................................................89 4.3.3氮摻雜比例與電導率之關係.......................................................90 4.3.4空氣穩定性測試.................................................................93 4.4固態電解質之電化學分析............................................................96 4.4.1循環伏安法測試.................................................................96 4.4.2鋰對稱電池循環測試............................................................100 4.4.3極限電流密度測試..............................................................102 4.4.4循環前後硫化物固態電解質的材料表面組成和化學狀態.................................104 4.5硫化物固態電解質之放大製程...............................................107 4.5.1 Li5.4 PS4.4 Cl1.6與Li5.55 PS4.25 N0.15 Cl1.6放大製程條件探討.107 4.5.2 Li5.4 PS4.4 Cl1.6與Li5.55 PS4.25 N0.15 Cl1.6摻混PTFE前後之電導 率.........................................................109 4.6 經放大製程之材料電化學分析..............................................114 4.6.1 Li5.4 PS4.4 Cl1.6與Li5.55 PS4.25 N0.15 Cl1.6摻混PTFE前後之極限電流密度測試....114 4.7綜合討論.......................................................................116 第五章 結論.......................................................................119 第六章 未來展望....................................................................121 第七章 參考文獻....................................................................123

    1. Abraham, K. M.; Pasquariello, D. M.; Willstaedt, E. B., n‐Butylferrocene for Overcharge Protection of Secondary Lithium Batteries. Journal of The Electrochemical Society 1990, 137 (6), 1856-1857.
    2. Harris, W. S. ELECTROCHEMICAL STUDIES IN CYCLIC ESTERS; Office of Scientific and Technical Information (OSTI): 1958.
    3. Van Gool, W.; Yue, D. D., Fast Ion Transport in Solids, Solid State Batteries and Devices. Journal of The Electrochemical Society 1974, 121 (4), 154C.
    4. Whittingham, M. S., Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192 (4244), 1126-1127.
    5. Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B., LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980, 15 (6), 783-789.
    6. Thackeray, M. M.; David, W. I. F.; Bruce, P. G.; Goodenough, J. B., Lithium insertion into manganese spinels. Materials Research Bulletin 1983, 18 (4), 461-472.
    7. Miller, T. F.; Wang, Z.-G.; Coates, G. W.; Balsara, N. P., Designing Polymer Electrolytes for Safe and High Capacity Rechargeable Lithium Batteries. Accounts of Chemical Research 2017, 50 (3), 590-593.
    8. Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; Li, B., A review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. Journal of Energy Chemistry 2021, 59, 83-99.
    9. Wang, Q.; Jiang, L.; Yu, Y.; Sun, J., Progress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy 2019, 55, 93-114.
    10. Janek, J.; Zeier, W. G., A solid future for battery development. Nature Energy 2016, 1 (9), 1-4.
    11. Cao, D.; Sun, X.; Li, Q.; Natan, A.; Xiang, P.; Zhu, H., Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations. Matter 2020, 3 (1), 57-94.
    12. Lim, H.-D.; Park, J.-H.; Shin, H.-J.; Jeong, J.; Kim, J. T.; Nam, K.-W.; Jung, H.-G.; Chung, K. Y., A review of challenges and issues concerning interfaces for all-solid-state batteries. Energy Storage Materials 2020, 25, 224-250.
    13. Lee, Y.-G.; Fujiki, S.; Jung, C.; Suzuki, N.; Yashiro, N.; Omoda, R.; Ko, D.-S.; Shiratsuchi, T.; Sugimoto, T.; Ryu, S., High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nature Energy 2020, 5 (4), 299-308.
    14. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y., Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chemical Reviews 2016, 116 (1), 140-162.
    15. Quartarone, E.; Mustarelli, P., Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chemical Society Reviews 2011, 40 (5), 2525.
    16. Syahidah, S. N.; Majid, S. R., Super-capacitive electro-chemical performance of polymer blend gel polymer electrolyte (GPE) in carbon-based electrical double-layer capacitors. Electrochimica Acta 2013, 112, 678-685.
    17. Choi, P.; Bessarabov, D. G.; Datta, R., A simple model for solid polymer electrolyte (SPE) water electrolysis. Solid State Ionics 2004, 175 (1-4), 535-539.
    18. Angulakshmi, N.; Zhou, Y.; Suriyakumar, S.; Dhanalakshmi, R. B.; Satishrajan, M.; Alwarappan, S.; Alkordi, M. H.; Stephan, A. M., Microporous Metal–Organic Framework (MOF)-Based Composite Polymer Electrolyte (CPE) Mitigating Lithium Dendrite Formation in All-Solid-State-Lithium Batteries. ACS Omega 2020, 5 (14), 7885-7894.
    19. Li, X.; Liang, J.; Yang, X.; Adair, K. R.; Wang, C.; Zhao, F.; Sun, X., Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy & Environmental Science 2020, 13 (5), 1429-1461.
    20. Li, X.; Liang, J.; Yang, X.; Adair, K. R.; Wang, C.; Zhao, F.; Sun, X., Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy & Environmental Science 2020, 13 (5), 1429-1461.
    21. Murugan, R.; Thangadurai, V.; Weppner, W., Lithium ion conductivity of Li5+x Ba x La3−x Ta2O12 (x = 0–2) with garnet-related structure in dependence of the barium content. Ionics 2007, 13 (4), 195-203.
    22. Murugan, R.; Thangadurai, V.; Weppner, W., Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angewandte Chemie International Edition 2007, 46 (41), 7778-7781.
    23. Gonzalez Puente, P. M.; Song, S.; Cao, S.; Rannalter, L. Z.; Pan, Z.; Xiang, X.; Shen, Q.; Chen, F., Garnet-type solid electrolyte: Advances of ionic transport performance and its application in all-solid-state batteries. Journal of Advanced Ceramics 2021, 10 (5), 933-972.
    24. Xie, H.; Alonso, J. A.; Li, Y.; Fernández-Díaz, M. T.; Goodenough, J. B., Lithium Distribution in Aluminum-Free Cubic Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub>. Chemistry of Materials 2011, 23 (16), 3587-3589.
    25. Awaka, J.; Takashima, A.; Kataoka, K.; Kijima, N.; Idemoto, Y.; Akimoto, J., ChemInform Abstract: Crystal Structure of Fast Lithium-Ion-Conducting Cubic Li7La3Zr2O12. ChemInform 2011, 42 (18), no-no.
    26. Awaka, J.; Kijima, N.; Hayakawa, H.; Akimoto, J., Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of solid state chemistry 2009, 182 (8), 2046-2052.
    27. Miara, L. J.; Ong, S. P.; Mo, Y.; Richards, W. D.; Park, Y.; Lee, J.-M.; Lee, H. S.; Ceder, G., Effect of Rb and Ta Doping on the Ionic Conductivity and Stability of the Garnet Li7+2x–y(La3−xRbx)(Zr2−yTay)O12 (0 ≤ x ≤ 0.375, 0 ≤ y ≤ 1). Chemistry of Materials 2013, 25 (15), 3048-3055.
    28. Murugan, R.; Ramakumar, S.; Janani, N., High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet. Electrochemistry Communications 2011, 13 (12), 1373-1375.
    29. Liu, X.; Li, Y.; Yang, T.; Cao, Z.; He, W.; Gao, Y.; Liu, J.; Li, G.; Li, Z., High lithium ionic conductivity in the garnet-type oxide Li7−2x La3 Zr2−x Mo x O12 (x =0-0.3) ceramics by sol-gel method. Journal of the American Ceramic Society 2017, 100 (4), 1527-1533.
    30. Ramakumar, S.; Satyanarayana, L.; Manorama, S. V.; Murugan, R., Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. Physical Chemistry Chemical Physics 2013, 15 (27), 11327.
    31. Li, Y.; Wang, Z.; Cao, Y.; Du, F.; Chen, C.; Cui, Z.; Guo, X., W-doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries. Electrochimica Acta 2015, 180, 37-42.
    32. Hu, S.; Li, Y.-F.; Yang, R.; Yang, Z.; Wang, L., Structure and ionic conductivity of Li7La3Zr2−xGexO12 garnet-like solid electrolyte for all solid state lithium ion batteries. Ceramics International 2018, 44 (6), 6614-6618.
    33. Liu, C.; Rui, K.; Shen, C.; Badding, M. E.; Zhang, G.; Wen, Z., Reversible ion exchange and structural stability of garnet-type Nb-doped Li7La3Zr2O12 in water for applications in lithium batteries. Journal of Power Sources 2015, 282, 286-293.
    34. Kuganathan, N.; Rushton, M. J. D.; Grimes, R. W.; Kilner, J. A.; Gkanas, E. I.; Chroneos, A., Self-diffusion in garnet-type Li7La3Zr2O12 solid electrolytes. Scientific Reports 2021, 11 (1).
    35. Cao, C.; Li, Z.-B.; Wang, X.-L.; Zhao, X.-B.; Han, W.-Q., Recent advances in inorganic solid electrolytes for lithium batteries. Frontiers in energy research 2014, 2, 25.
    36. Kerman, K.; Luntz, A.; Viswanathan, V.; Chiang, Y.-M.; Chen, Z., practical challenges hindering the development of solid state Li ion batteries. Journal of The Electrochemical Society 2017, 164 (7), A1731.
    37. Kanno, R.; Hata, T.; Kawamoto, Y.; Irie, M., Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system. Solid State Ionics 2000, 130 (1), 97-104.
    38. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K., A lithium superionic conductor. Nature materials 2011, 10 (9), 682-686.
    39. Hayashi, A.; Hama, S.; Morimoto, H.; Tatsumisago, M.; Minami, T., High lithium ion conductivity of glass–ceramics derived from mechanically milled glassy powders. Chemistry letters 2001, 30 (9), 872-873.
    40. Tatsumisago, M.; Hama, S.; Hayashi, A.; Morimoto, H.; Minami, T., New lithium ion conducting glass-ceramics prepared from mechanochemical Li2S–P2S5 glasses. Solid State Ionics 2002, 154-155, 635-640.
    41. Yamane, H.; Shibata, M.; Shimane, Y.; Junke, T.; Seino, Y.; Adams, S.; Minami, K.; Hayashi, A.; Tatsumisago, M., Crystal structure of a superionic conductor, Li7P3S11. Solid State Ionics 2007, 178 (15), 1163-1167.
    42. Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M., A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 2014, 7 (2), 627-631.
    43. Editors’Choice—Review—Designing Defects and Diffusionthrough Substitutions in Metal Halide Solid Electrolytes. 2022.
    44. Wang, S.; Bai, Q.; Nolan, A. M.; Liu, Y.; Gong, S.; Sun, Q.; Mo, Y., Lithium Chlorides and Bromides as Promising Solid‐State Chemistries for Fast Ion Conductors with Good Electrochemical Stability. Angewandte Chemie International Edition 2019, 58 (24), 8039-8043.
    45. Weppner, W.; Huggins, R. A., Ionic Conductivity of Solid and Liquid LiAlCl4. Journal of The Electrochemical Society 1977, 124 (1), 35-38.
    46. Yamada, K.; Kumano, K.; Okuda, T., Lithium superionic conductors Li3InBr6 and LiInBr4 studied by 7Li, 115In NMR. Solid State Ionics 2006, 177 (19), 1691-1695.
    47. Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S., Solid Halide Electrolytes with High Lithium-Ion Conductivity for Application in 4 V Class Bulk-Type All-Solid-State Batteries. Advanced Materials 2018, 30 (44), 1803075.
    48. Li, X.; Liang, J.; Chen, N.; Luo, J.; Adair, K. R.; Wang, C.; Banis, M. N.; Sham, T. K.; Zhang, L.; Zhao, S.; Lu, S.; Huang, H.; Li, R.; Sun, X., Water‐Mediated Synthesis of a Superionic Halide Solid Electrolyte. Angewandte Chemie International Edition 2019, 58 (46), 16427-16432.
    49. Beeken, R. B.; Garbe, J. J.; Gillis, J. M.; Petersen, N. R.; Podoll, B. W.; Stoneman, M. R., Electrical conductivities of the Ag6PS5X and the Cu6PSe5X (X=Br, I) argyrodites. Journal of Physics and Chemistry of Solids 2005, 66 (5), 882-886.
    50. Kuhs, W. F.; Nitsche, R.; Scheunemann, K., Vapour growth and lattice data of new compounds with icosahedral structure of the type Cu6PS5Hal (Hal = Cl, Br, I). Materials Research Bulletin 1976, 11 (9), 1115-1123.
    51. Yu, C.; Zhao, F.; Luo, J.; Zhang, L.; Sun, X., Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics. Nano Energy 2021, 83, 105858.
    52. Kraft, M. A.; Culver, S. P.; Calderon, M.; Böcher, F.; Krauskopf, T.; Senyshyn, A.; Dietrich, C.; Zevalkink, A.; Janek, J.; Zeier, W. G., Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li6PS5X (X = Cl, Br, I). Journal of the American Chemical Society 2017, 139 (31), 10909-10918.
    53. Hanghofer, I.; Brinek, M.; Eisbacher, S. L.; Bitschnau, B.; Volck, M.; Hennige, V.; Hanzu, I.; Rettenwander, D.; Wilkening, H. M. R., Substitutional disorder: structure and ion dynamics of the argyrodites Li<sub>6</sub>PS<sub>5</sub>Cl, Li<sub>6</sub>PS<sub>5</sub>Br and Li<sub>6</sub>PS<sub>5</sub>I. Physical Chemistry Chemical Physics 2019, 21 (16), 8489-8507.
    54. Zhou, L.; Minafra, N.; Zeier, W. G.; Nazar, L. F., Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries. Accounts of Chemical Research 2021, 54 (12), 2717-2728.
    55. Huang, W.; Cheng, L.; Hori, S.; Suzuki, K.; Yonemura, M.; Hirayama, M.; Kanno, R., Ionic conduction mechanism of a lithium superionic argyrodite in the Li–Al–Si–S–O system. Materials Advances 2020, 1 (3), 334-340.
    56. Minafra, N.; Kraft, M. A.; Bernges, T.; Li, C.; Schlem, R.; Morgan, B. J.; Zeier, W. G., Local Charge Inhomogeneity and Lithium Distribution in the Superionic Argyrodites Li<sub>6</sub>PS<sub>5</sub>X (X = Cl, Br, I). Inorganic Chemistry 2020, 59 (15), 11009-11019.
    57. Mercier, R.; Malugani, J. P.; Fahys, B.; Douglande, J.; Robert, G., Synthese, structure cristalline et analyse vibrationnelle de l'hexathiohypodiphosphate de lithium Li4P2S6. Journal of Solid State Chemistry 1982, 43 (2), 151-162.
    58. Hayashi, A.; Hama, S.; Morimoto, H.; Tatsumisago, M.; Minami, T., Preparation of Li2S-P2S5 Amorphous Solid Electrolytes by Mechanical Milling. Journal of the American Ceramic Society 2004, 84 (2), 477-79.
    59. Liu, Z.; Fu, W.; Payzant, E. A.; Yu, X.; Wu, Z.; Dudney, N. J.; Kiggans, J.; Hong, K.; Rondinone, A. J.; Liang, C., Anomalous High Ionic Conductivity of Nanoporous β-Li<sub>3</sub>PS<sub>4</sub>. Journal of the American Chemical Society 2013, 135 (3), 975-978.
    60. Kanno, R.; Murayama, M., Lithium Ionic Conductor Thio-LISICON: The Li2 S  ­ GeS2 ­  P 2 S 5 System. Journal of The Electrochemical Society 2001, 148 (7), A742.
    61. Chen, S.; Xie, D.; Liu, G.; Mwizerwa, J. P.; Zhang, Q.; Zhao, Y.; Xu, X.; Yao, X., Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. Energy Storage Materials 2018, 14, 58-74.
    62. Rao, R. P.; Adams, S., Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. physica status solidi (a) 2011, 208 (8), 1804-1807.
    63. Hayashi, A.; Minami, K.; Ujiie, S.; Tatsumisago, M., Preparation and ionic conductivity of Li7P3S11−z glass-ceramic electrolytes. Journal of Non-Crystalline Solids 2010, 356 (44), 2670-2673.
    64. Kudu, Ö. U.; Famprikis, T.; Fleutot, B.; Braida, M.-D.; Le Mercier, T.; Islam, M. S.; Masquelier, C., A review of structural properties and synthesis methods of solid electrolyte materials in the Li2S − P2S5 binary system. Journal of Power Sources 2018, 407, 31-43.
    65. Choi, S.; Ann, J.; Do, J.; Lim, S.; Park, C.; Shin, D., Application of Rod-Like Li6PS5Cl Directly Synthesized by a Liquid Phase Process to Sheet-Type Electrodes for All-Solid-State Lithium Batteries. Journal of The Electrochemical Society 2019, 166 (3), A5193-A5200.
    66. Yubuchi, S.; Uematsu, M.; Hotehama, C.; Sakuda, A.; Hayashi, A.; Tatsumisago, M., An argyrodite sulfide-based superionic conductor synthesized by a liquid-phase technique with tetrahydrofuran and ethanol. Journal of Materials Chemistry A 2019, 7 (2), 558-566.
    67. Zhou, L.; Park, K. H.; Sun, X.; Lalère, F.; Adermann, T.; Hartmann, P.; Nazar, L., Solvent-engineered Design of Argyrodite Li6PS5X (X= Cl, Br, I) Solid Electrolytes with High Ionic Conductivity. ACS Energy Letters 2018, 4.
    68. Patel, S. V.; Banerjee, S.; Liu, H.; Wang, P.; Chien, P.-H.; Feng, X.; Liu, J.; Ong, S. P.; Hu, Y.-Y., Tunable Lithium-Ion Transport in Mixed-Halide Argyrodites Li6–xPS5–xClBrx: An Unusual Compositional Space. Chemistry of Materials 2021, 33 (4), 1435-1443.
    69. Zhao, F.; Sun, Q.; Yu, C.; Zhang, S.; Adair, K.; Wang, S.; Liu, Y.; Zhao, Y.; Liang, J.; Wang, C.; Li, X.; Li, X.; Xia, W.; Li, R.; Huang, H.; Zhang, L.; Zhao, S.; Lu, S.; Sun, X., Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries. ACS Energy Letters 2020, 5 (4), 1035-1043.
    70. Liu, H.; Zhu, Q.; Wang, C.; Wang, G.; Liang, Y.; Li, D.; Gao, L.; Fan, L. Z., High Air Stability and Excellent Li Metal Compatibility of Argyrodite‐Based Electrolyte Enabling Superior All‐Solid‐State Li Metal Batteries. Advanced Functional Materials 2022, 2203858.
    71. Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F., Boosting Solid‐State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution. Angewandte Chemie 2019, 131 (26), 8773-8778.
    72. Schlem, R.; Ghidiu, M.; Culver, S. P.; Hansen, A.-L.; Zeier, W. G., Changing the Static and Dynamic Lattice Effects for the Improvement of the Ionic Transport Properties within the Argyrodite Li6PS5–xSexI. ACS Applied Energy Materials 2020, 3 (1), 9-18.
    73. Wang, P.; Liu, H.; Patel, S.; Feng, X.; Chien, P.-H.; Wang, Y.; Hu, Y.-Y., Fast Ion Conduction and Its Origin in Li<sub>6–<i>x</i></sub>PS<sub>5–<i>x</i></sub>Br<sub>1+<i>x</i></sub>. Chemistry of Materials 2020, 32 (9), 3833-3840.
    74. Morgan, B. J., Mechanistic Origin of Superionic Lithium Diffusion in Anion-Disordered Li<sub>6</sub>PS<sub>5</sub><i>X</i> Argyrodites. Chemistry of Materials 2021, 33 (6), 2004-2018.
    75. Deiseroth, H.-J.; Maier, J.; Weichert, K.; Nickel, V.; Kong, S.-T.; Reiner, C., Li7PS6 and Li6PS5X (X: Cl, Br, I): Possible Three-dimensional Diffusion Pathways for Lithium Ions and Temperature Dependence of the Ionic Conductivity by Impedance Measurements. Zeitschrift für anorganische und allgemeine Chemie 2011, 637 (10), 1287-1294.
    76. De Klerk, N. J. J.; Rosłoń, I.; Wagemaker, M., Diffusion Mechanism of Li Argyrodite Solid Electrolytes for Li-Ion Batteries and Prediction of Optimized Halogen Doping: The Effect of Li Vacancies, Halogens, and Halogen Disorder. Chemistry of Materials 2016, 28 (21), 7955-7963.
    77. Rayavarapu, P. R.; Sharma, N.; Peterson, V. K.; Adams, S., Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes. Journal of Solid State Electrochemistry 2012, 16 (5), 1807-1813.
    78. Stamminger, A. R.; Ziebarth, B.; Mrovec, M.; Hammerschmidt, T.; Drautz, R., Ionic Conductivity and Its Dependence on Structural Disorder in Halogenated Argyrodites Li<sub>6</sub>PS<sub>5</sub>X (X = Br, Cl, I). Chemistry of Materials 2019, 31 (21), 8673-8678.
    79. Gautam, A.; Sadowski, M.; Prinz, N.; Eickhoff, H.; Minafra, N.; Ghidiu, M.; Culver, S. P.; Albe, K.; Fässler, T. F.; Zobel, M.; Zeier, W. G., Rapid Crystallization and Kinetic Freezing of Site-Disorder in the Lithium Superionic Argyrodite Li6PS5Br. Chemistry of Materials 2019, 31 (24), 10178-10185.
    80. Baktash, A.; Reid, J. C.; Roman, T.; Searles, D. J., Diffusion of lithium ions in Lithium-argyrodite solid-state electrolytes. npj Computational Materials 2020, 6 (1).
    81. Minafra, N.; Culver, S. P.; Krauskopf, T.; Senyshyn, A.; Zeier, W. G., Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites. Journal of Materials Chemistry A 2018, 6 (2), 645-651.
    82. Kraft, M. A.; Ohno, S.; Zinkevich, T.; Koerver, R.; Culver, S. P.; Fuchs, T.; Senyshyn, A.; Indris, S.; Morgan, B. J.; Zeier, W. G., Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li6+xP1−xGexS5I for All-Solid-State Batteries. Journal of the American Chemical Society 2018, 140 (47), 16330-16339.
    83. Ohno, S.; Helm, B.; Fuchs, T.; Dewald, G.; Kraft, M. A.; Culver, S. P.; Senyshyn, A.; Zeier, W. G., Further Evidence for Energy Landscape Flattening in the Superionic Argyrodites Li6+xP1−xMxS5I (M = Si, Ge, Sn). Chemistry of Materials 2019, 31 (13), 4936-4944.
    84. Taklu, B. W.; Su, W.-N.; Nikodimos, Y.; Lakshmanan, K.; Temesgen, N. T.; Lin, P.-X.; Jiang, S.-K.; Huang, C.-J.; Wang, D.-Y.; Sheu, H.-S.; Wu, S.-H.; Hwang, B. J., Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries. Nano Energy 2021, 90, 106542.
    85. Adeli, P.; Bazak, J. D.; Huq, A.; Goward, G. R.; Nazar, L. F., Influence of Aliovalent Cation Substitution and Mechanical Compression on Li-Ion Conductivity and Diffusivity in Argyrodite Solid Electrolytes. Chemistry of Materials 2021, 33 (1), 146-157.
    86. Li, G.; Wu, S.; Zheng, H.; Yang, Y.; Cai, J.; Zhu, H.; Huang, X.; Liu, H.; Duan, H., Sn‐O Dual‐Substituted Chlorine‐Rich Argyrodite Electrolyte with Enhanced Moisture and Electrochemical Stability. Advanced Functional Materials 2022, 2211805.
    87. Wei, C.; Yu, C.; Wang, R.; Peng, L.; Chen, S.; Miao, X.; Cheng, S.; Xie, J., Sb and O dual doping of Chlorine-rich lithium argyrodite to improve air stability and lithium compatibility for all-solid-state batteries. Journal of Power Sources 2023, 559, 232659.
    88. Fan, E.; Li, L.; Wang, Z.; Lin, J.; Huang, Y.; Yao, Y.; Chen, R.; Wu, F., Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects. Chemical Reviews 2020, 120 (14), 7020-7063.
    89. Banerjee, A.; Wang, X.; Fang, C.; Wu, E. A.; Meng, Y. S., Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. Chemical Reviews 2020, 120 (14), 6878-6933.
    90. Stanjek, H.; Häusler, W., Basics of X-ray Diffraction. Hyperfine Interactions 2004, 154 (1-4), 107-119.
    91. Tan, D. H. S.; Wu, E. A.; Nguyen, H.; Chen, Z.; Marple, M. A. T.; Doux, J.-M.; Wang, X.; Yang, H.; Banerjee, A.; Meng, Y. S., Elucidating Reversible Electrochemical Redox of Li6PS5Cl Solid Electrolyte. ACS Energy Letters 2019, 4 (10), 2418-2427.
    92. Dewald, G. F.; Ohno, S.; Kraft, M. A.; Koerver, R.; Till, P.; Vargas-Barbosa, N. M.; Janek, J.; Zeier, W. G., Experimental Assessment of the Practical Oxidative Stability of Lithium Thiophosphate Solid Electrolytes. Chemistry of Materials 2019, 31 (20), 8328-8337.
    93. Peng, L.; Yu, C.; Zhang, Z.; Ren, H.; Zhang, J.; He, Z.; Yu, M.; Zhang, L.; Cheng, S.; Xie, J., Chlorine-rich lithium argyrodite enabling solid-state batteries with capabilities of high voltage, high rate, low-temperature and ultralong cyclability. Chemical Engineering Journal 2022, 430, 132896.

    QR CODE