簡易檢索 / 詳目顯示

研究生: 王元瑜
Yuan-Yu Wang
論文名稱: 無陽極鋰金屬電池的第一原理分子動力學研究:摻雜鋅的Cu(111)表面及過量電子對電解質分解的影響
First-Principles Molecular Dynamics Study of Anode-Free Lithium Metal Batteries: Effects of Zn doping and excess electrons on Electrolyte Decomposition
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 蔡明剛
Ming-Kang Tsai
黃炳照
Bing-Joe Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 110
中文關鍵詞: 無陽極鋰電池鋰金屬電池分子動力學鋰鹽電解質分解鋰陽極濃電 解質
外文關鍵詞: Anode free lithium batteries, Li metal batteries, AIMD, Li-salt, Electrolyte decomposition, Li anode, Concentrated electrolyte
相關次數: 點閱:434下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無陽極鋰電池(AFLB)可以透過最少量的活性鋰,來降低在電極表面上樹枝狀結構的生長,進而提升鋰金屬電池的安全性;藉由減少鋰金屬的使用,節省能源,並降低其生產成本,使得AFLB在新一代鋰金屬電池中引起廣泛的注意和討論。然而,沒有額外的鋰離子來填補無活性的鋰和固體電解質膜(SEI)所消耗的鋰離子,可以預期AFLB的循環壽命較差,所以需要高濃度的電解質來補償鋰的損失。在這項研究中,我們使用第一性原理分子動力學研究鋰離子(來自LiPF6鋰鹽)在混合有機溶劑EC和DEC(1:1)中的結構,並考慮低濃度(1M)和高濃度(3.6M)的電解質來探討濃度對於電解質分解反應的影響。我們使用銅金屬當作陽極電極,並研究高濃度電解質在鋰金屬表面、銅金屬表面,和鋅摻雜銅金屬表面上的分解反應。此外我們透過外加電子(4個電子)於整個計算系統中,模擬現實電池充電中發生的電化學反應,比較帶電和未帶電銅金屬和鋅摻雜銅金屬表面,我們可以發現電解質在中性環境下不會分解並維持熱穩定性;然而,電解質中的鹽和溶劑都傾向於在過量電子環境下分解。此外計算結果可以得知鋅摻雜銅金屬表面可以促使主要SEI成分(LiF)的形成並抑制溶劑分解。除了比較上述帶電系統下電解質的分解反應,我們進一步探討電解質在帶電鋰金屬表面上的分解狀況,結果顯示Li金屬具有高反應性,導致鋰鹽和溶劑容易發生分解反應,且不易控制其在鋰金屬表面形成SEI膜的組成成分。


    Anode Free Lithium batteries (AFLB) are an intriguing and underexplored possibility for realizing lithium metal batteries. A lack of lithium metal can save energy, the cost associated with anode production and safety issues may be improved by the minimum amount of active lithium. However, no excess Li compensates for the loss of Li ions that forms the dead lithium and other SEI compositions. Thus, the cycle life of AFLB is predictably low, AFLB needs a high concentration electrolyte to compensate for lithium loss. SEI layer basic evolution is driven chemical reactions by electron transfer, and continuous SEI formations consume lithium inventory and reducing cell capacity. In this study, we use first-principles molecular dynamics to examine the solvation of Li ions (from LiPF6 salts) in the dual organic solvents EC and DEC (1:1) and considered both low (1M) and high (3.6M) concentrations of electrolyte and studied the concentration effects on the decomposition reactions. We also explored high concentrations of electrolyte decomposition reactions in the presence of Cu current collector, Zn doped Cu current collector and Li metal anode surfaces. Furthermore, we analyzed the electrolyte chemical stability on the different surfaces under the electron-rich environment (excess of 4 electrons). We found that the neutral electrolyte is electrochemically stable in the anode free lithium metal batteries. However, both salt and solvent in the electrolyte tend to decompose under the electron-rich environment on the pristine Cu surface. Whereas, the doping of Zn on the Cu current collector surface can facilitate the main SEI component formation and inhibit the solvent decomposition. We also compared the electrolyte decomposition in the AFLB and lithium metal anode under electron-rich environment. Our results demonstrate that it is hard to control the electrolyte decomposition products in the lithium anode surface because of the high reactivity of Li metals in the anode.

    Chapter 1 Introduction 1 1.1 Anode-Free Lithium Metal Batteries 1 1.2 The Working Principle of Lithium Battery 5 1.3 Main Components of Li-ion Battery 7 1.3.1 Anode material 8 1.3.2 Cathode material 17 1.3.3 Electrolyte 18 1.4 Solid Electrolyte Interphase (SEI) 22 1.5 Present Study 27 Chapter 2 Theoretical Methodology 29 Chapter 3 Results and Discussion 33 3.1 Initial structure of LiPF6/EC/DEC electrolyte system 33 3.1.1 Lithium ions solvation in bulk organic electrolytes 34 3.1.2 Effects of excess four electrons in bulk organic electrolytes 38 3.2 Formation of Some SEI Components from electrolyte decomposition. 50 3.2.1 Electrolyte decomposition on the Cu surface 50 3.2.2 Doping Zn on the Cu surface 58 3.2.3 LiPF6/EC/DEC mixture on lithium metal anode 69 3.2.4 Electrolyte decompositions in anode free and anode surface 82 Chapter 4 Conclusion 89 References 91 Appendix 98  

    1. Pradeep, N.; Sivasenthil, E.; Janarthanan, B.; Sharmila, S., A Review of Anode Material for Lithium Ion Batteries. Journal of Physics: Conference Series 2019, 1362.
    2. Ong, M. T.; Verners, O.; Draeger, E. W.; van Duin, A. C.; Lordi, V.; Pask, J. E., Lithium Ion Solvation and Diffusion in Bulk Organic Electrolytes from First-Principles and Classical Reactive Molecular Dynamics. J Phys Chem B 2015, 119, 1535-45.
    3. Hameer, S.; van Niekerk, J. L., A Review of Large-Scale Electrical Energy Storage. International Journal of Energy Research 2015, 39, 1179-1195.
    4. Liang, Y., et al., A Review of Rechargeable Batteries for Portable Electronic Devices. InfoMat 2019, 1, 6-32.
    5. Bhatt, M. D.; O'Dwyer, C., Recent Progress in Theoretical and Computational Investigations of Li-Ion Battery Materials and Electrolytes. Phys Chem Chem Phys 2015, 17, 4799-844.
    6. Blomgren, G. E., The Development and Future of Lithium Ion Batteries. Journal of The Electrochemical Society 2016, 164, A5019-A5025.
    7. Hagos, T. T., et al., Locally Concentrated Lipf6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. ACS Appl Mater Interfaces 2019, 11, 9955-9963.
    8. Yao, Z., et al., Fast Ion/Electron Conducting Scaffold of Li-Zn Dual-Phase Alloy Enable Uniform Deposition of Li Metal at High Current Densities. Journal of Energy Chemistry 2020, 51, 285-292.
    9. Tikekar, M. D.; Choudhury, S.; Tu, Z.; Archer, L. A., Design Principles for Electrolytes and Interfaces for Stable Lithium-Metal Batteries. Nature Energy 2016, 1.
    10. Zhang, J.-G., Anode-Less. Nature Energy 2019, 4, 637-638.
    11. Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J.-G., Anode-Free Rechargeable Lithium Metal Batteries. Advanced Functional Materials 2016, 26, 7094-7102.
    12. Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G., Li-Ion Battery Materials: Present and Future. Materials Today 2015, 18, 252-264.
    13. Beyene, T. T.; Bezabh, H. K.; Weret, M. A.; Hagos, T. M.; Huang, C.-J.; Wang, C.-H.; Su, W.-N.; Dai, H.; Hwang, B.-J., Concentrated Dual-Salt Electrolyte to Stabilize Li Metal and Increase Cycle Life of Anode Free Li-Metal Batteries. Journal of The Electrochemical Society 2019, 166, A1501-A1509.
    14. Tewari, D.; Rangarajan, S. P.; Balbuena, P. B.; Barsukov, Y.; Mukherjee, P. P., Mesoscale Anatomy of Dead Lithium Formation. The Journal of Physical Chemistry C 2020, 124, 6502-6511.
    15. Chakraborty, A.; Kunnikuruvan, S.; Kumar, S.; Markovsky, B.; Aurbach, D.; Dixit, M.; Major, D. T., Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on Lini1–X–Ycoxmnyo2 and Lini1–X–Ycoxalyo2. Chemistry of Materials 2020, 32, 915-952.
    16. Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y., Review on Modeling of the Anode Solid Electrolyte Interphase (Sei) for Lithium-Ion Batteries. npj Computational Materials 2018, 4.
    17. Dunn, B.; Kamath, H.; Tarascon, J.-M. J. S., Electrical Energy Storage for the Grid: A Battery of Choices. 2011, 334, 928-935.
    18. Writer, B., Lithium-Ion Batteries; Springer.
    19. Mauger, A.; Julien, C. M.; Goodenough, J. B.; Zaghib, K., Tribute to Michel Armand: From Rocking Chair – Li-Ion to Solid-State Lithium Batteries. Journal of The Electrochemical Society 2020, 167.
    20. Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P., Insertion Electrode Materials for Rechargeable Lithium Batteries. Advanced Materials Technologies 1998, 10, 725-763.
    21. Besenhard, J.; Yang, J.; Winter, M., Will Advanced Lithium-Alloy Anodes Have a Chance in Lithium-Ion Batteries? Journal of Power Sources 1997, 68, 87-90.
    22. Dresselhaus, M.; Dresselhaus, G., Intercalation Compounds of Graphite. Advances in Physics 1981, 30, 139-326.
    23. Luo, W.; Chen, X.; Xia, Y.; Chen, M.; Wang, L.; Wang, Q.; Li, W.; Yang, J., Surface and Interface Engineering of Silicon-Based Anode Materials for Lithium-Ion Batteries. Advanced Energy Materials 2017, 7.
    24. Shi, P.; Zhang, X. Q.; Shen, X.; Zhang, R.; Liu, H.; Zhang, Q., A Review of Composite Lithium Metal Anode for Practical Applications. Advanced Materials Technologies 2019, 5.
    25. Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Proietti Zaccaria, R.; Capiglia, C., Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries. Journal of Power Sources 2014, 257, 421-443.
    26. Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G., Lithium Metal Anodes for Rechargeable Batteries. Energy Environmental Science 2014, 7, 513-537.
    27. Li, L.; Li, S.; Lu, Y., Suppression of Dendritic Lithium Growth in Lithium Metal-Based Batteries. J Chemical communications 2018, 54, 6648-6661.
    28. He, Y.; Ren, X.; Xu, Y.; Engelhard, M. H.; Li, X.; Xiao, J.; Liu, J.; Zhang, J.-G.; Xu, W.; Wang, C., Origin of Lithium Whisker Formation and Growth under Stress. Nature nanotechnology 2019, 14, 1042-1047.
    29. Wu, B.; Lochala, J.; Taverne, T.; Xiao, J., The Interplay between Solid Electrolyte Interface (Sei) and Dendritic Lithium Growth. Nano Energy 2017, 40, 34-41.
    30. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q., Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chemical Reviews 2017, 117, 10403-10473.
    31. Selim, R.; Bro, P., Some Observations on Rechargeable Lithium Electrodes in a Propylene Carbonate Electrolyte. 1974, 121, 1457.
    32. Chen, K.-H.; Wood, K. N.; Kazyak, E.; LePage, W. S.; Davis, A. L.; Sanchez, A. J.; Dasgupta, N. P., Dead Lithium: Mass Transport Effects on Voltage, Capacity, and Failure of Lithium Metal Anodes. Journal of Materials Chemistry A 2017, 5, 11671-11681.
    33. Steiger, J.; Kramer, D.; Mönig, R., Microscopic Observations of the Formation, Growth and Shrinkage of Lithium Moss During Electrodeposition and Dissolution. Electrochimica Acta 2014, 136, 529-536.
    34. Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y.-M.; Cui, Y., The Synergetic Effect of Lithium Polysulfide and Lithium Nitrate to Prevent Lithium Dendrite Growth. Nature communications 2015, 6, 1-8.
    35. Nanda, S.; Gupta, A.; Manthiram, A., A Lithium–Sulfur Cell Based on Reversible Lithium Deposition from a Li2s Cathode Host onto a Hostless-Anode Substrate. 2018, 8, 1801556.
    36. Cohn, A. P.; Muralidharan, N.; Carter, R.; Share, K.; Pint, C. L. J. N. l., Anode-Free Sodium Battery through in Situ Plating of Sodium Metal. 2017, 17, 1296-1301.
    37. Nanda, S.; Gupta, A.; Manthiram, A., Anode‐Free Full Cells: A Pathway to High‐Energy Density Lithium‐Metal Batteries. Advanced Energy Materials 2020.
    38. Korthauer, R., Lithium-Ion Batteries: Basics and Applications; Springer, 2018.
    39. Liu, Y.; Li, X.; Fan, L.; Li, S.; Sari, H. M. K.; Qin, J., A Review of Carbon-Based Materials for Safe Lithium Metal Anodes. Frontiers in chemistry 2019, 7.
    40. Chen, Z.; Zhang, W.; Yang, Z., A Review on Cathode Materials for Advanced Lithium Ion Batteries: Microstructure Designs and Performance Regulations. Nanotechnology
    2019, 31, 012001.
    41. Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J. B., Lixcoo2 (0< X<-1): A New Cathode Material for Batteries of High Energy Density. Materials Research Bulletin 1980, 15, 783-789.
    42. Manthiram, A., A Reflection on Lithium-Ion Battery Cathode Chemistry. Nature Communications 2020, 11, 1-9.
    43. Fergus, J. W., Recent Developments in Cathode Materials for Lithium Ion Batteries. Journal of power sources 2010, 195, 939-954.
    44. Scheers, J.; Fantini, S.; Johansson, P., A Review of Electrolytes for Lithium–Sulphur Batteries. Journal of Power Sources 2014, 255, 204-218.
    45. Xu, K., Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chemical Reviews 2014, 114, 11503-11618.
    46. Epelboin, I.; Froment, M.; Garreau, M.; Thevenin, J.; Warin, D., Behavior of Secondary Lithium and Aluminum‐Lithium Electrodes in Propylene Carbonate. Journal of The Electrochemical Society 1980, 127, 2100.
    47. Xu, K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews 2004, 104, 4303-4418.
    48. Borodin, O.; Behl, W.; Jow, T. R., Oxidative Stability and Initial Decomposition Reactions of Carbonate, Sulfone, and Alkyl Phosphate-Based Electrolytes. The Journal of Physical Chemistry C 2013, 117, 8661-8682.
    49. Henderson, W. A., Nonaqueous Electrolytes: Advances in Lithium Salts. In Electrolytes for Lithium and Lithium-Ion Batteries, Springer: 2014; pp 1-92.
    50. Yang, H.; Zhuang, G. V.; Ross, P. N., Thermal Stability of Lipf6 Salt and Li-Ion Battery Electrolytes Containing Lipf6. Journal of Power Sources 2006, 161, 573-579.
    51. Strmcnik, D.; Castelli, I. E.; Connell, J. G.; Haering, D.; Zorko, M.; Martins, P.; Lopes, P. P.; Genorio, B.; Østergaard, T.; Gasteiger, H. A., Electrocatalytic Transformation of Hf Impurity to H 2 and Lif in Lithium-Ion Batteries. Nature Catalysis 2018, 1, 255-262.
    52. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.; Heider, U., On the Use of Vinylene Carbonate (Vc) as an Additive to Electrolyte Solutions for Li-Ion Batteries. Electrochimica Acta 2002, 47, 1423-1439.
    53. Pham, H. L., Health Diagnosis of Lithium-Ion Battery Cell Using Vibration-Based Test and Analysis. 2013.
    54. Lu, Y.; Zhang, Q.; Chen, J., Recent Progress on Lithium-Ion Batteries with High Electrochemical Performance. Science China Chemistry 2019, 62, 533-548.
    55. Tan, S.; Ji, Y. J.; Zhang, Z. R.; Yang, Y., Recent Progress in Research on High‐Voltage Electrolytes for Lithium‐Ion Batteries. ChemPhysChem 2014, 15, 1956-1969.
    56. Goodenough, J. B.; Kim, Y., Challenges for Rechargeable Li Batteries. Chemistry of Materials 2010, 22, 587-603.
    57. Doyle, M.; Takeuchi, E.; Abraham, K. In Rechargeable Lithium Batteries: Proceedings of the International Symposium, The Electrochemical Society: 2001.
    58. Tobishima, S.-I.; Yamaji, A., Ethylene Carbonate—Propylene Carbonate Mixed Electrolytes for Lithium Batteries. Electrochimica acta 1984, 29, 267-271.
    59. Krummacher, J.; Schütter, C.; Hess, L.; Balducci, A., Non-Aqueous Electrolytes for Electrochemical Capacitors. Current Opinion in Electrochemistry 2018, 9, 64-69.
    60. Yu, X.; Manthiram, A., Electrode–Electrolyte Interfaces in Lithium-Based Batteries. Energy Environmental Science
    2018, 11, 527-543.
    61. Peled, E., The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—the Solid Electrolyte Interphase Model. Journal of The Electrochemical Society 1979, 126, 2047.
    62. Nie, M.; Chalasani, D.; Abraham, D. P.; Chen, Y.; Bose, A.; Lucht, B. L., Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy. The Journal of Physical Chemistry C 2013, 117, 1257-1267.
    63. Heiskanen, S. K.; Kim, J.; Lucht, B. L. J. J., Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries. 2019.
    64. Wang, Y.; Nakamura, S.; Tasaki, K.; Balbuena, P. B., Theoretical Studies to Understand Surface Chemistry on Carbon Anodes for Lithium-Ion Batteries:  How Does Vinylene Carbonate Play Its Role as an Electrolyte Additive? Journal of the American Chemical Society 2002, 124, 4408-4421.
    65. Xu, K.; Lam, Y.; Zhang, S. S.; Jow, T. R.; Curtis, T. B., Solvation Sheath of Li+ in Nonaqueous Electrolytes and Its Implication of Graphite/Electrolyte Interface Chemistry. The Journal of Physical Chemistry C 2007, 111, 7411-7421.
    66. Lin, Y. X.; Liu, Z.; Leung, K.; Chen, L. Q.; Lu, P.; Qi, Y., Connecting the Irreversible Capacity Loss in Li-Ion Batteries with the Electronic Insulating Properties of Solid Electrolyte Interphase (Sei) Components. J. Power Sources 2016, 309, 221-230.
    67. Benitez, L.; Cristancho, D.; Seminario, J. M.; de la Hoz, J. M. M.; Balbuena, P. B., Electron Transfer through Solid-Electrolyte-Interphase Layers Formed on Si Anodes of Li-Ion Batteries. Electrochim. Acta 2014, 140, 250-257.
    68. Benitez, L.; Seminario, J. M., Ion Diffusivity through the Solid Electrolyte Interphase in Lithium-Ion Batteries. J. Electrochem. Soc. 2017, 164, E3159-E3170.
    69. Chen, Y. C.; Ouyang, C. Y.; Song, L. J.; Sun, Z. L., Electrical and Lithium Ion Dynamics in Three Main Components of Solid Electrolyte Interphase from Density Functional Theory Study. J Phys. Chem. C 2011, 115, 7044-7049.
    70. Shin, H.; Park, J.; Han, S.; Sastry, A. M.; Lu, W., Component-/Structure-Dependent Elasticity of Solid Electrolyte Interphase Layer in Li-Ion Batteries: Experimental and Computational Studies. J. Power Sources 2015, 277, 169-179.
    71. Tasaki, K.; Harris, S. J., Computational Study on the Solubility of Lithium Salts Formed on Lithium Ion Battery Negative Electrode in Organic Solvents. J Phys. Chem. C 2010, 114, 8076-8083.
    72. Pande, V.; Viswanathan, V., Computational Screening of Current Collectors for Enabling Anode-Free Lithium Metal Batteries. ACS Energy Letters 2019, 4, 2952-2959.
    73. Louli, A. J.; Genovese, M.; Weber, R.; Hames, S. G.; Logan, E. R.; Dahn, J. R., Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells. Journal of The Electrochemical Society 2019, 166, A1291-A1299.
    74. Becke, A. D., Density‐Functional Thermochemistry. I. The Effect of the Exchange‐Only Gradient Correction. The Journal of chemical physics 1992, 96, 2155-2160.
    75. Stephens, P. J.; Devlin, F.; Chabalowski, C.; Frisch, M. J., Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. The Journal of physical chemistry 1994, 98, 11623-11627.
    76. Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J.-M.; Palacin, M. R., In Search of an Optimized Electrolyte for Na-Ion Batteries. Energy Environmental Science 2012, 5, 8572-8583.
    77. Frisch, M. J., et al. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
    78. Sun, H., Compass: An Ab Initio Force-Field Optimized for Condensed-Phase Applications Overview with Details on Alkane and Benzene Compounds. The Journal of Physical Chemistry B 1998, 102, 7338-7364.
    79. González, M. A., Force Fields and Molecular Dynamics Simulations. École thématique de la Société Française de la Neutronique 2011, 12, 169-200.
    80. Kresse, G.; Hafner, J., Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium. Physical Review B 1994, 49, 14251.
    81. Blöchl, P. E., Projector Augmented-Wave Method. Physical review B 1994, 50, 17953.
    82. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Physical review letters 1996, 77, 3865.
    83. Nosé, S., A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. The Journal of chemical physics 1984, 81, 511-519.
    84. Hoover, W. G., Canonical Dynamics: Equilibrium Phase-Space Distributions. Physical review A 1985, 31, 1695.
    85. Henkelman, G.; Arnaldsson, A.; Jónsson, H., A Fast and Robust Algorithm for Bader Decomposition of Charge Density. Computational Materials Science 2006, 36, 354-360.
    86. Tang, W.; Sanville, E.; Henkelman, G., A Grid-Based Bader Analysis Algorithm without Lattice Bias. Journal of Physics: Condensed Matter 2009, 21, 084204.
    87. Younesi, R.; Veith, G. M.; Johansson, P.; Edström, K.; Vegge, T., Lithium Salts for Advanced Lithium Batteries: Li–Metal, Li–O2, and Li–S. Energy & Environmental Science 2015, 8, 1905-1922.
    88. Zheng, J.; Lochala, J. A.; Kwok, A.; Deng, Z. D.; Xiao, J., Research Progress Towards Understanding the Unique Interfaces between Concentrated Electrolytes and Electrodes for Energy Storage Applications. Adv Sci (Weinh) 2017, 4, 1700032.
    89. Lu, Y.; Tu, Z.; Archer, L. A., Stable Lithium Electrodeposition in Liquid and Nanoporous Solid Electrolytes. Nature materials 2014, 13, 961-969.
    90. Camacho-Forero, L. E.; Smith, T. W.; Balbuena, P. B., Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces. The Journal of Physical Chemistry C 2017, 121, 182-194.
    91. Gray, H. B.; Gray, H. B., Chemical Bonds: An Introduction to Atomic and Molecular Structure; University Science Books, 1994.
    92. Jones, R.; Lichtenstein, A.; Hutter, J., Density Functional Study of Structure and Bonding in Lithium Clusters Li N and Their Oxides Li N O. J The Journal of chemical physics 1997, 106, 4566-4574.
    93. Camacho-Forero, L. E.; Balbuena, P. B., Elucidating Electrolyte Decomposition under Electron-Rich Environments at the Lithium-Metal Anode. Physical Chemistry Chemical Physics 2017, 19, 30861-30873.
    94. Fan, Y.; Wang, T.; Legut, D.; Zhang, Q., Theoretical Investigation of Lithium Ions’ Nucleation Performance on Metal-Doped Cu Surfaces. Journal of Energy Chemistry 2019, 39, 160-169.
    95. Clarke-Hannaford, J.; Breedon, M.; Rüther, T.; Spencer, M. J. S., Stability of Boronium Cation-Based Ionic Liquid Electrolytes on the Li Metal Anode Surface. ACS Applied Energy Materials 2020.
    96. Camacho-Forero, L. E.; Smith, T. W.; Bertolini, S.; Balbuena, P. B., Reactivity at the Lithium–Metal Anode Surface of Lithium–Sulfur Batteries. The Journal of Physical Chemistry C 2015, 119, 26828-26839.
    97. Zheng, Y.; Soto, F. A.; Ponce, V.; Seminario, J. M.; Cao, X.; Zhang, J.-G.; Balbuena, P. B., Localized High Concentration Electrolyte Behavior near a Lithium–Metal Anode Surface. Journal of Materials Chemistry A 2019, 7, 25047-25055.

    無法下載圖示 全文公開日期 2025/08/28 (校內網路)
    全文公開日期 2025/08/28 (校外網路)
    全文公開日期 2025/08/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE