簡易檢索 / 詳目顯示

研究生: 盧劭展
Shao-Chan Lu
論文名稱: 分子動力學模擬金屬玻璃進行不同溫度退火之冶金行為
Study on Metallurgical Behavior of Amorphous Alloy at Annealing Process with Different Temperatures by Molecular Dynamics Simulation
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 郭俊良
Chun-Liang Kuo
周育任
Yu-Jen Chou
呂道揆
Daw-Kwei Leu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 173
中文關鍵詞: 分子動力學多元合金非晶金屬臨界成核半徑退火誘發非晶化
外文關鍵詞: Molecular dynamics, multi-component alloys, amorphous metals, critical radius for nucleation, annealing induced amorphization
相關次數: 點閱:230下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用分子動力學(Molecular Dynamics, MD)模擬銅-鎳-鋁-鐵-鈦五種金屬元素以不同配對方式,組成一元至三元合金金屬玻璃,進行高溫熔融後,以不同冷卻速率淬火至室溫,觀察其結晶度,探討合金組成元素數量與組成合金的元素晶體結構之種類對金屬玻璃形成能力之影響;並以銅-鎳-鋁金屬玻璃作為基礎模型嵌入面心立方的銅-鎳-鋁合金圓球形晶種進行退火模擬,以孕核與成長動力學的冶金觀點探討不同溫度的臨界成核半徑,用以尋找金屬玻璃進行短時間退火後結晶度會下降的機理。
    研究結果顯示,合金組成元素的數量與晶體結構的種類越多者,金屬玻璃形成能力越強。銅-鎳-鋁金屬玻璃中,當溫度高於玻璃轉換溫度後,晶核的臨界成核半徑較為明確,並且臨界成核半徑隨著溫度上升而增大,因此溫度越高,退火後系統中存在的有效晶粒越少。當退火溫度低於玻璃轉換溫度時無法有效消除晶核,金屬玻璃的結晶度無法下降,反而會因較大的晶核緩慢成長,使其結晶度上升;當退火溫度高於玻璃轉換溫度時可以消除部分小於臨界成核半徑之晶核,使金屬玻璃的結晶度下降,並在退火模擬一段時間後達到最低結晶度,隨後,若殘留的有效晶粒開始成長,將導致材料的結晶度再次上升。


    This thesis studied the glass forming ability of Cu, Cu-Ni, Cu-Al, Cu-Ni-Al, Cu-Ni-Fe, Cu-Ni-Ti and Cu-Ti-Fe alloy systems by Molecular Dynamics (MD) simulation. The crystallinity of these alloys after quenching at different cooling rates was characterized to identify the effect of processes parameters and crystal structures of the elements in the alloy on the glass forming ability of the alloys. The result shows that the greater number of components and types of crystal structure of component elements, the stronger glass-forming ability of alloys is.
    The mechanism of annealing-induced amorphization phenomenon was also investigated by a method. That embed spherical nucleuses of Cu-Ni-Al alloy with FCC structure in Cu-Ni-Al amorphous alloy system, and then annealed the system in different temperatures. Monitoring the annihilation or growth behavior of the nucleuses with different sizes identify the critical radius for nucleation (r_c) at different annealing temperature. The results showed that the effect of critical radius for nucleation of Cu-Ni-Al amorphous alloy was obvious when the annealing temperature above glass-transition temperature and enlarged the critical radius size when the temperature raised. That indicated more nucleus was annihilated during high temperature annealing process. When the annealing temperature was higher than the glass transition temperature, part of the crystal nuclei smaller than the critical radius could be eliminated, so that the crystallinity of the metallic glass was reduced, and the minimum crystallinity was reached after a period of annealing simulation. Then, if the residual effective crystal grains start growth would cause the crystallinity of the amorphous metal to rise again.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 符號說明 VI 表目錄 X 圖目錄 XI 1 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 3 2 第二章 分子動力學基礎理論 7 2-1 分子動力學的基本假設 7 2-2 分子間作用力與勢能函數 7 2-3 運動方程式與演算法 11 2-4 Verlet表列法 13 2-5 週期性邊界 14 2-6 無因次化 15 2-7 共同鄰近原子(Common Neighbor Analysis, CNA) 16 2-8 逕向分布函數(Radial Distribution Function, g(r)) 16 2-9 系綜(Ensemble) 18 2-10 諾斯-胡佛恆溫控制法 19 2-11 臨界成核半徑理論 19 3 第三章 模擬步驟與模型建立 34 3-1 程式模擬步驟 34 3-1-1 初始設定(Initialization) 34 3-1-2 系統平衡(Equilibration) 37 3-1-3 動態模擬(Poduction) 37 3-2 模型建立 38 3-2-1 銅-鎳-鋁金屬玻璃基礎模型建構 38 3-2-2 銅-鎳-鋁合金嵌入晶種建構 40 4 第四章 結果與討論 55 4-1 不同合金成分對於金屬玻璃形成能力的影響 56 4-1-1 合金組成元素數量對其形成金屬玻璃的影響 57 4-1-2 三元合金成份的晶體結構對其金屬玻璃形成能力之影響 67 4-2 銅-鎳-鋁合金的冶金性質分析 77 4-3 不同尺寸之單一晶核在銅-鎳-鋁金屬玻璃中的退火行為 93 4-3-1 銅-鎳-鋁金屬玻璃中的晶核在系統平衡與升溫過程的尺寸變動分析 96 4-3-2 銅-鎳-鋁金屬玻璃在低於玻璃轉換溫度(Tg)退火的晶核尺寸變動分析 100 4-3-3 銅-鎳-鋁金屬玻璃在高於玻璃轉換溫度(Tg)退火的晶核尺寸變動分析 104 4-4 銅-鎳-鋁金屬玻璃中奈米晶的冶金行為 130 5 第五章 結論與建議 151 5-1 結論 151 5-2 未來研究方向與建議 153 參考文獻 154

    參考文獻

    1.J.P. Chu, C.T. Liu, T. Mahalingam, S.F. Wang, M.J, O’keefe, B. Johnson, and C.H. Kuo, "Annealing-induced full amorphization in a multicomponent metallic film", Physical Review B, vol. 69, no. 113410, 2004.

    2.J.P. Chu, C.Y. Wang, L.J. Chen, and Q. Chen, "Annealing-induced amorphization in a sputtered glass-forming film: In-situ transmission electron microscopy observation ", Surface and Coatings Technology, vol. 205, pp. 2914-2918, 2011.

    3.D. Frenkel, and B. Smit, Understanding molecular simulation: from algorithms to applications, Elsevier, vol. 1, 2001.

    4.J. Irving and J. G. Kirkwood, "The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics", The Journal of Chemical Physics, vol. 18, no. 6, pp. 817-829, 1950.

    5.N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of state calculations by fast computing machines", The Journal of Chemical Physics, vol. 21, no. 6, pp. 1087-1092, 1953.

    6.L. Verlet, "Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules", Physical Review, vol. 159, no. 1, pp. 98, 1967.

    7.B. Quentrec and C. Brot, "New method for searching for neighbors in molecular dynamics computations", Journal of Computational Physics, vol. 13, no. 3, pp. 430-432, 1973.

    8.X.W. Zhou, R.A. Johnson, and H.N.G. Wadley, "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, vol. 69, no. 144113, 2004.

    9.Z. Erde ́lyi, Z. Balogh, and D.L. Beke, "Kinetic critical radius in nucleation and growth processes – Trappingeffect", Acta Materialia, vol. 58, no. 17, pp. 5639-5645, 2010.

    10.A.T. Negussie, "Annealing-Induced Indentation Recovery in Thin Film Metallic Glasses: Effects of Annealing Condition, Indenter Geometry, Film Composition and Thickness", 博士論文, 材料科學與工程系, 國立台灣科技大學, 台北市, 2014.

    11.S. Ren, Y. Sun, F. Zhang, A. Travesset, C.Z. Wang, and K.M. Ho, "Calculation of critical nucleation rates by the persistent embryo method: application to quasi hard sphere models", Soft Matter, vol. 47, pp. 9185, 2018.

    12.D. Zhang and S Chaudhuri, "Solidification dynamics and microstructure evolution in nanocrystalline cobalt ", Computational Materials Science, vol.16, pp. 222-232, 2019.

    13.何國、邊贊與陳國良, "Phase transformation of bulk glass alloy Zr52.5Ni14.6Al10Cu17.9Ti5 during isothermal annealting", Acta Metallurgica Sinica, vol. 35, no. 5, pp.458~462, 1999.

    14.J.E. Jones, "On the determination of molecular fields.—I. From the variation of the viscosity of a gas with temperature", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 106, no. 738, pp. 441-462, 1924.

    15.J.E. Jones, "On the determination of molecular fields.—II. From the equation of state of a gas", Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 106, no. 738, pp. 463-477, 1924.

    16.P.M. Morse, "Diatomic molecules according to the wave mechanics. II. Vibrational levels", Physical Review, vol. 34, no. 1, p. 57, 1929.

    17.M.S. Daw and M.I. Baskes, "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals", Physical Review B, vol. 29, no. 12, pp. 6443, 1984.

    18.M.S. Daw, "Model of metallic cohesion: The embedded-atom method", Physical Review B, vol. 39, no. 11, pp. 7441, 1989.

    19.R.A. Johnson, "Alloy models with the embedded-atom method", Physical Review B, vol. 39, no. 17, pp. 12554, 1989.

    20.R.A. Johnson, "Analytic nearest-neighbor model for fcc metals", Physical Review B, vol. 37, no. 8, pp. 3924, 1988.

    21.R.A. Johnson, "Phase stability of fcc alloys with the embedded-atom method", Physical Review B, vol. 41, no. 14, pp. 9717, 1990.

    22.R.A. Johnson and D. Oh, "Analytic embedded atom method model for bcc metals", Journal of Materials Research, vol. 4, no. 5, pp. 1195-1201, 1989.

    23.Y. Mishin, D. Farkas, M. Mehl, and D. Papaconstantopoulos, "Interatomic potentials for monoatomic metals from experimental data and ab initio calculations", Physical Review B, vol. 59, no. 5, pp. 3393, 1999.

    24.M.I. Baskes, "Modified embedded-atom potentials for cubic materials and impurities", Physical Review B, vol. 46, no. 5,p p. 2727, 1992.

    25.M. Tuckerman, B. J. Berne, and G. J. Martyna, "Reversible multiple time scale molecular dynamics", The Journal of Chemical Physics, vol. 97, no. 3, pp. 1990-2001, 1992.

    26.A. Stukowski, "Structure identification methods for atomistic simulations of crystalline materials", Modelling and Simul Mater Sci and Eng, vol. 20, no. 045021, pp. 15, 2012.

    27.C. W. Gear, Numerical initial value problems in ordinary differential equations. Prentice Hall PTR, 1971.

    28.J. Haile, I. Johnston, A.J. Mallinckrodt, and S. McKay, "Molecular dynamics simulation: elementary methods", Computers in Physics, vol. 7, no. 6, pp. 625-625, 1993.

    29.J.D. Honeycutt and H.C. Andersen, "Molecular dynamics study of melting and freezing of small Lennard-Jones clusters", Journal of Physical Chemistry, vol. 91, no. 19, pp. 4950-4963, 1987.

    30.S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods", The Journal of Chemical Physics, vol. 81, no. 1, pp. 511-519, 1984.

    31.W.G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Physical review A, vol. 31, no. 3, pp. 1695, 1985.

    32.R. Abbaschian, L. Abbaschian, and R.E. Reed-Hll, Physical Metallurgy Principles. Cengage Learning, pp.463-495, 2009.

    33.B. Chalmers, Priniciples of Solidificaiton, Applied Solid State Physics, pp.161-170.

    34.S. Plimpton, "Fast parallel algorithms for short-range molecular dynamics", Journal of Computational Physics, vol. 117, no. 1, pp. 1-19, 1995.

    35.A. Inoue, "Stabilization of metallic supercooled liquid and bulk amorphous alloys", Acta Materialia, vol. 48, pp. 279–306, 2000.

    36.A. Inoue, T. Zhang, and T. Masumoto, "Glass-forming ability of alloys", Journal of Non-Crystalline Solids, vol.156-158, pp. 473-480, 1993.

    37.卓育賢, "臨場合成多元合金披覆層的顯微結構與磨耗行為研究," 博士論文, 機械工程系, 國立臺灣科技大學, 台北市, 2009.

    38.黃再利, "分子動力學模擬奈米銅線結晶型態及機械行為研究," 碩士論文, 機械工程系, 國立臺灣科技大學, 台北市, 2009.

    39.B.Y. Yu, Y.C. Liang, Z.A. Tian, R.S. Liu, T.H. Gao, Q. Xie, and Y.F. Mo, "MD simulation on crystallization mechanisms of rapidly supercooled Fe-Ni alloys", Journal of Crystal Growth, vol. 535, no.125533, 2020.

    40.I. Gallino, S. Curiotto, M. Baricco, M.E. Kassner, and R. Busch, "Homogenization of Highly Alloyed Cu-Fe-Ni:A Phase Diagram Study", Journal of Equilibria and Diffusion, vol. 29, pp. 131-135, 2008.

    41.P.G. Debenedetti and F.H. Stillinger, "Supercooled liquids and the glass transiton", Nature, vol. 410, no.259, 2001.

    42.X.M. Bai and M. Li, "Calculation of solid-liquid interfacial free energy: A classical nucleation theory based approach", The Journal of Chemical Physics, vol.124, no.124707, 2006.

    43.K.C. Russell, "Linked flux analysis of nucleation in condensed phases", Acta Metallurgica, vol.16, no.5, pp.761-769, 1968.

    44.K.F. Kelton, "A new model for nucleation in bulk metallic glasses", Philosophical Magazine Letters, vol.77, no. 6, pp.337-344, 2010.

    QR CODE