簡易檢索 / 詳目顯示

研究生: 吳中硯
Chung-Yen Wu
論文名稱: 分子動力學研究不同鍵結型態之非晶質材料奈米切槽行為
Study on Nano Grooving Process for Amorphous Material of Different Bond State by Molecular Dynamics
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 向四海
Su-Hai Hsiang
周振嘉
Chen-Chia Chou
呂道揆
Daw-Kwei Leu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 154
中文關鍵詞: 分子動力學光學石英玻璃臨界切削深度彈性回復量
外文關鍵詞: Molecular Dynamics, Optical Quartz glass, Critical Cutting Depth, Amount of Elastic Recovery
相關次數: 點閱:146下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以分子動力學(Molecular Dynamics,MD)模擬不同刀尖半徑之刀具對脆性材料的奈米切槽行為,工件材料則採用共價鍵基礎的非晶態石英玻璃材料與金屬鍵基礎的非晶質銅鎳合金,透過熔煉-淬火製程製造出非晶態二氧化矽材料與銅鎳合金材料,比較不同切槽深度下,材料切削後深度與預定切削深度之差異評估其彈性回復量,並且判定材料形成切屑之臨界切削深度,分析不同鍵結材料的變形機制。
    模擬結果顯示,石英玻璃之切槽過程中,由於刀具半徑效應效應的影響,隨著刀尖半徑的增加,並且隨著刀尖半徑的減少,切削其臨界切削深度也隨之減少。由切削力分析顯示,切削深度未達到臨界值時,刀具受到較多的底部摩擦力,因此刀具所受到的底部推力會大於有效的水平切削力。
    非晶銅鎳合金之切削過程中,由於其為金屬鍵,原子外層之自由電子允許金屬原子間可以相互通過,故延性較高,因此在不同刀具幾何特徵均能在切削深度較低的情況下形成切屑。


    In this paper, molecular dynamics (Molecular Dynamics, MD) is used to simulate the nano grooving behavior of different tool tip radius on a covalently bonded amorphous quartz glass material and a metal bond-based amorphous copper-nickel alloy. The amorphous SiO2 material and the copper-nickel alloy material are fabricated through a melting-quenching process, and the difference between the depth of the material after cutting and the predetermined depth of cut is compared at different depths of cutting to calculate the amount of elastic recovery during the cutting process, thereby determining the material forms the critical depth of cutting of the chip and discusses the mechanism of material deformation between the two.
    The simulation results show that during the grooving process of quartz glass, due to the effect of the tool radius, as the radius of the tool tip increases, the amount of elastic recovery also increased by the surface of the material after cutting. After comparison with each other, as the radius of the tool tip is reduced, the critical cutting depth of the cutting process is also reduced. By cutting force analysis, when the cutting depth does not reach the critical value, because the cutting depth is shallow, the tool receives more bottom friction, so the bottom thrust of the tool will be greater than the positive cutting force.
    In the cutting process of amorphous copper-nickel alloy, since it is a metal bond, the free electrons of the outer layer of the atom allow the metal atoms to pass each other, so the ductility is high, so it is easy to form chips in the case where the cutting depth is low.

    摘要 I Abstract II 誌謝 III 目錄 IV 符號說明 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 研究動機與目的 1 1.2 分子動力學文獻回顧 2 1.3 分子動力學模擬之奈米切削 4 第二章 分子動力學基礎理論 6 2.1 分子動力學的基本假設 6 2.2 分子間作用力與勢能函數 6 2.3 運動方程式及演算法 10 2.4 Verlet列表法 12 2.5 週期性邊界 13 2.6 無因次化 14 2.7 共同鄰近原子(Common Neighbor Analysis,CNA) 14 2.8 徑向分布函數(Radial Distribution Function,g(r)) 15 2.9 系綜(Ensemble) 16 2.10 諾斯-胡佛恆溫控制法(Nose-Hoover Thermostat) 17 2.11 溫度場計算 18 第三章 模擬步驟與模型建立 27 3.1 程式模擬步驟 27 3.1.1 初始設定(Initialization) 27 3.1.2 系統平衡(Equilibration) 31 3.1.3 動態模擬(Production) 31 3.2 模型建構 32 3.2.1 非晶態二氧化矽模型建構 32 3.2.2 非晶態銅鎳合金模型建構 34 第四章 結果與討論 51 4.1 不同鍵結之非晶材料的機械行為 51 4.2 非晶態石英玻璃奈米切槽行為分析 57 4.2.1 不同刀尖半徑下臨界切削深度 60 4.2.2 不同刀尖半徑下之彈性回復量 67 4.2.3 不同刀尖半徑下之切削力分析 72 4.2.3.1 刀尖半徑1nm時之切削力分析 72 4.2.3.2 刀尖半徑0.5nm時之切削力分析 79 4.2.3.3 刀尖半徑0.25nm時之切削力分析 84 4.2.3.4 石英玻璃在不同刀尖半徑於相同切削深度之刀具受力比較 89 4.2.4 不同刀尖半徑於相同切削深度下對於切槽品質的影響 94 4.2.5 石英玻璃槽底緻密化及切屑形成機制 98 4.2.5.1 非晶態石英玻璃緻密化 98 4.2.5.2 石英玻璃切屑形成機制 101 4.3 非晶態銅鎳合金奈米切槽行為分析 108 4.3.1 不同刀尖半徑下彈性回復量之分析 108 4.3.2 銅鎳合金在不同刀尖半徑於相同切削深度之刀具受力比較 118 4.3.3 不同刀尖半徑於相同切削深度下之表面形貌分析 121 4.3.4 非晶金屬鍵材料切削行為與切屑成型區的變形機制 125 4.4 共價鍵與金屬鍵非晶材料切削過程綜合比較 131 第五章 結論與建議 132 5.1 結論 132 5.2 未來研究方向與建議 133 參考文獻 134

    1. S. Zhang, S. To, Z. Zhu, and G. Zhang, "A review of fly cutting applied to surface generation in ultra-precision machining," International Journal of machine tools and manufacture, vol. 103, pp. 13-27, 2016.
    2. Frenkel, Daan, and Berend Smit. Understanding molecular simulation: from algorithms to applications. Vol. 1. Elsevier, 2001.
    3. J. Dalton, A new system of chemical philosophy. Cambridge University Press, 2010.
    4. J. Irving and J. G. Kirkwood, "The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics," The Journal of chemical physics, vol. 18, no. 6, pp. 817-829, 1950.
    5. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, "Equation of state calculations by fast computing machines," The journal of chemical physics, vol. 21, no. 6, pp. 1087-1092, 1953.
    6. L. Verlet, "Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules," Physical review, vol. 159, no. 1, p. 98, 1967.
    7. B. Quentrec and C. Brot, "New method for searching for neighbors in molecular dynamics computations," Journal of Computational Physics, vol. 13, no. 3, pp. 430-432, 1973.
    8. N. Ikawa, S. Shimada, H. Tanaka, and G. Ohmori, "An atomistic analysis of nanometric chip removal as affected by tool-work interaction in diamond turning," CIRP annals, vol. 40, no. 1, pp. 551-554, 1991.
    9. S. Shimada, N. Ikawa, H. Tanaka, and J. Uchikoshi, "Structure of micromachined surface simulated by molecular dynamics analysis," CIRP annals, vol. 43, no. 1, pp. 51-54, 1994.
    10. S. Shimada and N. Ikawa, "Molecular dynamics analysis as compared with experimental results of micromachining," CIRP annals, vol. 41, no. 1, pp. 117-120, 1992.
    11. S. Shimada, N. Ikawa, H. Tanaka, G. Ohmori, J. Uchikoshi, and H. Yoshinaga, "Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation," CIRP annals, vol. 42, no. 1, pp. 91-94, 1993.
    12. R. Komanduri, N. Chandrasekaran, and L. Raff, "Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach," Wear, vol. 219, no. 1, pp. 84-97, 1998.
    13. R. Komanduri, N. Chandrasekaran, and L. Raff, "MD Simulation of nanometric cutting of single crystal aluminum–effect of crystal orientation and direction of cutting," Wear, vol. 242, no. 1-2, pp. 60-88, 2000.
    14. R. Komanduri, N. Chandrasekaran, and L. Raff, "MD simulation of indentation and scratching of single crystal aluminum," Wear, vol. 240, no. 1-2, pp. 113-143, 2000.
    15. R. Komanduri, N. Chandrasekaran, and L. Raff, "Molecular dynamics simulation of atomic-scale friction," Physical Review B, vol. 61, no. 20, p. 14007, 2000.
    16. R. Komanduri, M. Lee, and L. Raff, "The significance of normal rake in oblique machining," International Journal of Machine Tools and Manufacture, vol. 44, no. 10, pp. 1115-1124, 2004.
    17. X. Han, B. Lin, S. Yu, and S. Wang, "Investigation of tool geometry in nanometric cutting by molecular dynamics simulation," Journal of materials processing technology, vol. 129, no. 1-3, pp. 105-108, 2002.
    18. M. Cai, X. Li, and M. Rahman, "Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation," International Journal of Machine Tools and Manufacture, vol. 47, no. 1, pp. 75-80, 2007.
    19. M. Cai, X. Li, and M. Rahman, "Study of the temperature and stress in nanoscale ductile mode cutting of silicon using molecular dynamics simulation," Journal of materials processing technology, vol. 192, pp. 607-612, 2007.
    20. X. Guo, C. Zhai, R. Kang, and Z. Jin, "The mechanical properties of the scratched surface for silica glass by molecular dynamics simulation," Journal of Non-Crystalline Solids, vol. 420, pp. 1-6, 2015.
    21. J. E. Jones, "On the determination of molecular fields.—I. From the variation of the viscosity of a gas with temperature," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 106, no. 738, pp. 441-462, 1924.
    22. J. E. Jones, "On the determination of molecular fields.—II. From the equation of state of a gas," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 106, no. 738, pp. 463-477, 1924.
    23. P. M. Morse, "Diatomic molecules according to the wave mechanics. II. Vibrational levels," Physical Review, vol. 34, no. 1, p. 57, 1929.
    24. M. S. Daw and M. I. Baskes, "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals," Physical Review B, vol. 29, no. 12, p. 6443, 1984.
    25. R. Johnson, "Alloy models with the embedded-atom method," Physical Review B, vol. 39, no. 17, p. 12554, 1989.
    26. M. S. Daw, "Model of metallic cohesion: The embedded-atom method," Physical Review B, vol. 39, no. 11, p. 7441, 1989.
    27. R. Johnson, "Analytic nearest-neighbor model for fcc metals," Physical Review B, vol. 37, no. 8, p. 3924, 1988.
    28. R. Johnson, "Phase stability of fcc alloys with the embedded-atom method," Physical Review B, vol. 41, no. 14, p. 9717, 1990.
    29. R. Johnson and D. Oh, "Analytic embedded atom method model for bcc metals," Journal of Materials Research, vol. 4, no. 5, pp. 1195-1201, 1989.
    30. Y. Mishin, D. Farkas, M. Mehl, and D. Papaconstantopoulos, "Interatomic potentials for monoatomic metals from experimental data and ab initio calculations," Physical Review B, vol. 59, no. 5, p. 3393, 1999.
    31. M. I. Baskes, "Modified embedded-atom potentials for cubic materials and impurities," Physical review B, vol. 46, no. 5, p. 2727, 1992.
    32. J. Tersoff, "Modeling solid-state chemistry: Interatomic potentials for multicomponent systems," Physical review B, vol. 39, no. 8, p. 5566, 1989.
    33. M. Tuckerman, B. J. Berne, and G. J. Martyna, "Reversible multiple time scale molecular dynamics," The Journal of chemical physics, vol. 97, no. 3, pp. 1990-2001, 1992.
    34. C. W. Gear, Numerical initial value problems in ordinary differential equations. Prentice Hall PTR, 1971.
    35. J. Haile, I. Johnston, A. J. Mallinckrodt, and S. McKay, "Molecular dynamics simulation: elementary methods," Computers in Physics, vol. 7, no. 6, pp. 625-625, 1993.
    36. J. D. Honeycutt and H. C. Andersen, "Molecular dynamics study of melting and freezing of small Lennard-Jones clusters," Journal of Physical Chemistry, vol. 91, no. 19, pp. 4950-4963, 1987.
    37. J. Sarnthein, A. Pasquarello, and R. Car, "Model of vitreous SiO 2 generated by an ab initio molecular-dynamics quench from the melt," Physical Review B, vol. 52, no. 17, p. 12690, 1995.
    38. S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods," The Journal of chemical physics, vol. 81, no. 1, pp. 511-519, 1984.
    39. W. G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Physical review A, vol. 31, no. 3, p. 1695, 1985.
    40. R. A. Serway and J. W. Jewett, Physics for scientists and engineers with modern physics. Cengage learning, 2018.
    41. S. Plimpton, "Fast parallel algorithms for short-range molecular dynamics," Journal of computational physics, vol. 117, no. 1, pp. 1-19, 1995.
    42. J. E. Lennard-Jones, "Cohesion," Proceedings of the Physical Society, vol. 43, no. 5, p. 461, 1931.
    43. S. Tsuneyuki, M. Tsukada, H. Aoki, and Y. Matsui, "First-principles interatomic potential of silica applied to molecular dynamics," Physical Review Letters, vol. 61, no. 7, p. 869, 1988.
    44. Z.-Y. Ong and E. Pop, "Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO 2," Physical Review B, vol. 81, no. 15, p. 155408, 2010.
    45. J. Zhang, T. Sun, Y. Yan, and Y. Liang, "Molecular dynamics study of scratching velocity dependency in AFM-based nanometric scratching process," Materials Science and Engineering: A, vol. 505, no. 1-2, pp. 65-69, 2009.
    46. M. I. Ojovan, "Glass formation in amorphous SiO 2 as a percolation phase transition in a system of network defects," Journal of Experimental and Theoretical Physics Letters, vol. 79, no. 12, pp. 632-634, 2004.
    47. H. Wendt and F. F. Abraham, "Empirical criterion for the glass transition region based on Monte Carlo simulations," Physical Review Letters, vol. 41, no. 18, p. 1244, 1978.
    48. Z. Basinski, M. Duesbery, and R. Taylor, "Influence of shear stress on screw dislocations in a model sodium lattice," Canadian Journal of Physics, vol. 49, no. 16, pp. 2160-2180, 1971.
    49. P. A. Johnson, A. C. Wright, and R. N. Sinclair, "Neutron scattering from vitreous silica II. Twin-axis diffraction experiments," Journal of non-crystalline solids, vol. 58, no. 1, pp. 109-130, 1983.
    50. R. Komanduri, N. Chandrasekaran, and L. Raff, "Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach," Wear, vol. 219, no. 1, pp. 84-97, 1998.
    51. Chen, J., Shi, J., Zhang, M., Peng, W., Fang, L., Sun, K., & Han, J., "Effect of indentation speed on deformation behaviors of surface modified silicon: A molecular dynamics study," Computational Materials Science, vol. 155, pp. 1-10, 2018.
    52. C. L. Kelchner, S. Plimpton, and J. Hamilton, "Dislocation nucleation and defect structure during surface indentation," Physical review B, vol. 58, no. 17, p. 11085, 1998.
    53. 林宇廷, "分子動力學模擬不同晶體結構之薄膜於銅基材的奈米壓印行為," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2014.
    54. A. Argon, "Plastic deformation in metallic glasses," Acta metallurgica, vol. 27, no. 1, pp. 47-58, 1979.

    無法下載圖示 全文公開日期 2024/07/31 (校內網路)
    全文公開日期 2029/07/31 (校外網路)
    全文公開日期 2029/07/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE