簡易檢索 / 詳目顯示

研究生: 林岳宗
Yue-Zong Lin
論文名稱: 分子動力學模擬原子鎢/鎳濺鍍在銅基材上之薄膜成長行為
Molecular Dynamics Simulation for Thin Film Growth Behaviors of W/Ni atom Deposition on Cu(001) Substrate
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 雷添壽
Tian-Shou Lei
鍾俊輝
Chun-Hui Chung
郭俊良
Chun-Liang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 259
中文關鍵詞: 濺鍍介面擴散
外文關鍵詞: interdiffuse, sputter deposition
相關次數: 點閱:268下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用分子動力學模擬(molecular Dynamics, MD)模擬原子鎢/鎳濺鍍在銅基材,探討薄膜的成長機制與成長形貌,並且使用粗糙度及覆蓋率來評估薄膜品質,而模擬的濺鍍製程參數包括基材的溫度、入射原子能量。
    模擬結果顯示鎳薄膜與銅基材的結構同為FCC,提高溫度可讓薄膜利用層狀成長以得到低粗糙度和高覆蓋率的良好鍍膜表面,且薄膜與基材在介面互相擴散結合在一起,提高濺鍍能量雖可降低粗糙度以及改善覆蓋率但卻會造成嚴重的交互固溶;鎢濺鍍在銅基材上,因結構不相同又鎢本身內聚力高,所以薄膜是以島嶼狀成長,使得濺鍍製程後期島嶼會開始崩塌並產生架橋效應,因而使薄膜內部產生孔洞缺陷,並且增加基材溫度對此情況的改善有限。提升濺鍍能量則可避免架橋現象產生,以減少薄膜內部缺陷並改善粗糙度,但仍須注意過高的濺鍍能量會讓薄膜或基材汙染,因為此高能量造成薄膜與基材彼此會互相固溶,影響到薄膜品質。


    This study applies molecular dynamics (MD) simulation to discuss thin film growth behaviors of W/Ni atom deposition on Cu(001) substrate
    with different temperatures and beam energy. Roughness and film coverage to assess the quality of film.
    The simulation results show that Ni film crystal structure is the same as Cu substrate (FCC). Layer by layer growth mechanism can obtain low roughness and high coverage rate by increasing the substrate temperature. The film and the substrate interdiffuse together at the interface. Raising the sputtering energy can reduce roughness and improve coverage rate, but will cause serious interaction solution.
    Because Tungsten (BCC) is different from Cu (FCC) substrate structure and tungsten have high itself cohesion, the Tungsten film are Volmer Weber growth. At the end of sputtering process, islands will begin to collapse and create bridging effect. Raising the substrate temperatures can’t reduce pores defects well. Raising the sputtering energy can avoid bridging effect, reduce defects, and improve roughness of film surface. But we need to pay attention to the high sputtering energy ,which could result in film or substrate contamination because the high energy resultsin the film and substrate mutual solution and affect film quality.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖索引 IX 表索引 XXIV 第一章 緒論 1 1.1 研究動機與目的 1 1.2 分子動力學文獻回顧 2 1.3 分子動力學應用於薄膜技術之相關研究 4 1.4 粒子撞擊表面之效應 5 1.5 薄膜成長機制簡介 6 第二章 分子動力學基礎理論 9 2.1 分子動力學基本假設 9 2.2 原子間作用力與勢能函數 9 2.3 運動方程式與演算法 13 2.4 VERLET表列法 16 2.5週期性邊界與最小映像法則 17 2.6 無因次化 18 2.7 RADIAL DISTRIBUTION FUNCTION(RDF) 徑向分佈函數 19 2.8 溫度場的評估 20 第三章 模擬步驟與模型建立 33 3.1 模擬步驟 33 3.1.1 初始設定(Initialization) 33 3.1.2 系統平衡(Equilibration) 37 3.1.3 動態模擬(Production) 38 3.2 模型建立 39 第四章 結果與討論 49 4.1 銅基材溫度對於鎳濺鍍製程之影響 49 4.1.1 鎳濺鍍於80K銅基材之製程 52 4.1.2 鎳濺鍍於300K銅基材之製程 59 4.1.3鎳濺鍍於800K銅基材之製程 65 4.1.4鎳濺鍍於1000K銅基材之製程 71 4.1.5 鎳濺鍍於不同溫度基材之薄膜品質探討 77 4.2 銅基材溫度對於鎢濺鍍製程之影響 89 4.2.1 鎢濺鍍於80K銅基材之製程 91 4.2.2 鎢濺鍍於300K銅基材之製程 100 4.2.3 鎢濺鍍於800K 銅基材之製程 108 4.2.4 鎢濺鍍於1000K銅基材之製程 115 4.2.5 鎢濺鍍於不同溫度基材之薄膜品質探討 123 4.3 鎳原子以不同能量濺鍍於銅基材製程之影響 136 4.3.1鎳原子以0.4eV濺鍍能量於銅基材之製程 138 4.3.2鎳原子以0.6eV濺鍍能量於銅基材之製程 143 4.3.3鎳原子以0.8eV濺鍍能量於銅基材之製程 148 4.3.4鎳原子以1.0eV濺鍍能量於銅基材之製程 155 4.3.5鎳原子以不同能量濺鍍於銅基材探討 162 4.4 鎢原子以不同能量濺鍍於銅基材製程之影響 172 4.4.1鎢原子以0.4eV濺鍍能量於銅基材之製程 174 4.4.2鎢原子以0.6eV濺鍍能量於銅基材之製程 180 4.4.3鎢原子以0.8eV濺鍍能量於銅基材之製程 186 4.4.4鎢原子以1.0eV濺鍍能量於銅基材之製程 192 4.4.5鎢原子以2.0eV濺鍍能量於銅基材之製程 198 4.4.6鎢原子以3.0eV濺鍍能量於銅基材之製程 206 4.4.7 鎢原子以不同能量濺鍍於銅基材探討 213 第五章 結論 226 5.1結論 226 5.2未來研究方向與建議 227 參考文獻 229

    1. Kalpakjian, Schmid, “Manufacturing Engineering and Technology” sixth edition in units, prentice hall, pp. 979,
    2. J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of Hydrodynamics”, J. Chem. Phys., Vol. 18, No. 6, pp. 817-829 (1950).
    3. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, “Equation of State Calculations by Fast Computing Machines”, J. Chem. Phys., Vol. 21, No. 6, pp. 1087-1092 (1953).
    4. L. Verlet, “Computer Experiment on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Phys. Rev., Vol. 159, No. 1, pp. 98-103 (1967).
    5. B. Quentrec and C. Brot, “New Method for Searching for Neighbors in Molecular Dynamics Computations”, J. Comput. Phys., Vol. 13, pp. 430-432 (1973).
    6. D. C. Rapaport, “Large-Scale Molecular Dynamics Simulation Using Vector and Parallel Computers”, Comput. phys. Rep., Vol. 9, pp. 1-53 (1988).
    7. M. Meyer and V. Pontikis, “Computer Simulation in Material Science: Interatomic Potentials, Simulation Techniques and Applications”, Kluwer Academic Publishers, USA, (1991).
    8. K. -H. <Müller,“Role of incident kinetic-energy of adatom in thin-film growth,”Surface Science 184(2)L375-L382,(1987)
    9. K. -H. <Müller,“Ion-beam-induced epitaxial vapor-phase growth - A molecular dynamics study,”Phys.Rev.B.7906 35(15)(1991)
    10. G.H. Gilmer, M.H. Grabow, A.F. Bakker,“Modeling of epitaxial growth,”Mater.Sci.Eng.B6,101(1990)
    11. X.M. Zhou, R.A. Johnson and H.N.G Wadley,“A molecular dynamics study of nickel vapor deposition:temperature,incident angle,and adatom energy effects,”Acta Mater 45(4)1513(1997)
    12. Ohring and Milton,1992,The materials science of thin films, Academic Press, Boston.
    13. M. S. Daw, S. M. Foiles and M. I. Baskes, “The Embedded-Atom Method: A Review of Theory and Applications”, Mater. Sci. Rep., Vol. 9, pp. 251-310 (1993).
    14. J. E. Lennard-Jones, “On the Determination of Molecular Fields.-I. From the Variation of the Viscosity of a Gas with Temperature”, Proceedings of the Royal Society of Physical Character, London , Series A, Vol. 106, No. 738, pp. 441-462 (1924).
    15. P. M. Morse, “Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels”, Phtsical Review, Vol. 34, pp. 57-64 (1929).
    16. M. S. Daw and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals”, Phys. Rev. Lett., Vol. 50, No. 17, pp. 1285-1288 (1983).
    17. M. S. Daw, and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defectsin in Metals”, Phys. Rev. B, Vol. 29, No. 12, pp. 6443-6453 (1984).
    18. V. Rosato, M. Guillope and B. Legrand, “Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model”, Philosophic Magazin A, Vol. 59, No. 2, pp. 321-336(1989).
    19. F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys”, Physical Review B, Vol. 48, No. 1, pp. 22-33(1993).
    20. C. W. Gear, “Numerical Initial Value Problems in Ordinary Differential Equations”, Prentice-Hall, Englewood Cliffs, NJ, (1971).
    21. J. M. Haile, “Molecular Dynamics Simulation:Elementrary Methods(A Wiley-Interscience Publication)”, John Wiley & Sons, Inc, USA, (1992).
    22. J. D. Kim and C. H. Moon, “A Study on Microcutting for the Configuration of Tools Using Molecular Dynamics”, J. Mater. Process. Technol., Vol. 59, pp. 309-314 (1996).
    23. J. M. Haile, “Molecular Dynamics Simulation”, A Wiley-Interscience Publication, pp. 263 (1992).
    24. Giancoli and D. C., “Physics for scientists & engineers with modern physics(3rd edn)”, Prentice Hall, New Jersey, pp. 466-469(2000).
    25. R. A. Johnson, “Alloy Models with The Embedded-Atom Method”, Physical Review B, Vol. 39, No. 17, pp. 12554-12559 (1989).
    26. R. A. Johnson, “Analytic Nearest-Neighbor Model for FCC Metals”, Physical Review B, Vol. 37, No. 8, pp. 3924-3931 (1988).
    27. G. Mazzone and V. Rosato, “Molecular-dynamics calculations of thermodynamic properties of metastable alloys”, Physical Review B, Vol. 55, No. 2, pp.837-842(1997).
    28. R. A. Johnson and D. J. Oh, "Analytic Embedded Atom Method Model for BCC Metals", Journal of Materials Research Sociery, Vol.4, No.5, pp.1195-1201(1989).
    29. A. M. Guellil and J. B. Adams, "The Application of The Analytic Embedded Atom Method to BCC Metals and Alloys", Journal of Materials Research Sociery, Vol.7, No.3, pp.639-652(1992).
    30. Zhang Bangwei and Ouyang Yifang, "Theoretical Calculation of Thermodynamic Data for BCC Binary Alloys with The Embedded-Atom Method", Physical Review B, Vol.48, No.5, pp.3022-3029(1993).
    31. Ibrahim H. Dursun, Ziya B. Güvenç and E. Kasap, "A Simple Analytical EAM Model for Some BCC Metals", Commun Nonlinear Sci Numer Simulat, Vol.15, pp.1259-1266(2010).
    32. M. W. Finnis and J. E. Sinclair, "A Simple Empirical N-Body Potentials for Transition Metals", Philosophical Magazine A, Vol.50, pp.45-55(1984).
    33. R. A. Johnson and D. J. Oh, "Atomistic Simulation of Materials Beyond Pair Potentials", World Materials Congress, ASM,(1988).

    QR CODE