簡易檢索 / 詳目顯示

研究生: 蘇士軒
SHIH-HSUAN SU
論文名稱: 濺鍍型鋰錫氧硫固態電解質薄膜之研究
The investigation of Li2SnOS solid electrolyte thin films by sputtering technique
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 何清華
Ching-Hwa Ho
薛人愷
Ren-Kae Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 124
中文關鍵詞: 濺鍍鋰錫氧硫電解質薄膜全固態
外文關鍵詞: sputtering, lithium tin oxysulfide, electrolyte, thin film, solidstate
相關次數: 點閱:264下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以實驗室自行壓製硫氧化物電解質靶材,採用RF反應式濺鍍法進行製備氧硫化物電解質的Li2SnOS薄膜,欲將硫化物電解質之高離子傳導性與氧化物電解質之穩定性相結合,得到兼顧化學安定與高鋰離子傳導的固態電解質薄膜,並探討靶材濺鍍時,不同沉積溫度、靶材中不同硫補償含量對所得薄膜品質、電性及光學性質之影響。另外,也探討製作不同硫補償含量的靶材其所用粉體與所濺鍍出的薄膜,二者之間的變異,以便了解濺鍍時所發生的狀況。於本實驗中,我們利用XRD、SEM、EDS、XPS、UV-vis、拉曼光譜分析及電化學EIS阻抗頻譜分析來研究薄膜特性;亦以XRD、SEM、EDS、XPS來分析粉體性質。
    實驗中使用自製的硫氧化物電解質靶材,以濺鍍功率70瓦,並改變沉積溫度100、200、300與400 oC製備Li2SnOS薄膜,探討沉積溫度對於Li2SnOS薄膜之影響。實驗結果發現,XRD鑑定其主結構為層狀Li2SnO3相,晶系為單斜晶,並且沉積溫度200 oC下有最高結晶大小18.2 nm;由表面分析發現,隨著沉積溫度增加,晶粒成長並團聚在一起。藉由XPS得知不同沉積溫度下所得薄膜存在Sn2+、Sn4+、氧-金屬(O-M)、氧-硫(O-S)、吸附氧(O-Ads)、S2、S4+、S6+,且Li:Sn含量比例為2:1與配置靶材所調整比例相近,且在沉積溫度200 oC下有著最高的硫含量2.47 %,其中S原子在陰離子中所佔比例只有2%;透過UV-vis穿透光譜計算薄膜能隙大小,沉積溫度200 oC時,所得薄膜具有最大的能隙4.24 eV。另外,沉積溫度200 oC時,薄膜也具有最高的離子導電率9.1610-7 S/cm,此結果說明硫含量以及結晶度對離子導電率具有影響。
    當改變硫補償含量製備靶材Li2SnOS-x-S (x=1 – 4)並於沉積溫度200 oC濺鍍製備薄膜時,XRD也有著相同的三根主峰鋒值,其主結構同為層狀Li2SnO3相;由表面分析發現,隨著靶材硫補償含量上升,表面形貌並無明顯改變;藉由XPS計算得知Li與Sn比例為2:1,Sn在Li2SnOS-4-S薄膜轉變為Sn4+,但改變硫補償含量之靶材其濺鍍所得薄膜中S含量差異不大,Li2SnOS-4-S薄膜中S原子在陰離子中所佔比例低於2%;UV-vis穿透光譜計算薄膜能隙範圍由3.79 eV~4.52 eV。另外,Li2SnOS-4-S薄膜具有最高的離子導電率3.8 10-6 S/cm,亦發現[Sn4+]/[Sn]比例的提升可以提升離子導電度。
    發現提升硫補償含量製備之靶材對濺鍍出其薄膜硫含量的提升並不明顯,我們探討粉體與其所濺鍍出的薄膜二者之間的變異,結果發現,不同硫補償含量製備之Li2SnOS-x-S (x=1 – 4)靶材粉體其XRD主峰為15.30o且在2= 26.89o、28.57o、32.47o、34.23o處有著明顯的特徵峰,主結構類似SnS2的Li2SnS3相,粉體與所濺鍍出的Li2SnOS-x-S (x=1 – 4)薄膜相比較發現,薄膜的主峰變為34.23o,結構為層狀Li2SnO3相。SEM表面分析發現不同硫補償條件製備Li2SnOS粉體為均為片板狀。由XPS分析發現粉體中Sn原子價態全為Sn2+,S含量在總陰離子中只佔15%,且改變硫補償含量並未使粉體中的硫含量上升。此一結果指出SnS2前驅粉體不適合此一製程,使用SnS2粉體為前驅物粉體製備之Li2SnOS粉體在濺鍍時粉體中的Sn2+不具有穩定S沉積的功能,造成薄膜中的硫含量佔總陰離子的比例小於3%。


    In this research, Li2SnOS thin film for oxysulfide electrolyte is prepared by radio-frequency sputtering technique. The purpose of this work is to form Li2SnOS thin film with the property combinations of the high ion conductivity of sulfide and the stability of oxide. Some explorations for the effects of different deposition temperatures and sulfur compensation amount in target for film quality, electrical and optical properties were conducted. Furthermore, the differences of the powder for target and the thin film prepared by different sulfur compensation amount were also evaluated. In this experiment, the as-prepared thin films were analyzed with XRD, SEM, EDS, XPS, UV-vis, Raman spectroscopy, and EIS. XRD, SEM, EDS and XPS were used for evaluating powder.
    Self-synthesized oxysulfide electrolyte target was used to prepare Li2SnOS-1-S thin films with sputtering power of 70 Watt at different deposition temperatures of 100, 200, 300 and 400 oC. The effect of deposition temperature on the Li2SnOS thin film was investigated. From XRD data, there were three broad main peaks at 2= 26.35o、34.05o、51.95o. Main structure was the Li2SnO3 layer crystal system with monoclinic structure. The 200 oC-deposited film had a crystal size of 18 nm. By analyzing the XPS results, thin films deposted at different temperatures contained Sn2+, Sn4+, OM bonding, OS bonding, adsorbed O, S2, S4+, and S6+ at different states. The ratio of Li and Sn was close to 2 : 1 in the thin film. The thin film deposited at 200 oC had the highest sulfur content with a value of 2.47 at%, and S2- content only with a value of 2% in anion content value. 200 oC-deposited thin film showed a maximum band gap of 4.24 eV and the highest ionic conductivity of 9.16  10-7 S/cm due to the highest sulfur content.
    When the Li2SnOS-x-S (x=1 – 4) targets were prepared at different sulfur compensation amounts for thin film deposited at 200 °C, the XRD had the same three main peak and its main structure was the same as Li2SnO3. From the surface analysis, it was found that the surface morphology did not change significantly with the sulfur compensation in target. The analysis of XPS results showed that the ratio of Li and Sn in film was still 2 : 1 and Sn was converted to all Sn4+ in Li2SnOS-4-S film. However, there was no changes in the S content with the increase of sulfur compensation amount in the target. The proportion of S atoms in the anion in the Li2SnOS-4-S film is less than 2%. The energy gap ranges from 3.79 eV to 4.52 eV. In addition, the Li2SnOS-4-S film had the highest ionic conductivity of 3.8  10-6 S/cm. It indicates that the increase in the ratio of [Sn4+]/[Sn] can enhance the ionic conductivity.
    It was found that the target prepared by increasing the sulfur compensation amount did not increase the sulfur content in the thin film. It was found that Li2SnOS-x-S (x=1-4) powders for targets prepared with different sulfur contents had a main peak at 15.30o and obvious peaks at 2= 26.89o, 28.57o, 32.47o and 34.23o with a main structure of SnS2-like Li2SnS3 phase, while Li2SnOS-x-S (x=1-4) thin film was found with the main peak changed to 34.23o for a layered Li2SnO3 phase. Li2SnOS powders prepared at different sulfur contents were all plate-like shapes. XPS analysis showed that the valency state of Sn atom in the powder was all Sn2+, and the S content was only 15% in the total anion amount. The result indicat there was no increase in the sulfur content for powder. It was speculated that the SnS2 precursor powder is not suitable for this process. The Sn2+ in Li2SnOS powder after adopting SnS2 powder as the Sn precursor does not have the functions to increase the S content in target and to stabilize S deposition during sputtering, resulting in sulfur content in anion content less than 3% in the film.

    中文摘要 I Abstract III 致謝 VI 目錄 VII 圖目錄 XI 表目錄 XVII 第1章、緒論 1 1.1 前言 1 1.2 研究動機與目的 4 第2章、文獻回顧與動機 7 2.1 全固態鋰離子薄膜電池 7 2.2 固態鋰離子導體 9 2.2.1 氧化物型的離子導體 9 2.2.2 氮摻雜氧化物薄膜電池之發現 15 2.2.3 硫化物型的鋰離子導體 21 2.2.3.4新型硫化物Li0.6(Li0.2Sn0.8)S2離子導體之開發 25 2.2.4 新型硫氧化物電解質 30 第3章、研究方法與步驟 36 3.1 實驗材料及規格 36 3.2 實驗設備 38 3.2.1 分析電子天平 38 3.2.2 真空烘箱 38 3.2.3 高溫式管型爐 38 3.2.4 RF反應式濺鍍系統 39 3.2.5 真空熱壓機 39 3.2.6 球磨機 40 3.3 實驗步驟 41 3.3.1 混成SnS2+LiNO3 41 3.3.2 前驅粉體製備 41 3.3.3 靶材壓制 42 3.3.4 基板裁切與清洗 43 3.3.5 薄膜濺鍍 44 3.3.6 無機固態薄膜電解質特性量測 45 3.4 分析儀器介紹及量測參數 46 3.4.1 高功率X光繞射儀 (High Power X-Ray Diffractometer, XRD) 46 3.4.2 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FESEM) 48 3.4.3 紫外光-可見光/近紅外光分析儀 (UV-Vis/NIR spectrophotometer) 49 3.4.4 顯微拉曼光譜儀 (Micro-Raman spectrometer) 51 3.4.5 電化學阻抗頻譜法(Electrochemical impedance spectroscopy, EIS) 52 3.4.6 X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 54 第4章、結果與討論 55 4.1 不同沉積溫度對LI2SNOS-1-S薄膜其分析及探討 56 4.1.1 不同沉積溫度100–400 oC下,濺鍍製備所得Li2SnOS-1-S薄膜其XRD分析 56 4.1.2 不同沉積溫度100–400 oC下濺鍍製備所得Li2SnOS-1-S薄膜其SEM及EDS分析 59 4.1.3 不同沉積溫度100 oC – 400 oC濺鍍條件下,所製備Li2SnOS-1-S薄膜其XPS分析 63 4.1.4 不同沉積溫度100 oC – 400 oC濺鍍條件下,所製備Li2SnOS-1-S薄膜光學性質分析 72 4.1.5 不同沉積溫度100 oC–400 oC條件下,濺鍍製備所得Li2SnOS-1-S薄膜其拉曼光譜分析 75 4.1.6 不同沉積溫度100 oC – 400 oC條件下,濺鍍製備所得Li2SnOS-1-S薄膜其EIS特性分析 77 4.2 不同硫補償含量所製得LI2SNOS-X-S靶材,其濺鍍所得LI2SNOS-X-S薄膜其特性分析及探討 81 4.2.1 於沉積溫度200 oC濺鍍Li2SnOS-x-S 靶材所製備Li2SnOS薄膜其 XRD 分析 81 4.2.2 於沉積溫度200 oC濺鍍Li2SnOS-x-S靶材所製備Li2SnOS-x-S薄膜其SEM及EDS分析 83 4.2.3 於沉積溫度200°C濺鍍Li2SnOS-x-S靶材所製備Li2SnOS-x-S薄膜其XPS組成分析 87 4.2.4 於沉積溫度200 oC濺鍍Li2SnOS-x-S 靶材所製備薄膜其光學性質分析 93 4.2.5 於沉積溫度200 oC濺鍍Li2SnOS-x-S 靶材所製備薄膜其拉曼光譜分析 95 4.2.6 於沉積溫度200 oC濺鍍Li2SnOS-x-S靶材所製備薄膜其EIS阻抗分析 97 4.3 針對不同硫補償含量的靶材其所用LI2SNOS-X-S (X=1 – 4)粉體特性分析 100 4.3.1 不同硫補償含量的靶材其所用Li2SnOS-x-S (x=1 – 4)粉體的XRD分析 100 4.3.2 製備不同硫補償量的靶材其製備所用之Li2SnOS-x-S(x =1 – 4)粉體的SEM與EDS分析 102 4.3.3 製備不同硫補償含量的靶材其所用之Li2SnOS-x-S(x =1 – 4)粉體的XPS組成分析 105 4.3.4 不同硫補償含量的靶材其所用之Li2SnOS-x-S (x=1 – 4)粉體硫含量不足原因 114 第5章、結論 116 第6章、參考文獻 121

    楊之瑜, 誰用電比較多, 關鍵評論, 4月, 2018. https://www.thenewslens.com /article/93936.
    2. 程品皓, 鋰離子電池添加劑之開發, 國立台灣科技大學化學工程系研究所碩士學位論文, 2013.
    3. 郭昭延, 鋰離子電池預置鋰技術之研究, 國立台灣科技大學化學工程系研究所碩士學位論文, 2014.
    4. 郭亮吟, 高穩定錫碳複合材料於鋰離子電池陽極之應用, 國立台灣科技大學化學工程系研究所碩士學位論文, 2014.
    5. Z. Ma, H. -G. Xue, S. -P. Guo, Recent achievements on sulfide-type solid electrolytes: crystal structures and electrochemical performance, Journal of Materials Science, 53 (2018) 3927-3938.
    6. J. C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, S.-H. Yang, Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction, Chemical Reviews, 116 (2016) 140-162.
    7. V. Thangadurai, S. Narayanana, D. Pinzarua, Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review, Chemical Society Reviews, 43 (2014) 4714-4727.
    8. H. Kim, Y. Ding, P. A. Kohla, LiSICON – ionic liquid electrolyte for lithium ion battery, Journal of Power Sources, 198 (2012) 281-286.
    9. S. D. Jones, J. R. Akridge, F. K. Shokoohi, Thin film rechargeable Li batteries, Solid State Ionics, 69 (1994) 357-368.
    10. 黃可龍, 王兆祥, 劉素琴, 鋰離子電池原理與關鍵技術. 2013, 北京: 化學工業.
    11. 赵胜利, 祝要民, 王顺兴, 李谦, 秦启宗, 全固态无机薄膜锂电池近期发展动态, 功能材料, 8 (2005)
    12. S. J. Dillon, K. Sun, Microstructural design considerations for Li-ion battery systems. Current Opinion in Solid State and Materials Science, 16 (2012) 153-162.
    13. 万萍萍, 中國工程院院士陳立泉:把握下一代電池技術方向, 佈局全固態電池, 高工锂电, 2015.
    14. M. Koo, K. -I. Park, S. H. Lee, M. Suh, D. Y. Jeon, J. W. Choi, K. Kang, K. J. Lee, Bendable inorganic thin-film battery for fully flexible electronic systems, Nano Letters, 12 (2012) 4810-4816.
    15. 王舒嬿, 行動終端大廠的穿戴式技術動向, 《IEK 產業情報網》, 2013 1-10.
    16. A. Ulvestad, A brief review of current lithium ion battery technology and potential solid state battery technologies, arXiv:1803.04317v1, 2018.
    17. J. W. Gibbs, K. A. Mohan, E. B. Gulsoy, A. J. Shahani, X. Xiao, C. A. Bouman, M. De Graef, P. W. Voorhees, The three-dimensional morphology of growing dendrites, Scientific Reports, 5 (2015) 11824.
    18. T. Placke, R. Kloepsch, S. Dühnen, M. Winter, Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density, Journal of Solid State Electrochemistry, 21 (2017) 1939-1964.
    19. X. Q. Zhang, X. B. Cheng, Q. Zhang, Advances in interfaces between Li metal anode and electrolyte, Advanced Materials Interfaces, 5 (2018) 1701097.
    20. B. B. Owens, Solid state electrolytes: Overview of materials and applications during the last third of the Twentieth Century, Journal of Power Sources, 90(2000) 2-8.
    21. T. Inoue, K. Mukai, Are all-solid-state lithium-ion batteries really safe? –Verification by differential scanning calorimetry with an all-inclusive microcell. ACS Applied Materials & Interfaces, 9 (2017) 1507-1515.
    22. Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, High-power all-solid-state batteries using sulfide superionic conductors, Nature Energy, 1 (2016) 16030.
    23. R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12, Angewandte Chemie International Edition, 46 (2007) 7778-7781.
    24. M.Tatsumisago, M. Nagao, A. Hayashi, Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries, Journal of Asian Ceramic Societies, 1 (2013) 17-25.
    25. K. Suzuk, M. Sakuma, S. Hori, T. Nakazawa,M. Nagao, M. Yonemura, M. Hirayama, R. Kanno, Synthesis, structure, and electrochemical properties of crystalline Li–P–S–O solid electrolytes: Novel lithium-conducting oxysulfides of Li10GeP2S12 family, Solid State Ionics, 288 (2016) 229-234.
    26. Y. Tao, S. Chen, D. Liu, G. Peng, X. Yao, X. Xu, Lithium superionic conducting oxysulfide solid electrolyte with excellent stability against lithium metal for all-solid-state cells, Journal of The Electrochemical Society, 163 (2016) 96-101.
    27. A. K. Abay, X. Chen, D. -H. Kuo, Highly efficient noble metal free copper nickel oxysulfide nanoparticles for catalytic reduction of 4-nitrophenol, methyl blue, and rhodamine-B organic pollutants, New Journal of Chemistry, 41 (2017) 5628-5638.
    28. X. Chen, D. -H. Kuo, Nanoflower bimetal CuInOS oxysulfide catalyst for the reduction of Cr(VI) in the dark, ACS Sustainable Chemistry & Engineering, 5 (2017) 4133-4143.
    29. H. Abdullah, N. S. Gultom, D. -H. Kuo, Indium oxysulfide nanosheet photocatalyst for the hexavalent chromium detoxification and hydrogen evolution reaction, Journal of Materials Science, 52 (2017) 6249-6264.
    30. X. Chen, D. -H. Kuo, A. D. Saragih, Z. -Y. Wu, H. Abdullah, J. Lin, The effect of the Cu+/Cu2+ ratio on the redox reactions by nanoflower CuNiOS catalysts. Chemical Engineering Science, 194 (2019) 105-115.
    31. H. Abdullah, D.-H. Kuo, X. Chen, High efficient noble metal free Zn(O,S) nanoparticles for hydrogen evolution, International Journal of Hydrogen Energy, 42 (2017) 5638-5648.
    32. N. S. Gultom, H. Abdullah, and D. -H. Kuo, Enhanced photocatalytic hydrogen production of noble-metal free Ni-doped Zn(O,S) in ethanol solution, International Journal of Hydrogen Energy, 42 (2017) 25891-25902.
    33. H. Abdullah, N. S. Gultom, D. -H. Kuo, A simple one-pot synthesis of a Zn(O,S)/Ga2O3 nanocomposite photocatalyst for hydrogen production and 4-nitrophenol reduction, New Journal of Chemistry, 41 (2017) 12397-12406.
    34. H. Abdullah, D. -H. Kuo, Utilization of photocatalytic hydrogen evolved (Zn,Sn)(O,S) nanoparticles to reduce 4-nitrophenol to 4-aminophenol. International Journal of Hydrogen Energy, 44 (2019) 191-201.
    35. X. Chen, H. Abdullah, D.-H. Kuo, CuMnOS nanoflowers with different Cu+/Cu2+ ratios for the CO2-to-CH3OH and the CH3OH-to-H2 redox reactions, Scientific Reports, 7 (2017) 41194.
    36. X. Chen, H. Abdullah, D. -H. Kuo, H. -N. Huang, C. -C. Fang, Abiotic synthesis with the C-C bond formation in ethanol from CO2 over (Cu,M)(O,S) catalysts with M = Ni, Sn, and Co. Scientific Reports, 7 (2017) 10094.
    37. Y. F. Li, H. L. Pan, B. Yao, R. Deng, Y. Xu, J. C. Li, L. G. Zhang, H. F. Zhao, D. Z. Shen, T. Wu, Hole-mediated ferromagnetic enhancement and stability in Cu-doped ZnOS alloy thin films, Journal of Physics D: Applied Physics, 45 (2012) 075002.
    38. B. A. Boukamp, R. A. Huggins, Lithium ion conductivity in lithium nitride, Physics Letters A, 58 (1976) 231-233.
    39. K. Takada, Progress and prospective of solid-state lithium batteries, Acta Materialia, 61 (2013) 759-770.
    40. Y. Zhao, L. L. Daemen, Superionic conductivity in lithium-rich anti-perovskites. Journal of the American Chemical Society, 134 (2012) 15042-15047.
    41. X. Yao, B. Huang, J. Yin, G. Peng, Z. Huang, C. Gao, D. Liu, X. Xu, All-solid-state lithium batteries with inorganic solid electrolytes: Review of fundamental science. Chinese Physics B, 25 (2016) 018802.
    42. C. H. Chen, S. Xie, E. Sperling, A. S. Yang, G. Henriksen, K. Amine, Stable lithium-ion conducting perovskite lithium–strontium–tantalum–zirconium–oxide system, Solid State Ionics, 167 (2004) 263-272.
    43. 蘇稘翃、鄭元瑞、薛天翔、余玉正、詹德均, 穿戴式產品之可撓式全固態薄膜鋰電池, Journal of Taiwan Energy, 2 (2015) 279-292.
    44. 劉冠偉, 動力電池重要發展方向——全固態電池發展現狀和前景展望(II), Views, 45 (2017) 3月. https://hk.dogedoge.com/a/5c9f3266e1f9d5a40fdf3399 ddd7b25d05c200f698b55e25a5c236c130fe14c4.
    45. B. Wang, J. B. Bates, F. X. Hart, B. C. Sales, R. A. Zuhr, J. D. Robertson, Characterization of thin-film rechargeable lithium batteries with lithium cobalt oxide cathodes, Journal of the Electrochemical Society, 143 (1996) 3203-3213..
    46. H. Y. -P. Hong, Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors, Materials Research Bulletin, 13 (1978) 117-124.
    47. K. Keiichi, Matsumoto, Kazunobu, M. Katsuki, K. Tetsuichi, Thin film solid electrolyte and its application to secondary lithium cell, Solid State Ionics, 9-10 (1983) 1445-1448.
    48. J. B. Bates, N. J. Dudney, G. R. Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck, J. D. Robertson, Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. Journal of Power Sources, 43 (1993) 103-110.
    49. Y. Hamon, A. Douard, F. Sabary, C. Marcel, P. Vinatier, B. Pecquenard, A. Levasseur, Influence of sputtering conditions on ionic conductivity of LiPON thin films, Solid State Ionics, 177 (2006) 257-261.
    50. Z. Hu, D. Li, K. Xie, Influence of radio frequency power on structure and ionic conductivity of LiPON thin films, Bulletin of Materials Science, 31 (2008) 681-686.
    51. N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, A lithium superionic conductor, Nature Materials, 10 (2011) 682-686.
    52. Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, G. Ceder, Design principles for solid-state lithium superionic conductors, Nature Materials, 14 (2015) 1026-1031.
    53. P. Bron, S. Johansson, K. Zick, J. S. auf der Günne, S. Dehnen, B. Roling, Li10SnP2S12: An affordable lithium superionic conductor, Journal of the American Chemical Society, 135 (2013) 15694-15697.
    54. T. Holzmann, L. M. Schoop, M. N. Ali, I. Moudrakovski, G. Gregori, J. Maier, R. J. Cavad, B. V. Lotsch, Li0.6[Li0.2Sn0.8S2] – a layered lithium superionic conductor, Energy & Environmental Science, 9 (2016) 2578-2585.
    55. I. Seo, Y. Kim, S. W. Martin, Characterization of thin-film electrolytes for all solid-state batteries, Journal of Alloys and Compounds, 661 (2016) 245-250.
    56. M. Ogawa, R. Kanda, K. Yoshida, T. Uemura, K. Harada, High-capacity thin film lithium batteries with sulfide solid electrolytes, Journal of Power Sources, 205 (2012) 487-490.
    57. Y. Sun, K. Suzuki, K. Hara, S. Hori, T. -A. Yano, M. Hara, M. Hirayama, R. Kanno, Oxygen substitution effects in Li10GeP2S12 solid electrolyte. Journal of Power Sources, 324 (2016) 798-803.
    58. S. Suwanboon, P. Amornpitoksuk, A. Haidoux, J. C. Tedenac, Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature, Journal of Alloys and Compounds, 462 (2008) 335-339.
    59. S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method, The Electrochemical Society, 34 (2012) 1946-1953.
    60. S. Larfaillou, D. Guy-Bouyssou, F. L. Cras, S. Franger, Characterization of Lithium Thin Film Batteries by Electrochemical Impedance Spectroscopy. The Electrochemical Society, 61 (2014) 165-171.
    61. N. V. Tarakina, T. A. Denisova, L. G. Maksimova,Y. V. Baklanova, A. P. Tyutyunnik, I. F. Berger,V. G. Zubkov, G. van Tendeloo, Investigation of stacking disorder in Li2SnO3. European Powder Diffraction Conference, 11 (2009) 375-380.
    62. X. Li, X. Sun, Nitrogen-Doped Carbons in Li–S Batteries: Materials Design and Electrochemical Mechanism, Frontiers in Energy Research, 2 (2014) 49.
    63. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Handbook of X-Ray photoelectron spectroscopy, Physical Electronic Inc: Eden Prairie, 1995.
    64. P. D. Mani, S. Saraf, V. Singh, M. Real-Robert, A. Vijayakumar, S. J. Duranceau, S. Seal, K. R. Coffey, Ionic conductivity of bias sputtered lithium phosphorus oxy-nitride thin films, Solid State Ionics, 287 (2016) 48-59.
    65. Z. Fang, B. Tang, Y. Yuan, X. Zhang, S. Zhang, Structure and microwave dielectric properties of the Li2/3(1−x)Sn1/3(1−x)MgxO systems (x= 0-4/7), Journal of the American Ceramic Society, 101 (2018) 252-264.

    QR CODE