簡易檢索 / 詳目顯示

研究生: 徐唯庭
wei-ting Hsu
論文名稱: 以奈米銀包覆二氧化鈦顆粒的靶材製備含銀二氧化鈦薄膜於光觸媒與抗菌活性之特性分析
Photocatalysis and Antibacterial Activity of Silver-Containing Titania Films Made by Sputtering with Silver nanoparticle-coated Titania Powders for Targets
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 何清華
Ching-Hwa Ho
薛人愷
Ren-Kae Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 138
中文關鍵詞: 二氧化鈦奈米銀光觸媒抗菌磁控濺鍍
外文關鍵詞: Titanium dioxide, silver nanoparticle, antibacteria, photocatalysis, magnetron sputtering
相關次數: 點閱:397下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是探討以射頻磁控濺鍍(RF magnetron sputtering)之系統,搭配由附有析出奈米銀顆粒之奈米二氧化鈦粉體所自行製備之陶金靶材,於無加熱的基板上,以80 W功率濺鍍60分鐘,沉積具有光催化與抗菌功能之含有奈米銀顆粒的二氧化鈦光觸媒薄膜於鈉玻璃上。接著針對薄膜沉積進行相關的製程改變,如不同濺鍍基板溫度、退火氣氛與退火溫度,並對於在空氣中退火的薄膜進行不同方式還原處裡後,對這些經過不同製程條件處理之薄膜以X光繞射儀(XRD)分析薄膜的結構及結晶性;場發射掃描式電子顯微鏡(FESEM)觀察薄膜的表面形態;並以能量散佈光譜儀(EDS)半定量分析薄膜元素組成與銀含量變化。在光學性質量測方面,採用紫外光/可見光吸收光譜儀(UV-Vis spectrometer)量測薄膜樣品在不同光源下的光穿透與吸收率。薄膜試片的光催化活性分析則是使用汞氙燈作為光源,進行試片對Acid Black 1染料的降解速率做量測。最後,利用大腸桿菌進行抗菌能力測試。
    實驗結果顯示,以本實驗方法所製備的Ag/TiO2薄膜表面形態非常平整,TiO2顆粒很小且平均,銀顆粒也是非常細小均勻地分佈在薄膜中,與以往Ag/TiO2薄膜出現有銀顆粒聚集析出於表面有極大之不同。在本實驗的試片中,以未經任何熱處理的3%銀含量TiO2靶材濺鍍之薄膜,有最佳的光催化效率,其在汞氙燈光源下照射80分鐘後,對50ml的AB1染料(10 ppm)可達18.79%的降解率,且在抗菌實驗中,3%銀含量的TiO2靶材濺鍍之薄膜,於20W的日光燈光源環境下,菌液與薄膜接觸60分鐘後,可達完全沒有菌落殘存的優異抗菌能力。但是推測由於Ag/TiO2薄膜厚度只有70~80 nm以及均勻細小的奈米銀分佈在TiO2周圍,晶粒成長困難,呈現奈米晶與結晶性不佳之問題,即使是經過600C退火處理後也是無法有效改善結晶性,惟仍展現出良好的光催化抗菌能力。經由退火過的試片中發現,在氮氣氣氛下進行退火處理會使Ag/TiO2薄膜中,表面能較高的奈米銀顆粒往表面析出並且聚集成大顆粒,而在空氣中進行退火處裡的話可以避免此問題,但是因為銀有可能會氧化,需要再做還原處理。


    This research focused on the use of silver/titanium dioxide composite cermet targets, which were made by hot pressing the Ag nanoparticle-attached TiO2 powders, to deposit the Ag/TiO2 composite films on the sodium lime glass by RF magnetron sputtering for the applications of antibacteria and photocatalysis. The deposition temperature was room temperature and RF power was 80W. The thin films were also grown at different substrate temperatures and undergone the annealing at different temperatures and atmospheres. Vacuum reduction at 400 oC and the reduction by sodium boron hydride were used for the Ag/TiO2 films after oxidation in air.
    For all the thin films, the structure and crystallinity of the specimens were determined by X-ray diffraction. The morphology of the films was observed by field emission scanning electron microscopy. An energy-dispersive spectrometer was used to measure the concentration of silver in the films. The absorption spectra of the films were analyzed by the ultraviolet-visible spectrometer. The photocatalytic efficiency of the films under mercury-xenon lamp illumination was evaluated by measuring the decomposition rate of Acid Black 1 in aqueous solution. Finally, the Escherichia coli (E-coli) was chosen for the in-vitro anti-bacterial analyses.
    The experimental results indicated that the as-deposited Ag/TiO2 thin films had smooth surface morphologies, uniform and small grains, and the Ag nanoparticles existing at grain boundaries of TiO2. The use of Ag nanoparticles in Ag/TiO2 can avoid the Ag aggregation to form clusters. Once the Ag clusters were formed, the antibacterial performance of the Ag/TiO2 films degraded.
    For all the specimens in this research, the Ag/TiO2 film made by sputtering with the 3%Ag/TiO2–made target on the un-heated substrates has the best photo-catalytic efficiency and excellent antibacterial properties. After 80 minutes under the Mercury Xenon lamp irradiation, the degradation rate of 50 ml AB1 dyes (10 ppm) can up to 18.79%. For the antibacterial experiments, the as-sputtered 3%Ag/TiO2 films on the un-heated substrate exhibited excellent antibacterial properties without any remained colonies after bacteria contacted with the film for 60 minutes under the 20W fluorescent light. The as-deposited TiO2 and Ag/TiO2 films all showed the difficulty in crystallization after post-annealing. The reasons for the crystallization problem can be attributed to the thin film thickness of 70~80 nm and the finely distributed Ag nanoparticles around the TiO2 grain boundaries to retard the grain growth. If the as-deposited Ag/TiO2 films were annealed under the nitrogen atmosphere, Ag nanoparticles with high surface energy preferred to aggregate on the film surface. If the as-deposited Ag/TiO2 films were annealed in air, Ag nanoparticles were oxidized and no aggregation occurred. The oxidized Ag/TiO2 films showed good photocatalytic performance after they were reduced by NaBH4. However, the NaBH4-reduced Ag/TiO2 films showed a degraded antibacterial ability.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XVI 第一章 緒論 1 1-1前言 1 1-2 光觸媒簡介 3 1-3 研究動機 6 第二章 基礎理論與文獻回顧 8 2-1 二氧化鈦簡介 8 2-1-1 二氧化鈦的性質 8 2-1-2 二氧化鈦結構 9 2-1-3 二氧化鈦光催化原理 13 2-1-4 光催化反應 14 2-2 二氧化鈦光催化效率改善 15 2-2-1 金屬原子之添加 16 2-2-2 金屬離子之添加 31 2-2-3 非金屬原子之添加 37 2-3 金屬銀之簡介 43 2-3-1 銀與奈米銀 43 2-3-2 銀離子與奈米銀殺菌機制及對細菌影響力 44 2-3-3 二氧化鈦的應用與發展 45 第三章 實驗步驟 46 3-1 實驗設備說明 46 3-1-1 真空熱壓機 46 3-1-2 鍍膜沉積系統 46 3-1-3 靶材製作以及製程相關設備 49 3-2 實驗藥品與氣體 51 3-2-1 藥品 51 3-2-2 氣體 51 3-3 實驗流程 52 3-3-1 基板的選擇與清洗 53 3-3-2 靶材濺鍍 54 3-3-3 退火處理 54 3-3-4 還原處理 54 3-3-5 光催化實驗 55 3-4 濺鍍參數 59 3-5 分析儀器 60 3-5-1 高功率X光繞射儀(High Power X-Ray Diffractometer, XRD) 60 3-5-2高解析度場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FESEM) 62 3-5-3紫外光、可見光/近紅外光分析儀(UV-Vis/NIR spectrophotometer) 63 3-5-4 X射線光電子能譜儀(X-Ray Photoelectron Sprectroscpoe, XPS) 63 3-6 抗菌實驗簡介[47, 48] 64 3-6-1 配製培養液 64 3-6-2 細菌培養 66 3-6-3 光源 66 3-6-4 抗菌實驗步驟 66 第四章 結果與討論 68 4-1 不同銀含量的TiO2靶材濺鍍所得之薄膜與其分析 70 4-1-1 試片準備 70 4-1-2 不同銀含量的TiO2靶材濺鍍所得之薄膜其微結構分析 74 4-1-3 光催化實驗之分析 79 4-1-4 薄膜光學性質分析 85 4-2 Ag/TiO2靶材於不同基板溫度濺鍍所得之薄膜與其分析 87 4-2-1 試片準備 87 4-2-2 Ag/TiO2靶材於不同基板溫度濺鍍之微結構分析 88 4-2-3 光催化實驗之分析 91 4-2-4 薄膜光學性質分析 95 4-3 Ag/TiO2複合薄膜在氮氣氣氛中與空氣中之退火處理 97 4-3-1 試片準備 97 4-3-2 Ag/TiO2複合薄膜在氮氣氣氛中與空氣中退火處理之微結構分析 98 4-3-3 光催化實驗之分析 106 4-3-4 薄膜光學性質分析 109 4-4 Ag/TiO2複合薄膜在空氣中進行不同溫度退火處理並使用NaBH4溶液還原處理 112 4-4-1 試片準備 112 4-4-2 Ag/TiO2複合薄膜在空氣中進行不同溫度退火處理並使用NaBH4溶液還原處理之微結構分析 113 4-4-3 光催化實驗之分析 117 4-4-4 薄膜光學性質分析 122 4-5 抗菌實驗 125 第五章 結論 132 參考文獻 134

    [1] 林有銘, 科學發展 408 (2006) 24.
    [2] A. Fujishima, nature 238 (1972) 37.
    [3] S. Yanagida, Y. Ishimaru, Y. Miyake, T. Shiragami, C. Pac, K. Hashimoto, T. Sakata, The Journal of Physical Chemistry 93 (1989) 2576.
    [4] T. Ohno, T. Mitsui, M. Matsumura, Journal of Photochemistry and Photobiology A: Chemistry 160 (2003) 3.
    [5] M. Fujihira, Y. Satoh, T. Osa, Nature 293 (1981) 206.
    [6] L. Cao, F.-J. Spiess, A. Huang, S.L. Suib, T.N. Obee, S.O. Hay, J.D. Freihaut, The Journal of Physical Chemistry B 103 (1999) 2912.
    [7] 施敏 原著, 張俊彥 譯著, 半導體元件物理與製作技術. 國立交通大學出版社, (2006).
    [8] 高濂, 鄭珊, 張青红, 奈米光觸媒. 五南圖書出版股份有限公司, 2004.
    [9] M. Gratzel, Nature 414 (2001) 338.
    [10] A. Hagfeldt, M. Graetzel, Chemical Reviews 95 (1995) 49.
    [11] M.-S. Wong, D.-S. Sun, H.-H. Chang, Plos One 5 (2010) e10394.
    [12] C.-H. Li, Y.-H. Hsieh, W.-T. Chiu, C.-C. Liu, C.-L. Kao, Separation and Purification Technology 58 (2007) 148.
    [13] H.J. Yun, H. Lee, N.D. Kim, J. Yi, Electrochemistry Communications 11 (2009) 363.
    [14] D. Dvoranova, V. Brezova, M. Mazur, M.A. Malati, Applied Catalysis B: Environmental 37 (2002) 91.
    [15] D. Beydoun, R. Amal, Materials Science and Engineering B94 (2002) 71.
    [16] C. He, Y. Yu, X. Hu, A. Larbot, Applied Surface Science 200 (2002) 239.
    [17] T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Applied Physics Letters 81 (2002) 454.
    [18] M.K. Reser, E.M. Levin, H.F. MacMurdie, American Ceramic Society, (1964).
    [19] Y. Li, W.-N. Wang, Z. Zhan, M.-H. Woo, C.-Y. Wu, P. Biswas, Applied Catalysis B: Environmental 100 (2010) 386.
    [20] U. Diebold, Surface Science Reports 48 (2003) 53.
    [21] P.-J. Senogles, J.A. Scott, G. Shaw, H. Stratton, Water Research 35 (2001) 1245.
    [22] S. Pankasem, J. Kuczynski, J.K. Thomas, Macromolecules 27 (1994) 3773.
    [23] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 388 (1997) 431.
    [24] K. Ikeda, H. Sakai, R. Baba, K. Hashimoto, A. Fujishima, The Journal of Physical Chemistry B 101 (1997) 2617.
    [25] S. Sakthivel, H. Kisch, Angewandte Chemie International Edition 42 (2003) 4908.
    [26] A.L. Linsebigler, G. Lu, J.T. Yates Jr, Chemical reviews 95 (1995) 735.
    [27] S.A. Tomas, A. Luna-Resendis, L.C. Cortes-Cuautli, D. Jacinto, Thin Solid Films 518 (2009) 1337.
    [28] J. Zuo, P. Keil, G. Grundmeier, Applied Surface Science 258 (2012) 7231.
    [29] J.-M. Herrmann, H. Tahiri, Y. Ait-Ichou, G. Lassaletta, A. Gonzalez-Elipe, A. Fernandez, Applied Catalysis B: Environmental 13 (1997) 219.
    [30] W. Zhang, Y. Li, S. Zhu, F. Wang, Catalysis Today 93–95 (2004) 589.
    [31] N. Ahmadi, A. Nemati, M. Solati-Hashjin, Materials Science in Semiconductor Processing 26 (2014) 41.
    [32] K.E. Karakitsou, X.E. Verykios, The Journal of Physical Chemistry 97 (1993) 1184.
    [33] M. Anpo, Studies in surface Science and Catalysis 130 (2000) 157.
    [34] P. Swarnakar, S.R. Kanel, D. Nepal, Y. Jiang, H. Jia, L. Kerr, M.N. Goltz, J. Levy, J. Rakovan, Solar Energy 88 (2013) 242.
    [35] H.-J. Lin, T.-S. Yang, M.-C. Wang, C.-S. Hsi, Journal of Alloys and Compounds 610 (2014) 478.
    [36] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269.
    [37] S.S. Soni, G.S. Dave, M.J. Henderson, A. Gibaud, Thin Solid Films 531 (2013) 559.
    [38] S.U. Khan, M. Al-Shahry, W.B. Ingler, Science 297 (2002) 2243.
    [39] A. Russell, F. Path, F.P. Sl, W. Hugo, Progress in Medicinal Chemistry 31 (1994) 351.
    [40] X. Chen, H. Schluesener, Toxicology Letters 176 (2008) 1.
    [41] B.S. Atiyeh, M. Costagliola, S.N. Hayek, S.A. Dibo, Burns 33 (2007) 139.
    [42] G. Zhao, S.E. Stevens Jr, Biometals 11 (1998) 27.
    [43] I. Sondi, D.V. Goia, E. Matijević, Journal of Colloid and Interface Science 260 (2003) 75.
    [44] J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramirez, M.J. Yacaman, Nanotechnology 16 (2005) 2346.
    [45] Q. Feng, J. Wu, G. Chen, F. Cui, T. Kim, J. Kim, Journal of Biomedical Materials Research 52 (2000) 662.
    [46] I. Sondi, B. Salopek-Sondi, Journal of Colloid and Interface Science 275 (2004) 177.
    [47] K. Jamuna-Thevi, S.A. Bakar, S. Ibrahim, N. Shahab, M.R.M. Toff, Vacuum 86 (2011) 235.
    [48] F. Liu, H. Liu, X. Li, H. Zhao, D. Zhu, Y. Zheng, C. Li, Applied Surface Science 258 (2012) 4667.

    無法下載圖示 全文公開日期 2019/11/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE