簡易檢索 / 詳目顯示

研究生: 蕭丞淵
Chen-Yuan Hsiao
論文名稱: 分子動力學研究陣列式奈米衝頭的轉印行為
Molecular Dynamics Study on Array Punch Nanoimprinting Behaviors
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 向四海
Su-Hai Hsiang
丘群
Chun Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 236
中文關鍵詞: 分子動力學奈米轉印塑變機制鎳單晶鎳/鈀非晶
外文關鍵詞: Molecular Dynamics, Nanoimprinting, Machanism of Deformation, Nickel Single Crystal, Ni-Pd Amorphous
相關次數: 點閱:252下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用分子動力學(Molecular Dynamics, MD)模擬不同陣列衝頭於不同晶面的鎳薄膜以及鎳/鈀非晶合金進行奈米轉印行為,並改變陣列衝頭數量與衝頭尺寸來進行不同方式的製造程序,以分析不同晶體結構薄膜在壓印過程中的塑性變化機制與底部回復行為。此外改變陣列衝頭的間距並探討不同衝頭間距對成形孔貌的影響。
    模擬結果顯示,FCC鎳單晶薄膜結構的壓印形貌是取決於不同差排滑動系統,具有方向性;鎳/鈀非晶合金其塑性機構則是利用原子間之自由體積(Free Volume) 以集團式的方式移動,不具有方向性。
    在單衝頭的奈米壓印情況下,較小尺寸衝頭的回復量會因為衝頭與材料原子擠壓而使底部回復量大,平整度較差。在3×3陣列衝頭的壓印過程中,材料內部更容易發生差排干涉的現象,並影響周圍衝頭的底部受力變化與塑性回復量;而衝頭間距不能小於2倍衝頭距離,不然其成形孔側壁較容易因為衝頭下壓而造成凹陷的情形。在3×3陣列衝頭於鎳/鈀非晶薄膜的奈米轉印製程中,較能夠解釋不同自由邊界的差異性,且在過冷液區下進行奈米轉印會得到最為精確的成形孔形貌。


    In this study, molecular dynamics (MD) is used to simulate the nanoimprinting behaviors of different crystal plane with Ni films and Ni/Pd amorphous film using 3×3 array cuboid diamond punch. Changed the number of array punches and punch size in different manufacturing procedures, and analyzed the plastic deformation and bottom recovery of different crystal structure. Moreover, changed the pitch of punch to investigate the critical pitch of punch in 3×3 array nanoimprinting.
    The results show that the imprinted pattern of FCC single crystal films depends on slip direction of dislocation. The plastic mechanism of the Ni/Pd amorphous is based on the group by using the free volume theory between atoms without directionality. In the case of the single punch, the recovery of smaller-sized punch was more than bigger-sized punch, and the flatness was worse.
    In the case of the 3×3 array punch, dislocation interference phenomenon was easy to be caused, not only affected the bottom of punch force and the recovery, but the pitch of the punch can’t smaller than 2 times the punch distance (2.4 nm). However, in the shortest pitch of the punches, the tractional force acting on the punch lightly increase with the depth of indentation because the surface concave effect resulted in the number of atoms contacting with the punch increasing slightly. During the amorphous nanoimprinting, the most precise shape of the pattern formed is carried out under the subcooling liquid zone. In this process, it is more likely to explain the difference about free boundaries effect.

    摘要 I Abstract II 符號說明 VI 表索引 X 圖索引 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 分子動力學文獻回顧 2 1.3 分子動力學應用於奈米轉印之進展 4 1.4 非晶金屬滑動機理之進展 5 第二章 分子動力學基礎理論 8 2.1 分子動力學的基本假設 8 2.2 原子間相互作用力與勢能函數 8 2.3 運動方程式與演算法 13 2.4 Verlet表列法 16 2.5 週期性邊界 17 2.6 最小映像法則 17 2.7 無因次化 18 2.8 中心對稱參數(CSP) 19 2.9 徑向分佈函數 (Radial Distribution Function,RDF) 21 第三章 模擬步驟與模型建立 32 3.1 模擬步驟 32 3.1.1 初始設定(Initialization) 32 3.1.2 系統平衡(System Balance) 35 3.1.3 動態模擬(Dynamics Simulation) 36 3.2 模型建立 37 3.2.1鎳/鈀合金薄膜建立 46 第四章 結果與討論 50 4.1 單衝頭對鎳薄膜(001)晶面進行奈米轉印的製程 50 4.1.1大尺寸衝頭於鎳薄膜(001)晶面的一階式奈米轉印行為 53 4.1.2大尺寸衝頭於鎳薄膜(001)晶面的二階式奈米轉印行為 67 4.1.3小尺寸衝頭於鎳薄膜(001)晶面的一階式奈米轉印行為 80 4.1.4小尺寸衝頭於鎳薄膜(001)晶面的二階式奈米轉印行為 91 4.1.5大尺寸/小尺寸與一階式/二階式之成孔形貌比較 100 4.2 3×3陣列衝頭對不同薄膜進行奈米轉印之分析 102 4.2.1 3×3陣列衝頭於鎳薄膜(001)晶面的奈米轉印行為 106 4.2.2 3×3陣列衝頭間距對成形行為的影響 122 4.2.3 一階式/二階式之3×3陣列衝頭成孔形貌比較 134 4.2.4 3×3陣列衝頭於鎳薄膜(101)晶面的奈米轉印行為 140 4.2.5 3×3陣列衝頭於鎳薄膜(111)晶面的奈米轉印行為 157 4.3 3×3陣列衝頭於鎳/鈀非晶薄膜的奈米轉印行為 174 4.3.1 3×3陣列衝頭於鎳/鈀非晶薄膜(295K)的奈米轉印行為 177 4.3.2 3×3陣列衝頭於鎳/鈀非晶薄膜(1495K)的奈米轉印行為 190 4.4 3×3陣列衝頭於不同薄膜之成孔形貌比較 200 第五章 結論與建議 209 5.1 結論 209 5.2 未來研究方向與建議 210 參考文獻 212

    1.蔡宏營,“奈米轉印技術介紹”,工研院機械所 中華民國力學學會會訊,104期(2003)。
    2.J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of Hydrodynamics”, J. Chem. Phys., Vol. 18, No. 6, pp. 817-829 (1950).
    3.N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, “Equation of State Calculations by Fast Computing Machines”, J. Chem. Phys., Vol. 21, No. 6, pp. 1087-1092 (1953).
    4.L. Verlet, “Computer Experiment on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Phys. Rev., Vol. 159, No. 1, pp. 98-103 (1967).
    5.B. Quentrec and C. Brot, “New Method for Searching for Neighbors in Molecular Dynamics Computations”, J. Comput. Phys., Vol. 13, pp. 430-432 (1973).
    6.D. C. Rapaport, “Large-Scale Molecular Dynamics Simulation Using Vector and Parallel Computers”, Comput. phys. Rep., Vol. 9, pp. 1-53 (1988).
    7.M. Meyer and V. Pontikis, “Computer Simulation in Material Science: Interatomic Potentials, Simulation Techniques and Applications”, Kluwer Academic Publishers, USA, (1991).
    8.U. Landman, W. D. Luedtke, N. A. Burnham and R. J. Colton, “Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture”, Science, New Series, Vol. 248, No. 4954, pp. 454-461(1990).
    9.P. Walsh, R. K. Kalia, A. Nakano, and P. Vashishta, “Amorphization and anisotropic fracture dynamics during nanoindentation of silicon nitride: a multimillion atom molecular dynamics study”, Appl. Phys. Lett. Vol. 77, 4332(2000).
    10.P. Walsh, A. Omeltchenko, R. K. Kalia, A. Nakano, and P. Vashishta, “Nanoindentation of silicon nitride: a multimillion-atom molecular dynamics study”, Appl. Phys. Lett. Vol. 82, 118(2003).
    11.D. Christopher, R. Smith and A. Richer, “Atomistic modeling of nanoindentation in iron and silver”, Institute of Physics Publishing, Nanotechnology, Vol. 12, pp. 372-383(2001).
    12.T. H. Fang, C. D. Wu and W. J. Chang, “Molecular dynamics analysis of nanoimprinted Cu–Ni alloys”, Applied Surface Science, Vol. 253, pp. 6963–6968(2007).
    13.Y. He, T. Sun, Y. Yuan, J. Zhang, and Y. Yan, “Molecular dynamics study of the nanoimprint process on bi-crystal Al thin films with twin boundaries”, Microelectronic Engineering, Vol. 95, pp. 116-120 (2012).
    14.C. H. Wang, K. C. Chao, T. H. Fang, I. Stachiv and S. F. Hsieh, “Investigations of the mechanical properties of nanoimprinted amorphous Ni-Zr alloys utilizing the molecular dynamics simulation,” Journal of Alloys and Compounds, Vol. 659, pp.224-231(2016).
    15.F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses,” Acta metallurgica, Vol. 25.4, pp. 407-415 (1977).
    16.A. S. Argon, “Plastic deformation in metallic glasses,” Acta metallurgica, Vol. 27.1, pp. 47-58 (1979).
    17.M. L. Falk and S. L. James, “Dynamics of viscoplastic deformation in amorphous solids,” Physical Review E, Vol. 27.1, 7192(1998).
    18.W. L. Johnson and K. Samwer, “A universal criterion for plastic yielding of metallic glasses with a〖 (T/T_g)〗^(2/3) temperature dependence.” Physical review letters, Vol. 95.19, 195501(2005).
    19.M. S. Daw, S. M. Foiles and M. I. Baskes, “The Embedded-Atom Method: A Review of Theory and Applications”, Mater. Sci. Rep., Vol. 9, pp. 251-310 (1993).
    20.J. E. Lennard-Jones, “On the Determination of Molecular Fields.-I. From the Variation of the Viscosity of a Gas with Temperature”, Proceedings of the Royal Society of Physical Character, London, Series A, Vol. 106, No. 738,pp. 441-462 (1924).
    21.J. E. Lennard-Jones, “On the Determination of Molecular Fields.-II.From the Equation of State of a Gas”, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 106, No. 738,pp. 463-477 (1924).
    22.P. M. Morse, “Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels”, Phtsical Review, Vol. 34,pp. 57-64 (1929).
    23.L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals”, Phys. Rev., Vol. 114, No. 3,pp. 687-690 (1959).
    24.M. S. Daw and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals”, Phys. Rev. Lett., Vol. 50, No. 17, pp. 1285-1288 (1983).
    25.M. S. Daw, and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals”, Phys. Rev. B, Vol. 29, No. 12, pp. 6443-6453 (1984).
    26.V. Rosato, M. Guillope and B. Legrand, “Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model”, Philosophic Magazin A, Vol. 59, No. 2, pp. 321-336(1989).
    27.F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys”, Physical Review B, Vol. 48, No. 1, pp. 22-33(1993).
    28.C. W. Gear, “Numerical Initial Value Problems in Ordinary Differential Equations”, Prentice-Hall, Englewood Cliffs, NJ, (1971).
    29.J. M. Haile, “Molecular Dynamics Simulation:Elementrary Methods(A Wiley-Interscience Publication)”, John Wiley & Sons, Inc, USA, (1992).
    30.J. D. Kim and C. H. Moon, “A Study on Microcutting for the Configuration of Tools Using Molecular Dynamics”, J. Mater. Process. Technol., Vol. 59, pp. 309-314 (1996).
    31.C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, “Dislocation Nucleation and Defect Structure During Surface Indentation”, Physical. Review B, Vol. 58, No. 17, pp. 11085-11088 (1998).
    32.林宇廷, “分子動力學模擬不同晶體結構之薄膜於銅基材的奈米壓印行為”,國立台灣科技大學碩士論文(2014)。
    33.W. Humphrey, A. Dalke, and K. Schulten, “VMD: visual molecular dynamics”, Journal of molecular graphics, Vol. 14, No. 1, pp. 33-38 (1996).
    34.A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool”, Modelling and Simulation in Materials Science and Engineering, Vol. 18, No. 1, 015012(2009).
    35.R. A. Johnson, “Alloy Models with The Embedded-Atom Method”, Physical Review B, Vol. 39, No. 17, pp. 12554-12559 (1989).
    36.R. A. Johnson, “Analytic Nearest-Neighbor Model for FCC Metals”, Physical Review B, Vol. 37, No. 8, pp. 3924-3931 (1988).
    37.G. Mazzone and V. Rosato, “Molecular-dynamics calculations of thermodynamic properties of metastable alloys”, Physical Review B, Vol. 55, No. 2, pp.837-842(1997).
    38.凃怡果, “分子動力學模擬單晶銅材的奈米壓印”, 國立台灣科技大學碩士論文 (2010)。
    39.機械工業雜誌,轉印模仁之奈米結構製作,269期,pp. 44-55 (2005)。
    40.P. G. Debenedetti and F. H. Stillinger, “Supercooled liquids and the glass transition”, Nature, 410.6825, pp.259(2001).
    41.H. R. Wendt and F. F. Abraham, “Empirical criterion for the glass transition region based on Monte Carlo simulations”, Physical Review Letters, Vol. 14, No. 18, pp.1244(1978).
    42.J. Kobata, K. I. Miura, K. Amiya, Y. Fukuda and Y. Saotome, “Nanoimprinting of Ti–Cu-based thin-film metallic glasses deposited by unbalanced magnetron sputtering”, Journal of Alloys and Compounds, Vol. 707, pp. 132-136 (2017)
    43.G. S. Grest and M. H. Cohen, “Liquids, Glasses, and the Glass Transition: A Free‐Volume Approach”, Advances in chemical physics, pp. 455-525 (1981)

    無法下載圖示 全文公開日期 2024/02/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE