簡易檢索 / 詳目顯示

研究生: 張鈞詠
Chun-yung Chang
論文名稱: 分子動力學模擬不同冷卻速率對金/銀合金奈米線結晶型態及機械行為影響
A Study on Crystallization and Mechanical Behaviors for Various Cooling Ratio of Gold/Silver Alloy Nanowires by Molecular Dynamics Simulation
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 張復瑜
Fuh-Yu Chang
鍾俊輝
Chun-Hui Chung
呂道揆
Daw-Kwei Leu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 156
中文關鍵詞: 分子動力學冷卻速率
外文關鍵詞: Molecular Dynamics Simulation, Cooling Ratio
相關次數: 點閱:250下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用分子動力學(Molecular Dynamics, MD)模擬金/銀奈米線在高溫熔煉狀態下進行快速冷卻之晶體型態,並進行拉伸模擬實驗,以探討合金奈米線的結晶度對變形機制、強度、延性之影響。
    模擬結果顯示,金/銀合金奈米線的冷卻速率愈快,結晶度愈低;相反地,冷卻速率愈慢,結晶度愈高。局部結晶從兩邊之固定邊界傳遞到奈米線中間區域。若在室溫下給予一段鬆弛時間可驅使材料結晶度提升至一定的限度。非結晶合金奈米線在拉伸過程中會因彈/塑變行為而發生動態結晶之現象,其塑變機制不再以晶界的滑移為主,而是伴隨晶粒內的差排滑動同時進行。金/銀合金奈米線的結晶度愈低,試件之延性較好,但強度卻比完美晶體低,而鬆弛後的合金奈米線其結晶度相對提高,延性較低,其塑性變形與破斷機制由非結晶區的結構所主導。合金成份比例差異愈大,材料呈現非均質性,導致延性較差。


    This study analyzes solidification behaviors of gold/silver nanowires after melting at high temperatures then rapid cooling and additionally mechanical properties and deformation behaviors of alloy nanowires also investigated with simple tension test after rapid cooling by using molecular dynamics simulation.
    Results show that gold / silver alloy nanowires cooled by higher cooling rate, it will be lower crystallization; Conversely, cooled by slower cooling rate, it will be higher crystallization. Crystallization region pass from rigid boundaries to nanowire center region. Amorphous alloy nanowires crystallization increase during elastic and plastic deformation behavior,and that plastic deformation mechanisms are no longer dominated by grain boundary sliding, but accompanied by intragranular dislocation slip at same time. Gold / silver alloy nanowires have great ductility under tensile loading by higher rapid cooling rate,and the ductility is dominated by non-crystalline area. The greater the difference in the percentage of alloy composition, alloy nanowires will be heterogeneity and have poor ductility.

    摘要 I Abstract II 誌謝 III 目錄 IV 表索引 VI 圖索引 VII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 第二章 分子動力學基礎理論 6 2.1 分子動力學之基本假設 6 2.2 分子間作用力與勢能函數 6 2.3 運動方程式及演算法 12 2.4 Verlet 表列法 16 2.5 週期性邊界條件 19 2.6 無因次化 22 2.7 原子級應力計算方法 24 2.8 Centrosymmetry參數(CSP) 28 2.9 徑向分佈函數 (Radial Distribution Function ,g(r)) 32 第三章 模擬步驟與模型建立 36 3.1 程式模擬步驟 36 3.1.1 初始設定(Initialization) 36 3.1.1.1 預備(Preliminaries) 38 3.1.1.2 初始條件(Initial Conditions) 41 3.1.2 平衡(Equilibration) 42 3.1.3 動態模擬(Production) 43 3.2 模型建構 44 第四章 結果與討論 48 4.1 模型建立方式 49 4.1.1 理想模型之勢能函數之金(100)/銀(100)奈米線拉伸分析 49 4.1.2 Morse勢能函數之修正 58 4.1.3 修正Morse勢能函數之拉伸行為模擬 61 4.2 高溫熔煉製程模擬程序 66 4.2.1 高溫熔煉製程 66 4.2.2 恆溫時間對熔煉之影響 68 4.3 冷卻速率與鬆弛時間與冷卻後的結晶之關係 72 4.3.1 冷卻速率與冷卻後的結晶之關係 72 4.3.2 鬆弛時間與冷卻後的結晶化之行為 83 4.4 金/銀合金奈米線拉伸行為分析 92 4.4.1 應力計算方法的修正 92 4.4.2 不同冷卻速率試片之拉伸行為 99 4.4.2.1 金/銀合金奈米線經1×1014K/s冷卻速率下冷卻之拉伸行為 99 4.4.2.2 金/銀合金奈米線經1×1013K/s冷卻速率下冷卻之拉伸行為 109 4.4.2.3 金/銀合金奈米線經1×1012K/s冷卻速率下冷卻之拉伸行為 118 4.4.2.4 金/銀合金奈米線經1×1011K/s冷卻速率下冷卻之拉伸行為 127 4.4.2.5 冷卻速率對金/銀合金奈米線拉伸行為之影響 135 4.4.3 鬆弛效應對金/銀合金奈米線之斷裂應變影響 140 4.4.4 成分效應對金/銀合金奈米線之斷裂應變影響 142 第五章 結論與建議 149 5.1 結論 149 5.2 未來研究方向與建議 150 參考文獻 152

    1. C. M. Liber, "Nanoscale Science and Technology: Building a Big Future from Small Things" , MRS Bull, Vol.28, pp.486-491(2003).
    2. D. Huo, Y. Liang and K. Cheng, "An investigation of nanoindentation tests on the single crystal copper thin film via an AFM and MD simulation" , Journal of Mechanical Engineering Science, Vol. 221, pp. 259-266 (2007) .
    3. Ioannis N. Mastorakos, Hussein M. Zbib, David F. Bahr, Jessica Parsons, and Mased Faisal, "Pseudoelastic behavior of Cu–Ni composite nanowires",Appl. Phys. Lett. 94, 043104 (2009)
    4. H. Rafii-Tabar, "Modelling the nano-scale phenomena in condensed matter physics via computer-based numerical simulations", Physic Reports,Vol.325, pp. 239–310(2000)
    5. Yukihito Kondo, Kunio Takayanagi, "Synthesis and Characterization of Helical Multi-Shell Gold Nanowires", Science , Vol. 289, pp. 606-608(2000).
    6. Varlei Rodrigues, Tobias Fuhrer, and Daniel Ugarte, "Signature of Atomic Structure in the Quantum Conductance of Gold Nanowires" , Phys. Rev. Lett. 85, 4124–4127 (2000).
    7. Nishimoto K, Saida K, Fujita Y, "Crystal growth in laser surface melting and cladding of Ni-base single crystal superalloy", Welding in the World, Vol. 52, pp. 64-78(2008).
    8. 黃振賢,金屬熱處理,新文京開發出版股份有限公司, 西元2000年.
    9. Daan Frenkel and Berend Smit, "Understanding Molecular Simulation (Second Edition) " , Academic Press:San Diego, pp.63-107(2002)
    10. J. H. Irving and J. G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics" , The Journal of chemical physics, Vol.18, No.6, pp.817-829(1950).
    11. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth and A. H. Teller, "Equation of Calculations By Fast Computing Machines", Journal of Chemical Physics, Vol.21, No.6, pp.1087-1092(1953).
    12. Loup Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules", Physical Review, Vol.159, No.1, pp.98-103(1967).
    13. B. Quentrec and C. Brot, "New Method for Neighbors in Molecular Dynamics Computations" , Journal of Computational Physics, Vol.13, pp.430-432(1973).
    14. Ikeda, H., Qi, Y., Cagin, T., Samwer, K., Johnson, W. L. and Goddard, W. A., "Strain Rate Induced Amorphization in Metallic Nanowires" , Physical Review Letters, Vol.82, pp.2900-2930(1999).
    15. C. S. Liu, Junchao Xia, Z. G. Zhu, and D. Y. Sun, "The cooling rate dependence of crystallization for liquid copper: A molecular dynamics study" , The Journal of Chemical Physics, 2001, 114(17, pp. 7506-7512).
    16. Li Hui, F. Pederiva, B. L. Wang, J. L. Wang, and G. H. Wang, " How does the nickel nanowire melt?" , Apply Physics Letters. 86(1), pp. 011913-011915 (2005).
    17. Taraknath Mandal, "Strain induced phase transition in CdSe nanowires: Effect of size and temperature" , Applied Physics Letters , 101, 021906 (2012).
    18. J. E. Jones, "On The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature" , Proceedings of the Royal Society of Physical Character, Vol.106, No.738, pp.441-462(1924).
    19. J. E. Jones, "On The Determination of Molecular Fields. II. From the Equation of State of a Gas" , Proceedings of the Royal Society of London. Series A. Containing Papers of a Mathematical and Physical Character, Vol.106, No.738, pp.463-477(1924).
    20. Philip M. Morse, "Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels" , Phtsical Review, Vol.34, pp.57-64(1929).
    21. V. Rosato, M. Guillope and B. Legrand, "Thermodynamical and Structural Properties of FCC Transition Metals Using A Simple Tight-Binding Model" , Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, Vol.59, pp.321-336(1989).
    22. Murray S. Daw and M. I. Baskes, "Semiempirical Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals" , Physical Review Letters, Vol.50, No.17, pp.1285-1301(1983).
    23. Murray S. Daw and M. I. Baskes, "Eambedded-Atom Method: Derivation and Application to Impurities, Surface, and Other Defects in Metals" , Physical Review B, Vol.29, No.12, pp.6443-6453(1984).
    24. Murray S. Daw, "Model of Metallic Cohesion: The Embedded-Atom Method" , Physical Review B, Vol.39, No.11, pp.7441-7452(1989).
    25. R. A. Johnson, "Analytic Nearest-Neighbor Model for FCC Metals" , Physical Review B, Vol.37, No.8, pp.3924-3931(1988).
    26. R. A. Johnson, "Alloy Models with The Embedded-Atom Method" , Physical Review B, Vol.39, No.17, pp.12554-12559(1989).
    27. R. A. Johnson and D. J. Oh, "Analytic Embedded Atom Method Model for BCC Metals" , Journal of Materials Research Sociery, Vol.4, No.5, pp.1195-1201(1989).
    28. M. W. Finnis and J. E. Sinclair, "A Simple Empirical N-Body Potentials for Transition Metals" , Philosophical Magazine A, Vol.50, pp.45-55(1984).
    29. Y. Mishin and D. Farkas, "Interatomic Potentials for Monoatomic Metals from Experimental Data and Ab Initio Calculations" , Physical Review B, Vol.59, No.5, pp.3393-3407(1999).
    30. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, (1971).
    31. J. M. Haile, Molecular Dynamics Simulation: Elementrary Methods(A Wiley-Interscience Publication), John Wiley & Sons, Inc, USA, (1992).
    32. R. Calusius, "On a Mechanical Theory Applicable to Heat" , Philosophical Magazine, Vol.40, pp.122-127(1870).
    33. Z. S. Basinski, M. S. Duesbery and R. Taylor, "Influence of Shear Stress on Screw Dislocations in a Model Sodium Lattice" , Canadian Journal of Physics, Vol.49, pp.2160-2180(1971).
    34. D. Srolovitz, K. Maeda, V. Vitek and T. Egami, "Structural Defects in Amorphous Solids Statistical Analysis of a Computer Model" , Philosophical Magazine A, Vol.44, pp.847-866(1981).
    35. N. Miyazaki and Y. Shiozaki, "Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method" , JSME International Journal Series A, Vol.39, No.4, pp.606-612(1996).
    36. Y. C. Lin and D. J. Pen, "Atomic Behavior Analysis of Cu Nanowire Under Uniaxial Tension with Maximum Local Stress Method" , Molecular Simulation, Vol.33, pp. 979-988(2007).
    37. T. Iwaki, "Molecular Dynamics Study on Stress-Strain in Very Thin Film(Size and location of Region for Defining Stress and Strain)" , JSME International Journal Series A, Vol.39, No.3, pp.346-353(1996).
    38. Cynthia L. Kelchner, S. J. Plimpton and J. C. Hamilton, "Dislocation Nucleation and Defect Structure During Surface Indentation" , Physical Review B, Vol.58, No.17, pp.11085-11088(1998).
    39. 彭達仁,"分子動力學模擬奈米銅線單軸受力狀態之微觀行為分析", 國立台灣科技大學博士論文,(2008)。
    40. J. M. Haile, “Molecular Dynamics Simulation,” A Wiley-Interscience Publication, pp.263 (1992).
    41. L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals” , Phys. Rev., Vol. 114, No.3, pp. 687-690 (1959).
    42. Reed-Hill, Robert E, "Physical metallurgy principles " , New York, Van Nostrand [1972, c1973] .
    43. Joseph David Heidenreich, "Molecular dynamics simulations of the mechanical deformation behavior of face-centered cubic metallic nanowires” , (2010).
    44. Z. S. Pereira and E. Z. da Silva, "Cold Welding of Gold and Silver Nanowires:AMolecular Dynamics Study" , J. Phys. Chem. C 2011, 115, 22870–22876.
    45. ASM Handbook Volume 03 : Alloy Phase Diagrams.
    46. 黃再利,"分子動力學模擬奈米銅線結晶型態及機械行為研究",國立台灣科技大學碩士論文,(2009)。
    47. W.H. Qi ,B.Y. Huang , M.P. Wang , F.X. Liu , Z.M. Yin, "Freezing of silver cluster and nanowire: A comparison study by molecular dynamics simulation" , Computational Materials Science 42 , (2008) , pp.517–524.
    48. Jakob Schiotz, Karsten W. Jacobsen, "A Maximum in the Strength of Nanocrystalline Copper ", SCIENCE 301, 1357(2003).

    QR CODE