簡易檢索 / 詳目顯示

研究生: 呂昱嶢
Yu-yao Lu
論文名稱: 不同冷卻速率對於方向性凝固鎂合金微觀組織及機械性質影響之研究
Effect of different cooling rate on the microstructure and mechanical properties of directional solidified magnesium alloy
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 丘群
Chun Chiu
周振嘉
Chen-Chia Chou
汪俊延
Jun-Yen Uan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 88
中文關鍵詞: 鎂合金鎂基複合材料方向性凝固機械性質
外文關鍵詞: magnesium alloy, magnesium matrix composite, directional solidification, mechanical properties
相關次數: 點閱:216下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   鎂合金相對於其它結構金屬重量輕、比強度高,因此具有很高的發展性。但其鑄造成品在常溫下的力學性能不佳,因此一般得須透過塑性加工或是熱處理方能改善,而凝固組織的形態是決定材料力學性能的關鍵因素。方向性凝固鑄造為透過周邊熱束縛及單一方向的冷卻的方式使得金屬材料的凝固組織形成柱狀組織而非傳統鑄造的等軸晶粒組織,而透過其所製備的成品在機械性質有較優異的表現。本研究將利用方向性凝固熔煉爐製備AZ31、AZ91鎂合金、AZ31/Al2O3p、AZ91/Al2O3p鎂合金複材,並探討溶質元素含量及冷卻速率對於微觀組織及機械性質的影響。
      本研究結果顯示,方向性凝固鑄件中段會形成柱狀晶粒組織,隨著冷卻速率的提升β相Mg17Al12分布越細緻且排列越整齊。添加Al2O3p會抑制柱狀晶的成長,AZ91/Al2O3p方向性成長範圍明顯縮短,而AZ31/Al2O3p鑄件各段顯微組織則皆為等軸晶粒。AZ31、AZ91平均硬度值皆會隨著冷卻速率提高而上升,在添加陶瓷顆粒後AZ31/Al2O3p平均硬度值會上升但AZ91/Al2O3p會下降。改以方向性凝固製備後兩種合金的降伏強度、極限強度皆會提升,AZ31分別提升了161.6%、48.9%;AZ91則分別提升71%、69%。AZ91改以方向性凝固後鑄件之延展性能有效提升,但AZ31在高冷卻速率條件下延展性下降。


    Magnesium alloy possesses great potential because it has relatively lower weight and better specific strength than other constructional alloys. However, the mechanical properties of its cast product are poor at room temperature, usually it requires further plastic manufacturing or heat treatment to enhance, and the key factor affecting the mechanical properties is the microstructure after solidification. Directional solidification casting is a method to make the metallic material form columnar structure instead of equiaxed structure, which is commonly observed in conventional casting. And the product made by directional solidification exhibit superior mechanical properties. This study fabricated AZ31, AZ91, AZ31/Al2O3p and AZ91/Al2O3p from the directional solidification furnace, and the effect of solute element and cooling rate on the microstructure and mechanical properties was investigated.
    The results showed that columnar grains were formed inside the middle part of casting, the β phase (Mg17Al12) became finer and distributed orderly as the cooling rate increased. The addition of Al2O3p will restrict the growth of columnar grains, there was significantly decreasing on the range of directional growth for AZ91/Al2O3p, while AZ31/Al2O3p exhibited full equiaxed structure. After transferring to directional solidification process, both of two alloys show improvement on the yield strength and ultimate tensile strength, which is 161.6%, 48.9% for AZ31 and 71%, 69% for AZ91. The ductility of AZ91 were improved, but the ductility of AZ31 decreased in high cooling rate condition.

    摘要 I Abstract III 誌謝 IV 目錄 V 符號索引 VIII 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 晶粒組織對於材料機械性質的影響 4 1.2.2 凝固組織的演變及影響參數 8 1.3 文獻整理心得 12 1.4 研究動機與目的 13 第二章 鎂合金相關性質與凝固理論 14 2.1 鎂及鎂合金簡介 14 2.1.1 鎂合金命名方法 15 2.1.2 添加合金元素對鎂合金之影響 16 2.2 金屬凝固理論 18 2.2.1 成核階段 19 2.2.2 成長階段 21 2.3 方向性凝固理論 22 2.4 方向性凝固製造方法 23 第三章 實驗方法與步驟 26 3.1 實驗流程圖 26 3.2 實驗材料 27 3.3 實驗設備 28 3.3.1 方向性凝固熔煉爐 28 3.3.2 模具 30 3.3.3 濕式自動研磨/拋光機 32 3.3.4 光學顯微鏡(Optical Microscopy, OM) 33 3.3.5 微型微克氏硬度機(Micro-Vickers Hardness Tester) 33 3.3.6 動態拉伸試驗機(Material Test System, MTS) 34 3.4 鎂合金及鎂基複合材料製備 36 3.5 試片規劃 37 第四章 結果與討論 39 4.1 冷卻曲線分析 39 4.1.1 自然冷卻(Natural cooling cast) 39 4.1.2 方向性凝固-模具1 (DS cast-mold 1) 40 4.1.3 方向性凝固-模具2(DS cast –mold 2) 40 4.2 鑄件金相分析 43 4.2.1 自然冷卻條件 43 4.2.2 方向性凝固條件-模具1 47 4.2.3 方向性凝固條件-模具2 50 4.2.4 添加奈米顆粒之複合材料的影響 54 4.3 鑄件之硬度分析 57 4.4 鑄件之拉伸試驗 61 第五章 結論 68 第六章 未來研究方向 71 參考文獻 72

    [1] 陳仲威,添加AlNp鎂基複材製備及機械性質之研究,國立中正大學機械工程學系研究所碩士論文(2010)。
    [2] 劉彥辰,AM60/Al2O3p鎂基複合材料擠型管之機械性質與微觀組織研究,國立中正大學工學院機械工程學系碩士論文(2012)。
    [3] W. Kurz, D.J. Fisher, “Fundamentals of Solidification, ”pp.7,163
    [4] M. Mabuchi, M. Kobata, Y. Chino and H. Iwasaki, Tensile Properties of Directionally Solidified AZ91 Mg Alloy, Materials Transactions, Vol. 44, No. 4 , pp. 436-439 (2003)
    [5] Y. Chino, K. Kimura; and M. Mabuchi, Direction Dependence of Compressive Properties of Mg Processed by Directional Solidification, Materials Transactions, Vol. 49, No. 3, pp. 393-397(2008).
    [6] H. Drar, Improvement of tensile properties of Al–Si alloys through directional solidification(2007)
    [7] 何廣福,方向性凝固之研究,國立成功大學工程科學系碩士論文(2005)。
    [8] M. A. Taha, N. A. El-Mahallawy, R. M. Hamouda, Relationship between formability and cast structures in end-chill directionally solidified Al-Cu alloys, Materials and Design 23, pp.195-200(2002).
    [9] A.E. ARES and C.E. SCHVEZOV, Influence of Solidification Thermal Parameters on the Columnar-to-Equiaxed Transition of Aluminum-Zinc and Zinc-Aluminum Alloys, The Minerals, Metals & Materials Society and ASM International (2007)
    [10] M. Paliwal, I.-H. Jung, The evolution of the growth morphology in Mg–Al alloys depending on the cooling rate during solidification, Acta Materialia 61, pp. 4848–4860(2013)
    [11] 魏汝超,鎂合金之熱機處理與退火處理,國立台灣大學材料科學與工程研究所碩士論文(2003)。
    [12] 蔡幸甫,“鎂合金產業技術及市場發展趨勢專題調查”,工研院產業經濟與資訊服務中心科技專案成果(2001)。
    [13] C. H. Caceres, C. J. Davidson, J. R. Griffiths and C. L. Newton, “Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy”, Materials Science and Engineering A325, pp. 344-355(2002).
    [14] C. Shaw and H. Jones, “The contributions of different alloying additions to hardening in rapidly solidified magnesium alloys”, Materials Science and Engineering A226-228, pp. 856-860(1997).
    [15] E. Cerri, M. Cabibbo and E. Evangelista, “Microstructural evolution during high-temperature exposure in a thixocast magnesium alloy”, Materials Science and Engineering A333, pp. 208-217(2002).
    [16] 陳信宏,鎂合金薄板沖壓成型性之研究,國立台灣大學機械工程研究所碩士論文(2002)。
    [17] D. R. Askeland, P. P. Phule, The science and engineering of materials(2003)
    [18] http://www.metafysica.nl/ontology/general_ontology_29m1.html
    [19] 鑄造手冊 第一冊 鑄造技術之基礎,中華民國鑄造學會,pp.23,民86 年12月。
    [20] M. Rettenmayr and H. E. Exner, Directional Solidification, Encyclopedia of Materials: Science and Technology, pp. 2183-2189(2001)
    [21] Arne K. Dahle, Young C. Lee, Mark D. Nave, Paul L. Schaffer, David H. StJohn, Development of the as-cast microstructure in magnesium-aluminium alloys, Journal of Light Metals 1, pp61-72(2001).

    [22] Mohsen Masoumi, Mihriban Pekguleryuz, Effect of Cooling Rate on the Microstructure of AZ31 Magnesium Alloy, 113th Metal casting Congress April 7-10, 2009 – Las Vegas, NV USA AFS NADCA.
    [23] Chi-Yuan Cho, Jun-Yen Uan, and Te-Chang Tsai, Effect of Cooling Rate on Mg17Al12 Volume Fraction and Compositional Inhomogeneity in a Sand-Cast AZ91D Magnesium Plate, Materials Transactions, Vol. 47, No. 8, pp. 2060 to 2067 (2006)
    [24] S. Pang, G. Wu, W. Liu, M. Sun, Y. Zhang, Z. Liu, W. Ding, “Effect of cooling rate on the microstructure and mechanical properties of sand-casting Mg–10Gd–3Y–0.5Zr magnesium alloy”, Materials Science & Engineering A 562, pp152-160(2013).
    [25] B. W. Chua, L. Lu, and M.O. Lai, “Influence of SiC particles on mechanical properties of Mg based composite” , Composite Structures, Vol. 47, pp. 595-601 (1999).
    [26] T.Hirano, Improvement of room temperature ductility of stoichiomietic Ni3Al by unidirectional solidification, Acta metallurgy.material. Vol. 38, No12, p2667-2671(1990)
    [27] 王芳春,晶種對於錫鉛合金方向性凝固微結構之影響分析,國立成功大學工程科學研究所碩士論文(2008)
    [28] K. Janghorban, F. Mahzoon, Y. Umakoshi, T. Shibayanagi, Effect of grain boundary character on fracture in columnar grained Ni3Al during cold rolling, Iranian Journal of Science & Technology, Transaction B, Vol.28, No. B2(2004).

    QR CODE