簡易檢索 / 詳目顯示

研究生: 林宇廷
Yu-ting Lin
論文名稱: 分子動力學模擬不同晶體結構之薄膜於銅基材的奈米壓印行為
Molecular Dynamics Simulation for Nanoimprinting Behaviors of Surface Films with Various Crystal Structures on Cu Substrate
指導教授: 林原慶
Yuan-ching Lin
口試委員: 鍾俊輝
Chun-hui Chung
呂道揆
Daw-kwei Leu
蘇侃
Hon So
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 175
中文關鍵詞: 分子動力學壓印自由體積
外文關鍵詞: molecular dynamics, imprinting, free volume
相關次數: 點閱:217下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用分子動力學(Molecular Dynamics, MD)模擬鑽石圓柱衝頭對銀薄膜與不同溫度下銀/鈀非晶合金薄膜結構在銅基材的奈米壓印行為。探討其塑性變形機制與成型形貌,並改變方形陣列式衝頭節距、基材厚度以分析不同的晶體結構薄膜對壓印過程之干涉現象及底部回復現象。
    模擬結果顯示,FCC的單晶薄膜結構,其壓印結果的形貌,是取決於差排滑動系統的方向性。在非晶合金薄膜壓印時,其塑性變形的滑動機構是靠原子間之自由體積的移動完成,不具有特定的方向性,但溫度接近室溫,衝頭給予的應變易引發相轉換,使材料朝結晶態發展;當溫度接近熔點,因溫度上升使得表面能效應與沾黏現象變得明顯,以致壓印溫度在玻璃轉換溫度附近,可得較佳的壓印形貌。在壓印過程中,材料會利用各自的塑變機制來降低材料內的應力場,使得衝頭節距的大小對於衝頭底部受力的影響不大;在衝頭側面切線力方面,當節距越小,衝頭內側對於原子的擠壓效應增加,導致衝頭側面切線力增加。不同基材厚度的條件下,增加基材的厚度,可降低背向應力對薄膜的影響,以減少成形孔底部的塑性回復量;但高溫下的非晶合金,還需考慮溫度效應。


    This study applies molecular dynamics (MD) simulation to discuss nanoimprinting behaviors of cylindrical diamond punches to Ag thin films and Ag/Pd amorphous thin films with different temperatures. Besides, punch pitches and substrate thickness are varied to analyze interference and recover phenomena for different crystal-structure thin films.
    The experimental results show that the imprinting topography of FCC single crystal thin films depends on slip directions of dislocation. As the imprinting temperature is close to room temperature, The amorphous material that slip plastic deformation mechanism is induced by free volume within atoms. As the imprinting temperature is close to room temperature, the phase transformation is caused by the punch. As closing to melting temperature, a surface-energy effect and adhesion are resulted from the raising temperature, leading a glass transition temperature to dominate the imprinting topography. During the imprinting process, plastic deformation of materials decreases stress fields. Hence, various pitches have little effects on normal force of punches. As decreasing pitches, an obvious squeezing effect increases tangential force of punches. Furthermore, plastic recover effects can be reduced by increasing substrate thickness, which lowers back stress on thin films. However, temperature effects should be concerned for amorphous alloys under high temperature.

    摘要 I Abstract II 致謝 IV 目錄 V 符號說明 VII 表索引 XII 圖索引 XIII 第一章 緒論 1 1.1 研究動機及目的 1 1.2 分子動力學文獻回顧 3 1.3 分子動力學應用於奈米壓印之進展 5 第二章 分子動力學基礎理論 7 2.1 分子動力學基本假設 7 2.2 原子間作用力與勢能函數 7 2.3 運動方程式與演算法 11 2.4 Verlet表列法 14 2.5 週期性邊界與最小映像法則 15 2.6 無因次化 16 2.7 Centrosymmetry Parameter(CSP) 17 2.8 Radial Distribution Function(RDF) 徑向分佈函數 18 2.9 溫度場的評估 19 第三章 模擬步驟與模型建立 33 3.1 模擬步驟 33 3.1.1 初始設定(Initialization) 33 3.1.2 系統平衡(Equilibration) 36 3.1.3 動態模擬(Production) 37 3.2 模型建立 37 第四章 結果與討論 46 4.1 銀單晶薄膜的奈米壓印行為分析 46 4.1.1 銀薄膜(001)晶面的奈米壓印行為 49 4.1.2 銀薄膜(101)晶面的奈米壓印行為 69 4.1.3 銀薄膜不同晶面的壓印形貌分析 81 4.2 銀/鈀非晶合金薄膜之製程程序與奈米壓印行為分析 86 4.2.1 銀/鈀非晶合金薄膜之製程程序探討 86 4.2.2 銀/鈀非晶合金薄膜於不同溫度的奈米壓印行為 92 4.2.2.1 銀/鈀非晶合金薄膜於溫度295K的奈米壓印行為 96 4.2.2.2 銀/鈀非晶合金薄膜於溫度595K的奈米壓印行為 107 4.2.2.3 銀/鈀非晶合金薄膜於溫度770K的奈米壓印行為 116 4.2.2.4 銀/鈀非晶合金薄膜於溫度1095K的奈米壓印行為 125 4.2.3 銀/鈀非晶合金薄膜於不同溫度的壓印形貌分析 137 4.3 陣列式衝頭的節距對壓印行為之影響 144 4.3.1壓印力量分析 144 4.3.2回復行為分析 155 4.4 基材厚度對於壓印回復行為之影響 163 第五章 結論與建議 169 5.1 結論 169 5.2 未來研究方向與建議 170 參考文獻 172

    1. 張立德,牟季美著,“奈米科技和奈米結構”,第1~5頁,台中,滄海書局, 民國九十一年。
    2. S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers”, Appl. Phys. Lett., Vol. 67, No. 21, pp. 3114-3116 (1995).
    3. S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo and L. Zhuang, “Sub-10 nm imprint lithography and applications”, J. Vac. Sci. Technol. B, Vol. 15, No. 6, pp. 2897-2904 (1997).
    4. M. Li, J. Wang, L. Zhuang, and S. Y. Chou, “Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography”, Appl. Phys. Lett., Vol. 76, No. 6, pp. 673-675 (2000).
    5. M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G. Willson, “Step and Flash Imprint Lithography : A New Approach to High-Resolution Patterning”, Taxas Materials Institute, USA, (1999).
    6. C. A. Schuh, T. C. Hufnagel and U. Ramamurty, “Mechanical behavior of amorphous alloys”, Acta Materialia, Vol. 55, pp. 4067–4109(2007).
    7. M. M. Trexler and N. N. Thadhani, “Mechanical properties of bulk metallic glasses”, Progress in Materials Science, Vol. 55, pp. 759–839(2010).
    8. J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of Hydrodynamics”, J. Chem. Phys., Vol. 18, No. 6, pp. 817-829 (1950).
    9. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, “Equation of State Calculations by Fast Computing Machines”, J. Chem. Phys., Vol. 21, No. 6, pp. 1087-1092 (1953).
    10. L. Verlet, “Computer Experiment on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Phys. Rev., Vol. 159, No. 1, pp. 98-103 (1967).
    11. B. Quentrec and C. Brot, “New Method for Searching for Neighbors in Molecular Dynamics Computations”, J. Comput. Phys., Vol. 13, pp. 430-432 (1973).
    12. D. C. Rapaport, “Large-Scale Molecular Dynamics Simulation Using Vector and Parallel Computers”, Comput. phys. Rep., Vol. 9, pp. 1-53 (1988).
    13. M. Meyer and V. Pontikis, “Computer Simulation in Material Science: Interatomic Potentials, Simulation Techniques and Applications”, Kluwer Academic Publishers, USA, (1991).
    14. U. Landman, W. D. Luedtke, N. A. Burnham and R. J. Colton, “Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture”, Science, New Series, Vol. 248, No. 4954, pp. 454-461(1990).
    15. D. Christopher, R. Smith and A. Richer, “Atomistic modeling of nanoindentation in iron and silver”, Institute of Physics Publishing, Nanotechnology, Vol. 12, pp. 372-383(2001).
    16. Q. C. Hsu, C. D. Wu, T. H. Fang, “Studies on nanoimprint process parameters of copperby molecular dynamics analysis”, Computational Materials Science, Vol. 34, pp. 314-322(2005).
    17. Q. C. Hsu, C. D. Wu and T. H. Fang, “Deformation Mechanism and Punch Taper Effects on Nanoimprint Process by Molecular Dynamics”, Japanese Journal of Applied Physics, Vol. 43, No. 11A, pp. 7665–7669(2004).
    18. T. H. Fang, C. D. Wu and W. J. Chang, “Molecular dynamics analysis of nanoimprinted Cu–Ni alloys”, Applied Surface Science, Vol. 253, pp. 6963–6968(2007).
    19. C. W. Hsieh and C. K. Sung, “Atomic-Scale Friction in Direct Imprinting Process: Molecular Dynamics Simulation”, Japanese Journal of Applied Physics, Vol. 46, No. 9B, pp. 6387–6390(2007).
    20. H. Y. Hsiung, H. Y. Chen and C. K. Sung, “Temperature effects on formation of metallic patterns in direct nanoimprint technique—Molecular dynamics simulation and experiment”, Journal of Materials Processing Technology, Vol. 209, pp. 4401–4406(2009).
    21. Y. Yuan, T. Sun, J. Zhang and Y. Yan, “Molecular dynamics study of void effect on nanoimprint of single crystal aluminum,” Applied Surface Science, Vol. 257, pp. 7140–7144(2011).
    22. M. S. Daw, S. M. Foiles and M. I. Baskes, “The Embedded-Atom Method: A Review of Theory and Applications”, Mater. Sci. Rep., Vol. 9, pp. 251-310 (1993).
    23. J. E. Lennard-Jones, “On the Determination of Molecular Fields.-I. From the Variation of the Viscosity of a Gas with Temperature”, Proceedings of the Royal Society of Physical Character, London , Series A, Vol. 106, No. 738, pp. 441-462 (1924).
    24. P. M. Morse, “Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels”, Phtsical Review, Vol. 34, pp. 57-64 (1929).
    25. M. S. Daw and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals”, Phys. Rev. Lett., Vol. 50, No. 17, pp. 1285-1288 (1983).
    26. M. S. Daw, and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defectsin in Metals”, Phys. Rev. B, Vol. 29, No. 12, pp. 6443-6453 (1984).
    27. V. Rosato, M. Guillope and B. Legrand, “Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model”, Philosophic Magazin A, Vol. 59, No. 2, pp. 321-336(1989).
    28. F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys”, Physical Review B, Vol. 48, No. 1, pp. 22-33(1993).
    29. C. W. Gear, “Numerical Initial Value Problems in Ordinary Differential Equations”, Prentice-Hall, Englewood Cliffs, NJ, (1971).
    30. J. M. Haile, “Molecular Dynamics Simulation:Elementrary Methods(A Wiley-Interscience Publication)”, John Wiley & Sons, Inc, USA, (1992).
    31. J. D. Kim and C. H. Moon, “A Study on Microcutting for the Configuration of Tools Using Molecular Dynamics”, J. Mater. Process. Technol., Vol. 59, pp. 309-314 (1996).
    32. C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, “Dislocation Nucleation and Defect Structure During Surface Indentation”, Physical. Review B, Vol. 58, No. 17, pp. 11085-11088 (1998).
    33. 彭達仁, “分子動力學模擬奈米銅線單軸受力狀態之微觀行為分析”,國立台灣科技大學博士論文(2008)。
    34. 廖凱民, “分子動力學模擬不同冷卻速率之Au50Ag50合金的結晶行為與切削性”, 國立台灣科技大學碩士論文(2013)。
    35. J. M. Haile, “Molecular Dynamics Simulation”, A Wiley-Interscience Publication, pp. 263 (1992).
    36. Giancoli and D. C., “Physics for scientists & engineers with modern physics(3rd edn)”, Prentice Hall, New Jersey, pp. 466-469(2000).
    37. R. A. Johnson, “Alloy Models with The Embedded-Atom Method”, Physical Review B, Vol. 39, No. 17, pp. 12554-12559 (1989).
    38. R. A. Johnson, “Analytic Nearest-Neighbor Model for FCC Metals”, Physical Review B, Vol. 37, No. 8, pp. 3924-3931 (1988).
    39. G. Mazzone and V. Rosato, “Molecular-dynamics calculations of thermodynamic properties of metastable alloys”, Physical Review B, Vol. 55, No. 2, pp.837-842(1997).
    40. 機械工業雜誌,轉印模仁之奈米結構製作,269期,pp. 44-55(2005)。
    41. 凃怡果, “分子動力學模擬單晶銅材的奈米壓印”, 國立台灣科技大學碩士論文(2010)。
    42. A. Inoue, T. Zhang and N. Nishiyama, “Preparation of 16nm Diameter Rod of Amorphous Zr65Al7.5Ni10Cu17.5 Alloy”, Materials Transactions, JIM, Vol. 34, No. 12, pp. 1234-1237(1993).
    43. ASM Handbook Volume 03:Alloy Phase Diagrams.
    44. H. R. Wendt and F. F. Abraham, “Empirical Criterion for the Glass Transition Region Based on Monte Carlo Simulations”, Physical Review Letters, Vol. 41, No. 18, pp. 1244-1246(1978).
    45. P. G. Debenedetti and F. H. Stillinger, “Supercooled liquid and the glass transition”, Nature, (2001).
    46. A. S. Argon, “Plastic Deforamtion in Metallic Glasses”, Acta Metall, Vol. 27, pp. 47-58(1978).
    47. F. Spaepen, “A Microscopic Mechanism for Steady State Inhomogeneous Flow in Metallic Glasses”, Acta Metallurgica, Vol. 25, pp. 407-415(1977).
    48. C. A. Schuh and T. G. Nieh, “A nanoindentation study of serrated flow in bulk metallic glasses”, Acta Materialia, Vol. 51, pp. 87-99(2003).
    49. J. Lu, G. Ravichandran and W. L. Johnson, “Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures”, Acta Materialia, Vol. 51, pp. 3429-3443(2003).
    50. G. S. Grest and M. H. Cohen, “liquids, glasses, and the glass transition:A free-volume approach”, Adv. Chem. Phys., Vol. 48 (1981).

    無法下載圖示 全文公開日期 2019/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE