簡易檢索 / 詳目顯示

研究生: 沈昌峻
Chang-Jun Shen
論文名稱: 分子動力學模擬不同結晶型態於高速壓縮之塑性變形機制及剪切帶的形成
A Study on Deformation Mechanisms and the Formation of Shear Bands of Different Crystalline States during High Compression by Molecular Dynamics Simulation
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 向四海
Su-Hai Hsiang
郭俊良
Jun-Liang Guo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 220
中文關鍵詞: 分子動力學單晶材料非晶材料塑變機制剪切帶
外文關鍵詞: Molecular Dynamics, Single Crystal Materials, Amorphous Materials, Mechanism of Deformation, Shear Bands
相關次數: 點閱:390下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以分子動力學(Molecular Dynamics,MD)模擬FCC銅單晶、BCC鐵單晶及銀/金/銅/鈀/鎳與銀/金/鐵/鈀/鎳非晶金屬塊材於兩種不同高應變速率下之壓縮行為,並比較不同溫度下非晶材料的變形機制以及剪切帶的形成。
    模擬結果顯示,不論於何種結晶型態中,應變率較高的條件下皆會導致較高的降伏應力及應變。然而,不同的晶體結構會誘發不同的塑變機制。於FCC晶體結構中,<100>排列的塑性變形機制為部份差排滑移,而<110>則為差排滑移並且伴隨雙晶變形;於BCC晶體結構中,<100>及<110>排列皆為螺旋差排交互滑移所致;於非晶材料中,是由free volume所誘發之局部區域原子位移所造成。
    此外,於常溫條件下壓縮會有新的free volume生成,並且在銀/金/鐵/鈀/鎳試件中更為顯著;低溫環境下則較無此現象。


    The study analyzes the deformation mechansims and the shear bands initiation of the FCC crystal copper and the BCC crystal iron bulks of different arrangements <100> and <110> with two kinds of high compressive strain rates. Furthermore, the amorphous materials of silver / gold / copper / palladium / nickel and silver / gold / iron / palladium / nickel are also simulated with two different temperatures, 5K and 295K.
    The results show that no matter in what kinds of crystalline states, the higher strain rate leads to higher yielding stress and strain. However, different deformation mechansims are induced in different crystal structures. In FCC, the deformation mechansims of the <100> specimens are the partial dislocations but the <110> specimens are not only caused by partial dislocaions but also the twins. In BCC, both <100> and <110> specimens are due to the cross slips of screw dislocations. In amorphous, the deformation is due to the regional atomic displacement which is induced by the free volume.
    In addition, in amorphous, the new free volume formed in room temperature specimens and the silver / gold / iron / palladium / nickel specimens occur obviously; however, less free volume formed in low temperature specimens.

    摘要 I Abstract II 致謝 III 目錄 IV 表目錄 VI 圖目錄 VI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 分子動力學文獻回顧 3 第二章 分子動力學基礎理論 5 2.1 分子動力學之基本假設 5 2.2 分子間作用力與勢能函數 5 2.3 運動方程式及演算法 9 2.4 原子級應力計算方法 11 2.5 截斷半徑與Verlet表列法 13 2.6 週期性邊界條件 14 2.7 無因次化 15 2.8 Centrosymmetry參數(CSP) 15 2.9 徑向分布函數 (Radial Distribution Function,g(r)) 17 2.10 溫度場的評估 18 2.11 局部剪切不變量(Local Shear Invariant) 20 第三章 模擬步驟與模型建立 32 3.1 程式模擬步驟 32 3.1.1初始設定(Initialization) 32 3.1.2系統平衡(Equilibration) 35 3.1.3動態模擬(Production) 36 3.2 模型建構 37 第四章 結果與討論 57 4.1 FCC銅單晶於不同排列方向的塑性變形機制以及剪切帶 57 的形成 57 4.1.1 <100>銅單晶塊材 58 4.1.2 <110>銅單晶塊材 84 4.2 BCC鐵單晶於不同排列方向的塑性變形機制以及剪切帶 113 的形成 113 4.2.1 <100>鐵單晶塊材 113 4.2.2 <110>鐵單晶塊材 137 4.3 非晶金屬的塑性變形機制以及剪切帶的形成 158 4.3.1 銀/金/銅/鈀/鎳非晶金屬塊材 158 4.3.2 銀/金/鐵/鈀/鎳非晶金屬塊材 191 第五章結論與建議 214 5.1 結論 214 5.2 未來研究方向與建議 215 參考文獻 216

    1. C. M. Lieber, "Nanoscale science and technology: building a big future from small things", MRS bulletin, Vol. 28, No. 7, pp. 486-491, 2003.
    2. Y. H. Wen, Z. Z. Zhu, and R. Z. Zhu, "Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects", Computational Materials Science, Vol. 41, No. 4, pp. 553-560, 2008.
    3. Z. C. Lin and J. C. Huang, "A study on a rigid body boundary layer interface force model for stress calculation and stress–strain behaviour of nanoscale uniaxial tension", Nanotechnology, Vol. 15, No. 11, pp. 1509-1518, 2004.
    4. Y. H. Lin, S. R. Jian, Y. S. Lai, and P. F. Yang, "Molecular dynamics simulation of nanoindentation-induced mechanical deformation and phase transformation in monocrystalline silicon", Nanoscale research letters, Vol. 3, No. 2, pp. 71-75, 2008.
    5. Y. X. Shen, H. R. Gong, L. T. Kong, and B. X. Liu, "Structural phase transitions in the Cu-based Cu–V solid solutions studied by molecular dynamics simulation", Journal of alloys and compounds, Vol. 366, No. 1-2, pp. 205-212, 2004.
    6. J. Wang, W. Hu, X. Li, S. Xiao, and H. Deng, "Strain-driven phase transition of molybdenum nanowire under uniaxial tensile strain", Computational Materials Science, Vol. 50, No. 2, pp. 373-377, 2010.
    7. S. Jayalakshmi and M. Gupta, "Metallic amorphous alloy reinforcements in light metal matrices", Publishing:Springer International, pp. 59-82, 2015.
    8. D. Frenkel and B. Smit, "Understanding molecular simulation:from algorithms to applications", Elsevier, 2001.
    9. J. H. Irving and J. G. Kirkwood, "The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics", The Journal of chemical physics, Vol. 18, No. 6, pp. 817-829, 1950.
    10. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Teller, "Equation of state calculations by fast computing machines", The Journal of chemical physics, Vol. 21, No. 6, pp. 1087-1092, 1953.
    11. L. Verlet, "Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules", Physical review, Vol. 159, No. 1, pp. 98-103, 1967.
    12. B. Quentrec and C. Brot, "New method for searching for neighbors in molecular dynamics computations", Journal of Computational Physics, Vol. 13, No. 3, pp. 430-432, 1973.
    13. H. A. Wu, A. K. Soh, X. X. Wang, and Z.H. Sun, "Strength and fracture of single crystal metal nanowire", Key Engineering Materials, Vol. 261, pp. 33-38, 2004.
    14. H. A. Wu, "Molecular dynamics study of the mechanics of metal nanowires at finite temperature", European Journal of Mechanics A/Solids, Vol. 25, No. 2, pp. 370-377, 2006.
    15. H.A. Wu, "Molecular dynamics study on mechanics of metal nanowire", Mechanics Research Communications, Vol. 33, No. 1, pp. 9-16, 2006.
    16. G. Sainath and B. K. Choudhary, "Orientation dependent deformation behaviour of BCC iron nanowires", Computational Materials Science, Vol. 111, pp. 406-415, 2016.
    17. A. S. Argon, "Plastic deformation in metallic glasses", Acta metallurgica, Vol. 27, No. 1, pp. 47-58, 1979.
    18. M. Sepúlveda-Macías, N. Amigo, and G. Gutiérrez, "Onset of plasticity and its relation to atomic structure in CuZr metallic glass nanowire: A molecular dynamics study", Journal of Alloys and Compounds, Vol. 655, pp. 357-363, 2016.
    19. J. E. Jones, "On the determination of molecular fields. I. From the variation of the viscosity of a gas with temperature", Proc. R. Soc. Lond. A, Vol. 106, No. 738, pp. 441-462, 1924.
    20. J. E. Jones, "On the determination of molecular fields. II. From the equation of state of a gas", Proc. R. Soc. Lond. A, Vol. 106, No. 738, pp. 463-477, 1924.
    21. P. M. Morse, "Diatomic molecules according to the wave mechanics. II. Vibrational levels", Physical Review, Vol. 34, No. 1, pp. 57-64, 1929.
    22. M. S. Daw and M. I. Baskes, "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals", Physical Review B, Vol. 29, No. 12, pp. 6443-6453, 1984.
    23. M. S. Daw, "Model of metallic cohesion: The embedded-atom method", Physical Review B, Vol. 39, No. 11, pp. 7441-7452, 1989.
    24. R. A. Johnson, "Analytic nearest-neighbor model for fcc metals", Physical Review B, Vol. 37, No. 8, pp. 3924-3931, 1988.
    25. R. A. Johnson, "Alloy models with the embedded-atom method", Physical Review B, Vol. 39, No. 17, pp. 12554-12559, 1989.
    26. R. A. Johnson and D. J. Oh, "Analytic embedded atom method model for bcc metals", Journal of Materials Research, Vol. 4, No. 5, pp. 1195-1201, 1989.
    27. Y. Mishin, D. Farkas, M. J. Mehl, and D. A. Papaconstantopoulos, "Interatomic potentials for monoatomic metals from experimental data and ab initio calculations", Physical Review B, Vol. 59, No. 5, pp. 3393-3407, 1999.
    28. F. Cleri and V. Rosato, "Tight-binding potentials for transition metals and alloys", Physical Review B, Vol. 48, No. 1, pp. 22-33, 1993.
    29. C. W. Gear, "Numerical initial value problems in ordinary differential equations", Prentice-Hall PTR, 1971.
    30. R. Clausius, "XVI. On a mechanical theorem applicable to heat", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 40, No. 265, pp. 122-127, 1870.
    31. Z. S. Basinski, M. S. Duesbery, and R. Taylor, "Influence of shear stress on screw dislocations in a model sodium lattice", Canadian Journal of Physics, Vol. 49, No. 16, pp. 2160-2180, 1971.
    32. D. Srolovitz, K. Maeda, V. Vitek, and T. Egami, "Structural defects in amorphous solids statistical analysis of a computer model", Philosophical Magazine A, Vol. 44, No. 4, pp. 847-866, 1981.
    33. N. Miyazaki and Y. Shiozaki, "Calculation of mechanical properties of solids using molecular dynamics method", JSME international journal, Ser. A, Vol. 39, No. 4, pp. 606-612, 1996.
    34. J. M. Haile, "Molecular dynamics simulation : elementrary method", Computers in Physics, 1993.
    35. C. L. Kelchner, S. J. Plimpton and J. C. Hamilton, "Dislocation nucleation and defect structure during surface indentation", Physical Review B, Vol. 58, No. 17, pp. 11085-11088, 1998.
    36. 彭達仁,"分子動力學模擬奈米銅線單軸受力狀態之微觀行為分析",國立台灣科技大學博士論文,2008.
    37. 林宇廷,"分子動力學模擬不同晶體結構之薄膜於銅基材的奈米壓印行為",國立台灣科技大學碩士論文,2014.
    38. R. A. Serway and J. W. Jewett, "Physics for scientists and engineers with modern physics(9^th edn)", Cengage learning, 2018.
    39. F. Shimizu, S. Ogata and J. Li, "Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations", Materials Transactions, Vol. 48, No. 11, pp. 2923-2927, 2007.
    40. W. Humphrey, A. Dalke and K. Schulten, "VMD:visual molecular dynamics", Journal of molecular graphics, Vol. 14, pp. 33-38, 1996.
    41. A. Stukowski, "Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool Modelling Simul", Mater. Sci. Eng. 18, 2010.
    42. M. A. Karolewski, "Tight-binding potentials for sputtering simulations with fcc and bcc metals", Radiation effects and defects in solids, Vol. 153, No. 3, pp. 239-255, 2001.
    43. J. P. Hirth and J. Lothe, "Theory of dislocations(2^nd edn)", Wiley, New York, pp. 835-839, 1982.
    44. A. M. Guellil and J. B. Adams, "The application of the analytic embedded atom method to bcc metals and alloys", Journal of materials research, Vol. 7, No. 3, pp. 639-652, 1992.
    45. F. Spaepen, "A microscopic mechanism for steady state inhomogeneous flow in metallic glasses", Acta metallurgica, Vol. 25, No. 4, pp. 407-415, 1977.

    QR CODE