簡易檢索 / 詳目顯示

研究生: 余宗諺
Tsung-Yen Yu
論文名稱: 分子動力學模擬含雜質銀薄膜的奈米轉印行為
Molecular Dynamic Study on Silver Film Nanoimprinting Behaviors with Impurities
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 向四海
Su-Hai Hsiang
鍾俊輝
Chun-Hui Chung
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 186
中文關鍵詞: 分子動力學奈米轉印
外文關鍵詞: Molecular Dynamic, Nanoimprinting
相關次數: 點閱:202下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用分子動力學(Molecular Dynamicx, MD)模擬鑽石方柱衝頭對銀薄膜內含有雜質缺陷,以及雙晶粒銀薄膜試片進行奈米轉印分析。探討轉印製程的塑性變形機制、成型孔形貌與底部回復現象。其中單衝頭轉印之試片其薄膜內的雜質缺陷是設置於方形衝頭的兩側,而雙衝頭轉印之試片其薄膜內的雜質缺陷是設置於衝頭之間,用以觀察雜質對於變形機制的影響。雙晶粒銀薄膜之模擬試片為(100)-(11 ̅0)晶面所結合而成,衝頭壓印位置皆在薄膜之晶界處,用以探討不同晶面所形成的晶界對於成型孔之影響。此外,改變衝頭間距進行奈米轉印,探討衝頭間距對轉印品質之影響。
    模擬結果顯示,FCC的銀薄膜結構在壓印過程中,差排會受到雜質缺陷的干涉,使得差排滑移受到阻礙,進而影響成型孔之形貌。在雙晶粒銀薄膜之奈米轉印過程中,晶界亦會影響差排之滑移,隨著衝頭持續下壓,晶界會因為表面能之差異而產生遷移現象。在雙衝頭奈米轉印過程中,雜質顆粒會影響衝頭之間薄膜表面的形貌,若間距太小雙衝頭間之薄膜會產生凹陷的現象。


    In this study, molecular dynamics (MD) are used to simulate the nanoimprinting behaviors of Ag thin films with impurities using a cuboid diamond punch. Additionally, nanoimprinting behaviors of a bi-crystal silver film was also discussed. Wherein the single punch nanoimprinting acted to specimen, in which two impurities was set at the both side of the punch, separately. For double punches nanoimprinting, the silver film contained an impurity located between the punches in order to explore the effect of impurity on the deformation mechanism.
    The specimen with bi-crystal silver thin film were constructed by (001)_(110) and (001)_(111) crystal. The imprinting position is located at the grain boundary of the silver thin film, so the effect of grain boundary on the geometrical characteristics of the formed hole could be investigated.
    In addition, the effect of the pitch of the punches was changed to study the influence of nanoimprinting. The effect of the impurity defect on nanoimprinting behaviors with double punches was also investigated.
    The simulation results show that the thin film structure of the FCC, the appearance of the forming hole is depended on the crystal orientation. In the indentation process, the sliding of the dislocation will be impeded by the impurity, resulting in dislocations piled up, thus affecting the shape of the formed hole.
    In the process of nanoimprinting of bi-crystal silver thin film, the grain boundary will also affect the slippage of the dislocation. As the punch continued to press, the grain boundary will migrated due to the different of surface energies of the various crystal planes. As the results, the grain boundary effect for the plastic deformation mechanisms and the shape of the formed hole are obviously. In the process of double-punch nanoimprinting, impurity particles affect the formed hole that result in a cave located at the silver surface between the punches.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 符號說明 VI 表索引 X 圖索引 XI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 分子動力學文獻回顧 3 1.3 分子動力學應用於奈米轉印之進展 4 第二章 分子動力學基礎理論 7 2.1 分子動力學的基本假設 7 2.2 原子間相互作用力與勢能函數 7 2.3 運動方程式與演算法 11 2.4 Verlet表列法 14 2.5 週期性邊界 15 2.6 最小映像法則 16 2.7 無因次化 17 2.8 Centrosymmetry Parameter(CSP) 17 2.9 共同鄰近原子(Common neighbor analysis,CNA) 18 第三章 模擬步驟與模型建立 29 3.1 模擬步驟 29 3.1.1 初始設定(Initialization) 29 3.1.2 系統平衡(System Balance) 32 3.1.3 動態模擬(Dynamics Simulation) 33 3.2 模型建立 33 第四章 結果與討論 43 4.1 單衝頭對銀薄膜(001)晶面進行奈米轉印的製程 45 4.1.1保壓製程對銀薄膜(001)晶面的奈米轉印行為之影響 48 4.1.2保壓製程對銀薄膜(001)晶面含雜質顆粒的奈米轉印行為 63 4.1.3無保壓製程對銀薄膜(001)晶面的奈米轉印行為之影響 79 4.1.4無保壓製程對銀薄膜(001)晶面含雜質顆粒的奈米轉印行為 83 4.1.5 有/無保壓與有/無雜質之孔形貌比較 87 4.2 單衝頭對雙晶粒銀薄膜進行奈米轉印之分析 90 4.2.1單衝頭對[001]↑/(100)|(11 ̅0)/[110]↑銀薄膜進行奈米轉印分析 93 4.2.2單衝頭對[001]↑/(100)|(11 ̅0)/[111]↑銀薄膜進行奈米轉印分析 110 4.2.3 不同晶面之雙晶粒銀薄膜孔形貌比較 129 4.3 雜質顆粒對雙衝頭銀薄膜(001)晶奈米轉印之影響 131 4.3.1雙衝頭在銀薄膜(001)晶面的奈米轉印行為 134 4.3.2含雜質對銀薄膜(001)晶面雙衝頭奈米轉印的影響 151 4.3.3陣列式衝頭對有/無雜質之銀薄膜進行孔形貌之比較 169 4.4 雙衝頭間距對孔型貌之影響……………………………………173 第五章 結論與建議 180 5.1 結論 180 5.2 未來研究方向與建議 182 參考文獻 183

    參考文獻
    【1】 蔡宏營,“奈米轉印技術介紹”,工研院機械所 中華民國力學學會會訊,104期(2003)。
    【2】 J. H. Irving and J. G. Kirkwood, “The Statistical Mechanical Theory of Hydrodynamics”, J. Chem. Phys., Vol. 18, No. 6, pp. 817-829 (1950).
    【3】 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller, “Equation of State Calculations by Fast Computing Machines”, J. Chem. Phys., Vol. 21, No. 6, pp. 1087-1092 (1953).
    【4】 L. Verlet, “Computer Experiment on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules”, Phys. Rev., Vol. 159, No. 1, pp. 98-103 (1967).
    【5】 B. Quentrec and C. Brot, “New Method for Searching for Neighbors in Molecular Dynamics Computations”, J. Comput. Phys., Vol. 13, pp. 430-432 (1973).
    【6】 D. C. Rapaport, “Large-Scale Molecular Dynamics Simulation Using Vector and Parallel Computers”, Comput. phys. Rep., Vol. 9, pp. 1-53 (1988).
    【7】 M. Meyer and V. Pontikis, “Computer Simulation in Material Science: Interatomic Potentials, Simulation Techniques and Applications”, Kluwer Academic Publishers, USA, (1991).
    【8】 U. Landman, W. D. Luedtke, N. A. Burnham and R. J. Colton, “Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture”, Science, New Series, Vol. 248, No. 4954, pp. 454-461(1990).
    【9】 K. Komvopoulos, and W. Yan, “Molecular dynamics simulation of single and repeated indentation”, J. Appl. Phys. Vol. 82, 4823 (1997).
    【10】 W. Yan, and K. Komvopoulos, “Three-dimensional molecular dynamics analysis of atomic-scale indentation”, Transaction of the ASME J. TRIBOL. Vol. 120, 358(1998).
    【11】 P. Walsh, R. K. Kalia, A. Nakano, and P.Vashishta, “Amorphization and anisotropic fracture dynamics during nanoindentation of silicon nitride: a multimillion atom molecular dynamics study”, Appl. Phys. Lett. Vol. 77, 4332(2000).
    【12】 P. Walsh, A. Omeltchenko, R. K. Kalia, A. Nakano, and P.Vashishta, “Nanoindentation of silicon nitride: a multimillion-atom molecular dynamics study”, Appl. Phys. Lett. Vol. 82, 118(2003).
    【13】 D. Christopher, R. Smith and A. Richer, “Atomistic modeling of nanoindentation in iron and silver”, Institute of Physics Publishing, Nanotechnology, Vol. 12, pp. 372-383(2001).
    【14】 Hualiang Yu, James B Adams and Louis G Hector Jr, “ Molecular Dynamics Simulation of High-Speed Nanoindentation”, Modelling Simul. Master.Sci. Eng. 10,319-329 (2002).
    【15】 Q. C. Hsu, C. D. Wu, T. H. Fang, “Studies on nanoimprint process parameters of copper by molecular dynamics analysis”, Computational Materials Science, Vol. 34, pp. 314-322(2005).
    【16】 Q. C. Hsu, C. D. Wu and T. H. Fang, “Deformation Mechanism and Punch Taper Effects on Nanoimprint Process by Molecular Dynamics”, Japanese Journal of Applied Physics, Vol. 43, No. 11A, pp. 7665–7669(2004).
    【17】 T. H. Fang, C. D. Wu and W. J. Chang, “Molecular dynamics analysis of nanoimprinted Cu–Ni alloys”, Applied Surface Science, Vol. 253, pp. 6963–6968(2007).
    【18】 C. W. Hsieh and C. K. Sung, “Atomic-Scale Friction in Direct Imprinting Process: Molecular Dynamics Simulation”, Japanese Journal of Applied Physics, Vol. 46, No. 9B, pp. 6387–6390(2007).
    【19】 Y. Yuan, T. Sun, J. Zhang and Y. Yan, “Molecular dynamics study of void effect on nanoimprint of single crystal aluminum,” Applied Surface Science, Vol. 257, pp. 7140–7144(2011).
    【20】 G. B. Sushko, A. V. Verkhovtsev, and A. V. Solov’yov, “Validation of Classical Force Fields for the Description of Thermo-Mechanical Properties of Transition Metal Materials,” The Journal of Physical Chemistry, Vol. 118, pp.8426-8436(2014).
    【21】 C. H. Wang, K. C. Chao, T. H. Fang, I. Stachiv and S. F. Hsieh, “Investigations of the mechanical properties of nanoimprinted amorphous Ni-Zr alloys utilizing the molecular dynamics simulation,” Journal of Alloys and Compounds, Vol. 659, pp.224-231(2016).
    【22】 M. S. Daw, S. M. Foiles and M. I. Baskes, “The Embedded-Atom Method: A Review of Theory and Applications”, Mater. Sci. Rep., Vol. 9, pp. 251-310 (1993).
    【23】 J. E. Lennard-Jones, “On the Determination of Molecular Fields.-I. From the Variation of the Viscosity of a Gas with Temperature”, Proceedings of the Royal Society of Physical Character, London, Series A, Vol. 106, No. 738,pp. 441-462 (1924).
    【24】 J. E. Lennard-Jones, “On the Determination of Molecular Fields.-II.From the Equation of State of a Gas”, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 106, No. 738,pp. 463-477 (1924).
    【25】 P. M. Morse, “Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels”, Phtsical Review, Vol. 34,pp. 57-64 (1929).
    【26】 L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals”, Phys. Rev., Vol. 114, No. 3,pp. 687-690 (1959).
    【27】 M. S. Daw and M. I. Baskes, “Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals”, Phys. Rev. Lett., Vol. 50, No. 17, pp. 1285-1288 (1983).
    【28】 M. S. Daw, and M. I. Baskes, “Embedded-Atom Method: Derivation and Application to Impurities, Surfaces, and Other Defects in Metals”, Phys. Rev. B, Vol. 29, No. 12, pp. 6443-6453 (1984).
    【29】 V. Rosato, M. Guillope and B. Legrand, “Thermodynamical and structural properties of f.c.c. transition metals using a simple tight-binding model”, Philosophic Magazin A, Vol. 59, No. 2, pp. 321-336(1989).
    【30】 F. Cleri and V. Rosato, “Tight-binding potentials for transition metals and alloys”, Physical Review B, Vol. 48, No. 1, pp. 22-33(1993).
    【31】 C. W. Gear, “Numerical Initial Value Problems in Ordinary Differential Equations”, Prentice-Hall, Englewood Cliffs, NJ, (1971).
    【32】 J. M. Haile, “Molecular Dynamics Simulation:Elementrary Methods(A Wiley-Interscience Publication)”, John Wiley & Sons, Inc, USA, (1992).
    【33】 J. D. Kim and C. H. Moon, “A Study on Microcutting for the Configuration of Tools Using Molecular Dynamics”, J. Mater. Process. Technol., Vol. 59, pp. 309-314 (1996).
    【34】 C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, “Dislocation Nucleation and Defect Structure During Surface Indentation”, Physical. Review B, Vol. 58, No. 17, pp. 11085-11088 (1998).
    【35】 彭達仁, “分子動力學模擬奈米銅線單軸受力狀態之微觀行為分析”,國立台灣科技大學博士論文(2008)。
    【36】 廖凱民, “分子動力學模擬不同冷卻速率之Au50Ag50合金的結晶行為與切削性”, 國立台灣科技大學碩士論文(2013)。
    【37】 J. D. Honeycutt and H. C. Andersen, “Molecular Dynamics Study of Melting and Freezing of Small Lennard-Jones Clusters”, J. Phys. Chem.91, pp. 4950-4963 (1987).
    【38】 A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool”, Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).
    【39】 R. A. Johnson, “Alloy Models with The Embedded-Atom Method”, Physical Review B, Vol. 39, No. 17, pp. 12554-12559 (1989).
    【40】 R. A. Johnson, “Analytic Nearest-Neighbor Model for FCC Metals”, Physical Review B, Vol. 37, No. 8, pp. 3924-3931 (1988).
    【41】 G. Mazzone and V. Rosato, “Molecular-dynamics calculations of thermodynamic properties of metastable alloys”, Physical Review B, Vol. 55, No. 2, pp.837-842(1997).
    【42】 凃怡果, “分子動力學模擬單晶銅材的奈米壓印”, 國立台灣科技大學碩士論文(2010)。
    【43】 機械工業雜誌,轉印模仁之奈米結構製作,269期,pp. 44-55(2005)。
    【44】 S. M. Foiles, M. I. Baskes and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys”, Physical Review B, Vol.33, No.12, pp.7983-7991 (1986).
    【45】 R. Dingreville, “Modeling and characterization of the elastic behavior of interfaces in nanostructured materials: from an atomistic description to a continuum approach”, Georgia Institute of Technology, (2007).

    QR CODE