簡易檢索 / 詳目顯示

研究生: 許育豪
Yu-Hao Hsu
論文名稱: 飛秒雷射製作金屬玻璃微奈米轉印精密模具應用分析
Applications and analyses of precise nanoimprint mold of metallic glass fabricated by femtosecond laser
指導教授: 鄭正元
Jeng-Ywan Jeng
口試委員: 鄭逸琳
Yih-Lin Cheng
黃忠偉
Jong-Woei Whang
洪基彬
Ji-BinHorng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 98
中文關鍵詞: 飛秒雷射精密轉印模具金屬玻璃熱壓微奈米轉印
外文關鍵詞: Femtosecond laser, Precise mold, Metallic glass, Nanoimprint
相關次數: 點閱:215下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 飛秒雷射具有超短脈衝及光能量密度極高的特性,別於一般長脈衝雷射以光熱加工,飛秒雷射以光化學剝離機制加工,光子能量直接打斷材料鍵結,造成材料電漿離子化而移除;此特性使飛秒雷射具有加工熱影響區小、加工尺寸精密度高、極少微裂縫、重鑄層等特點。精密耐久模具為現代消費電子產品在大量生產製造所必需;金屬玻璃具高硬度及耐磨耗特性,可取代傳統易耗損之鎳模具,但由於金屬玻璃之強韌性使其加工不易。
    本研究利用飛秒雷射之加工特性,製作金屬玻璃微奈米轉印之精密模具。嘗試使用不同雷射加工參數(能量功率、脈衝次數、掃描速度等)的變化對照其材料加工後狀況及尺寸,觀察其結構的變化及現象進而找出相對關係;並找出可製作最小結構之加工參數。後期研究為參考其分析結果,在金屬玻璃材料上製作出微奈米結構,透過熱壓式微奈米轉印技術,在高分子材料上壓印出設計之微奈米結構。以原理和加工結果配合,探討其可行性並證明飛秒雷射加工之特性及優點。期望未來可應用於半導體、生醫技術、微機電系統及微奈米製造技術。


    Femtosecond laser is characterized with ultra-short pulse and high fluence. And with the unique mechanism of photochemical peeling, which is distinct from long-pulsed laser, femtosecond laser has advantages of small heat-affected zone, high precision, and recast layer. Nowadays, precise and durable moldings are necessary for mass productions of consumer electronics. With the high hardness and durability, metallic glass can ideally replace nickel moldings that tend to wear out. Nevertheless, metallic glass is difficult to manufacture due to its toughness.

    This study utilizes femtosecond laser to manufacture nano-imprint moldings with metallic glass. With the adjustments and the results of specific working parameters, such as fluence, pulse and scanning speed, the correlation between effects and sizes on materials can be concluded in order to manufacture the minimum structures. After testing the best parameters, micro/nano structures on metallic glass have been fabricated and then used to imprint polymer. The results have successfully shown advantages of femtosecond laser. And it is promising to apply to semiconductor industry, biomedical engineering, MEMS and micro/nano machining.

    中文摘要 ........................................I 英文摘要 .................................. II 誌謝 ......................................III 目錄 .......................................IV 圖索引 ...................................VIII 表索引 ................................... XII 第一章 緒論 1.1 前言 ...................................1 1.2 研究動機與目的 .........................2 1.3 研究方法 ...............................3 1.4 論文架構 ...............................5 第二章 文獻回顧 2.1雷射加工介紹 ............................7 2.2雷射加工特性與用途 ......................7 2.3傳統長脈衝雷射與超短脈衝雷射 ............9 2.3.1 傳統長脈衝雷射 ..................9 2.3.2 超短脈衝雷射 ...................10 2.4飛秒雷射發展與產生原理 .................11 2.4.1 鎖模雷射振盪器 .................12 2.4.2 脈衝雷射放大器系統 .............15 2.5飛秒雷射加工及材料移除機制 .............16 2.5.1 材料內部能量傳遞過程 ...........16 2.5.2 飛秒雷射之雙溫度模型 ...........18 2.5.3 飛秒雷射加工材料剝離機制 .......19 2.6飛秒雷射發展與文獻回顧 .................20 2.7金屬玻璃 ...............................23 2.7.1 金屬玻璃材料之發展 .............24 2.7.2 金屬玻璃特性 ...................26 2.7.3 金屬玻璃製造方法 ...............28 2.8微奈米轉印技術介紹 .....................29 2.8.1 熱壓式微奈米轉印 ...............30 第三章 實驗儀器介紹及參數規劃 3.1飛秒雷射實驗系統 .......................32 3.2雷射機台參數規劃 .......................34 3.2.1 雷射能量與功率 .................35 3.2.2 雷射重複率及掃描速度 ...........36 3.2.3 雷射波長 .......................37 3.2.4 雷射聚焦位置 ...................38 3.2.5 光學顯微聚焦物鏡 ...............39 3.3實驗材料選用 ...........................42 3.3.1 金屬玻璃 .......................42 3.4檢測儀器設備介紹 .......................44 3.4.1 超音波洗淨器 ....................44 3.4.2 慢速切割機 ......................45 3.4.3 光學顯微鏡 ......................46 3.4.4 掃描式電子顯微鏡 ................47 3.4.5 熱壓轉印機台 ....................49 第四章 飛秒雷射製作金屬玻璃熱壓模具之加工研究 4.1金屬玻璃實驗參數測試 ...................52 4.1.1 雷射功率和速度與切口寬度之關係 ..52 4.1.2 不同聚焦物鏡對加工之影響 ........55 4.1.3 金屬玻璃材料之破壞閥值 ..........58 4.1.4 雷射功率和掃描速度與深度之關係 ..66 4.1.5 掃描次數與深度、切口寬度及粗糙度之關係 ....................................70 4.2飛秒雷射製作金屬玻璃熱壓轉印模具 .......77 4.2.1 轉印圖案設計 ....................77 4.2.2 熱壓轉印金屬玻璃模仁製作 .........79 4.2.3 金屬玻璃模仁製作結果 .............80 4.3微奈米熱壓轉印實驗 ......................83 4.3.1 熱壓材料選用 .....................83 4.3.2 熱壓轉印實驗 .....................84 4.4 微奈米熱壓轉印結果分析 ................89 第五章 結論與未來工作 5.1 結論 ...................................92 5.2 未來工作及展望 .........................93

    [1] 【機械工業雜誌】,“雷射超精密微奈米結構加工技術介紹”, 306期
    第4頁,(2008.9).
    [2] 物理雙月刊 (二十八卷二期),“以高功率飛秒雷射驅動電子加速
    器和超快X光源”,(2006.4).
    [3] J. Kroger and W. Kautek, “Ultrashort Pules Laser Interaction with
    Dielectrics and Polymers,” Adv. Poly. Sci., Vol.168,pp.247-289 (2004).
    [4] Rev.F, “User’s Manual of Spitfire”, Spectra-Physics Company,(2002).
    [5] 朱旭新、陳聿昕、汪治平、李超煌、陳賜原,“十兆瓦超短脈衝雷射系統”,
    科儀新知128 期5-18頁(2002).
    [6] D. Strickland and G. Mourou, Opt. Commun., 56, 219 (1985).
    [7] 吳秉翰、沈威志,“飛秒雷射加工矽晶圓之特性研究”,機械工業雜誌311期
    12-14頁(2009).
    [8] C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and
    damage in bulk transparent materials induced by tightly focusedfemtosecond
    laser pulses”, Meas. Sci. Technol., Vol. 12, pp.1784–1794, (2001).
    [9] Anisimov, S. I.; Kapeliovich, B. L.; Perel'man, T. L.; Eksp, Z.
    Soviet Physics-JETP, 39: 375 ,(1974).
    [10] Kafka,Watts and Pieterse, “Picosecond and Femtosecond Pulse Generation
    in a Regeneratively Mode-Locked Ti:Sapphire Laser”, IEEE J. Quantum
    Electronics, Vol. 28, pp. 2151-2162, (1992).
    [11] J.Bonse,S.Baudach,J.Kruger andW. Kautek, “Femtosecond laser
    micromachining of technical materials”, High-Power Laser Ablation , Vol.
    4065, (2000).
    [12] M. Meuniera, B. Fisettea, A. Houlea, A. V. Kabashina, S. V. Broudeb and
    P. Millerb, “Processing of metals and semiconductors by a femtosecond
    laser-based microfabrication system”, Proceedings of SPIE, Vol. 4978
    (2003).
    [13] M. Gill, W. Perrie, P. Fox and W. O’Neil, “Surface nanostructuring of
    Ni, Ti and 316L Stainless steel using ultrafast laser interactions”,
    Proc. of SPIE, Vol. 5713, (2005).
    [14] W. Jia , Z. Peng, Z. Wang, X. Ni, CY. Wang, “The effect of femtosecond
    laser micromachining on the surface characteristics andsubsurface
    microstructure of amorphous FeCuNbSiB alloy,” Applied Surface Science
    253 1299–1303 (2006).
    [15] W. Xinlin, L. Peixiang, D. Nengli, L. Yuhua, L. Changrui, Z. Qiguang ,
    L. Lin,“Noncrystalline micromachining of amorphous alloys using
    femtosecond laser pulses,” Materials Letters 61 4290–4293 (2007).
    [16] Wei Jia , Dexiang Zhang, Xun Li, Lu Chai, Zhigang Zang, Chingyue Wang,
    “Heat effects of amorphous FeCuNbSiB alloy ablated with femtosecond
    laser,” Thin Solid Films 516 2260-2263 (2008).
    [17] 李銘峯、許芳文、吳秉翰、蘇信嘉、曹宏熙、胡杰,“利用飛秒雷射微奈米
    加工技術於玻片上製作高深寬比之微流道結構”,科學與工程技術期刊 第五
    卷 第四期49-55頁 (2009).
    [18] V. Oliveira, S. Ausset, R. Vilar, “Surface micro/nanostructuring of
    titanium under stationary and non-stationary femtosecond laser
    irradiation,” Applied Surface Science 255 7556–7560 (2009).
    [19] M. Fengxu , Y. Jianjun,Z. Xiaonong, L. Chunyong, W. Hongshui,
    “Femtosecond laser-induced concentric ring microstructures on Zr-based
    metallic glass,” Applied Surface Science 256 3653–3660 (2010).
    [20] 任一飛,“The Oxidation Behavior of Pd-based Amorphous Alloys in Dry
    Air”,國立海洋大學材料工程研究所碩士班(2008).
    [21] W. Klement, R.H. Wilens, P. Duwez, “Non-crystalline Structure in
    Solidified Gold-Silicon Alloys”, Vol.187, pp.869-870,(1960).
    [22] H.S. Chen, D. Turnbull, J. Chem.Phys.,48 2560 (1968).
    [23] H.S. Chen, J.T. Krause, E. Coleman, Elastic constants, hardness and their
    implications to flow properties of metallic glasses, Vol.18, pp.157-171,
    (1975)
    [24] H.S. Chen, Rep. Prog. Phys.,43 (1980)353.
    [25] A. Inoue, T.Zhang, T. Masumoto, Al-La-Ni Amorphous Alloys with a Wide
    Supercooled Liquid Region, Vol.30, pp.965-972, (1989)
    [26] A. Inoue, A. Kato, T. Zhang, S.G. Kim, T. Masumoto, Mg-Cu-Y Amorphous
    Alloy with High Mechanical Strengths Produced by a Metallic Mold Casting
    Method, Vol.32, pp.609-616, (1991)
    [27] A. Peker and W. Johnson, Appl. Phys. Lett.,63(1993) 2342.
    [28] M. Telford, The case for bulk metallic glass, Vol.7, pp.36-43 (2004)
    [29] 鄭榮瑞,“塊狀非晶質合金”,國立中央大學機械工程系
    [30] 吳昀芳,“The Corrosion Behavior of Amorphous /Nanocrystalline Alloys in
    Various Aggressive Aqueous Solutions”,國立海洋大學材料工程研究所碩士
    班(2006)
    [31] 蔡宏營,“奈米轉印技術介紹”,工研院機械所奈米工程技術部研究員兼經理
    [32] 劉金勳,“接觸轉印與遮罩植入式微影技術應用於製作超高頻表面聲波元件”
    ,國立成功大學機械工程學系,(2007).
    [33] 郭靜男、簡志維、蔡武融、鄭中緯,“工研院南分院飛秒雷射實驗室簡介”,
    http://www.laser.org.tw/laser/magazine/laser_application-vol6/vol6-
    017.htm
    [34] http://www.pomeas.com普密斯精密儀器有限公司
    [35] 李炫璋,“雷射於觸控面板圖案蝕刻製程技術之應用”,工業技術研究院
    雷射應用科技中心 雷射系統應用部
    [36] http://opspe.com/obj/mitutoyo_details_17.html and
    http://opspe.com/obj/mitutoyo_details_19.html
    [37] J.P. Chu, C. L. Chiang, T. G. Nieh and Y. Kawamura, Intermetallics10,
    1191 (2000).
    [38] U. Ramamurty , S. Jana , Y. Kawamura , K. Chattopadhyay, “Hardness and
    plastic deformation in a bulk metallic glass” ,Acta Materialia 53 705–
    717 (2005).
    [39] M. Yamasaki, S. Kagao, Y. Kawamura, “Thermal diffusivity and
    conductivity of Zr55Al10Ni5Cu30 bulk metallic glass” , Scripta
    Materialia 5363–67 (2005).
    [40] S. Nolte, C. Momma, H. Jacobs, A. Tunnermann, B. N. Chichkov, B.
    Wellegehausen, and H. Welling, J. Opt. Soc. Am. B 14, 2716 (1997).

    QR CODE