簡易檢索 / 詳目顯示

研究生: 黃昕凱
Hsin-Kai Huang
論文名稱: 金屬玻璃薄膜鍍層316L不鏽鋼對人類臍帶靜脈內皮細胞行為之影響
Effects of thin film metallic glass-coated 316L stainless steel on the behavior of human umbilical vein endothelial cells
指導教授: 鄭詠馨
Yung-Hsin Cheng
口試委員: 朱瑾
Jinn P. Chu
白孟宜
Meng-Yi Bai
曾靖孋
Ching-Li Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 81
中文關鍵詞: 冠狀動脈支架金屬玻璃薄膜人類臍帶靜脈內皮細胞
外文關鍵詞: Coronary stents, Thin film metallic glass, Human umbilical vein endothelial cells
相關次數: 點閱:231下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,因為飲食與生活習慣的改變,冠狀動脈疾病(coronary artery disease, CAD)逐漸成為了人類社會中常見的疾病之一,裸金屬支架(bare metal stents, BMS)與藥物塗覆支架(drug eluting stents, DES)的植入是治療冠狀動脈疾病的主要方法,但裸金屬支架在植入早期有支架內再狹窄(in-stent restenosis, ISR)的發生,藥物塗覆支架也在植入後期發現晚期支架血栓(late stent thrombosis, LST)的形成,而支架植入後的再內皮化(re-endothelialization)是解決這些問題的關鍵,近年來研究指出,銅離子(Cu2+)可以促進血管內皮細胞的生長,因此,本研究透過磁控濺鍍法在316L不鏽鋼上分別鍍上Cu47Zr42Al7Ti4和Zr60Cu25Al10Ni5金屬玻璃薄膜(thin film metallic glass)進行特性分析,並評估其對人類臍帶靜脈內皮細胞(human umbilical vein endothelial cell)的影響。在316L不鏽鋼上鍍上Cu47Zr42Al7Ti4和Zr60Cu25Al10Ni5金屬玻璃薄膜,可使表面粗糙度與水接觸角降低,並有微量銅離子的釋放,提供人類臍帶靜脈內皮細胞較好的貼附條件及促進細胞增殖,而Cu47Zr42Al7Ti4金屬玻璃薄膜鍍層更提高了人類臍帶靜脈內皮細胞對於氧化壓力環境的耐受性,本研究證明Cu47Zr42Al7Ti4金屬玻璃薄膜做為冠狀動脈支架鍍層應具有高度潛力。


    Coronary artery disease(CAD)has gradually become one of the common diseases in human society, because of changes in diet and lifestyle. The implantation of bare metal stents(BMS)and drug eluting stents(DES)is the main method of treating CAD. However, BMS has in-stent restenosis(ISR)in the early stage of implantation. DES also found late stent thrombosis(LST)formation in the late stage of implantation. Re-endothelialization after stent implantation is the key to solving these problems. Recent studies showed that copper ions(Cu2+)could promote the growth of vascular endothelial cells. Therefore, in this study, Cu47Zr42Al7Ti4 and Zr60Cu25Al10Ni5 thin film metallic glass (TFMG) are coated on 316L stainless steel (316L SS) by magnetron sputtering. The characterization of both Cu47Zr42Al7Ti4 and Zr60Cu25Al10Ni5 TFMG-coated 316L SS are evaluated. The results show that Cu47Zr42Al7Ti4 and Zr60Cu25Al10Ni5 TFMG coated on 316L SS can reduce surface roughness and water contact angle. Moreover, it can release trace copper ions to improve the adhesion and proliferation of human umbilical vein endothelial cells (HUVECs).
    In the oxidative stress tolerance test, the results reveals that Cu47Zr42Al7Ti4 TFMG-coated 316L SS can improve inflammation and apoptosis level of HUVECs. The results of study demonstrated that Cu47Zr42Al7Ti4 and Zr60Cu25Al10Ni5 TFMG-coated 316L SS can promote the adhesion and growth of HUVECs compared with 316L SS (without coating). Moreover, Cu47Zr42Al7Ti4 TFMG-coated 316L SS can improve the tolerance of HUVECs under oxidative stress. Cu47Zr42Al7Ti4 and Zr60Cu25Al10Ni5 TFMG may have the potential application in coronary stent coating and improve ISR and LST.

    誌謝 I 摘要 II Abstract III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 第二章 文獻回顧 4 2.1 動脈粥樣硬化的成因 4 2.2 動脈粥樣硬化現行的治療方式 7 2.3 冠狀動脈支架的簡介 9 2.3.1 裸金屬支架 9 2.3.2 藥物塗覆支架 12 2.3.3 生物可降解支架 15 2.4 金屬玻璃與金屬玻璃薄膜 16 2.4.1 金屬玻璃的性質 17 2.4.2 金屬玻璃薄膜的性質 19 2.4.3 銅應用於心血管疾病治療之優勢 20 2.5 316L不鏽鋼 22 2.5.1 316L不鏽鋼的特性 23 2.5.2 316L不鏽鋼的醫療用途 24 第三章 實驗材料與方法 26 3.1 實驗材料與藥品 26 3.2 實驗儀器 27 3.3 實驗流程圖 28 3.4 金屬玻璃薄膜鍍層-316L不銹鋼之製備 28 3.5 金屬玻璃薄膜鍍層-316L不銹鋼之特性分析 30 3.5.1 表面粗糙度 30 3.5.2 水接觸角與表面自由能 30 3.5.3 銅離子釋放 31 3.6 金屬玻璃薄膜鍍層-316L不銹鋼之生物相容性與對人類臍帶靜脈內皮細胞的影響 32 3.6.1 細胞培養基配製與人類臍帶靜脈內皮細胞的培養 32 3.6.2 細胞存活率 33 3.6.3 溶血測試 34 3.6.4 細胞貼附測試 34 3.7 金屬玻璃薄膜鍍層-316L不銹鋼於氧化壓力環境下對人類臍帶靜脈內皮細胞的影響 36 3.7.1 以H2O2誘發細胞損傷之體外模型建立 (CCK-8) 36 3.7.2 定量即時聚合酶連鎖反應 38 3.7.3 末端脫氧核苷酸轉移酶脫氧尿苷三磷酸切口末端標記分析 41 3.7.4 細胞存活率 42 3.8 統計分析 42 第四章 結果與討論 43 4.1 金屬玻璃薄膜鍍層-316L不銹鋼之特性分析 43 4.1.1 表面粗糙度 43 4.1.2 水接觸角與表面自由能 45 4.1.3 銅離子釋放 47 4.2 金屬玻璃薄膜鍍層-316L不銹鋼之生物相容性與對人類臍帶靜脈內皮細胞的影響 48 4.2.1 細胞存活率 48 4.2.2 溶血測試 49 4.2.3 細胞貼附測試 50 4.3 金屬玻璃薄膜鍍層-316L不銹鋼於氧化壓力環境下對人類臍帶靜脈內皮細胞的影響 56 4.3.1 定量即時聚合酶連鎖反應 56 4.3.2 末端脫氧核苷酸轉移酶脫氧尿苷三磷酸切口末端標記分析 57 4.3.3 細胞存活率 58 第五章 結論 60 參考文獻 61

    [1] A. Gisterå, G.K. Hansson, The immunology of atherosclerosis, Nature Reviews Nephrology 13(6) (2017) 368-380.
    [2] P. Libby, Inflammation in atherosclerosis, Arteriosclerosis, thrombosis, and vascular biology 32(9) (2012) 2045-2051.
    [3] A.J. Kattoor, N.V.K. Pothineni, D. Palagiri, J.L. Mehta, Oxidative Stress in Atherosclerosis, Curr Atheroscler Rep 19(11) (2017) 42.
    [4] P. Libby, Inflammation in atherosclerosis, Nature 420(6917) (2002) 868-874.
    [5] J.-C. Tardif, J.J.V. McMurray, E. Klug, R. Small, J. Schumi, J. Choi, J. Cooper, R. Scott, E.F. Lewis, P.L. L'Allier, M.A. Pfeffer, Effects of succinobucol (AGI-1067) after an acute coronary syndrome: a randomised, double-blind, placebo-controlled trial, The Lancet 371(9626) (2008) 1761-1768.
    [6] S. Husted, H. Emanuelsson, S. Heptinstall, P.M. Sandset, M. Wickens, G. Peters, Pharmacodynamics, pharmacokinetics, and safety of the oral reversible P2Y12 antagonist AZD6140 with aspirin in patients with atherosclerosis: a double-blind comparison to clopidogrel with aspirin, European Heart Journal 27(9) (2006) 1038-47.
    [7] J.B.d. Oliveira, R. Rocha e Silva, D.M.S. Martins, R. De Mola, M.V.H.d. Carvalho, The composite aortic wall graft technique: an option for a short coronary artery bypass graft, Clinics (Sao Paulo) 64(8) (2009) 815-818.
    [8] Q. Chen, G.A. Thouas, Metallic implant biomaterials, Materials Science and Engineering: R: Reports 87 (2015) 1-57.
    [9] N.A. Scott, Restenosis following implantation of bare metal coronary stents: pathophysiology and pathways involved in the vascular response to injury, Advanced Drug Delivery Reviews 58(3) (2006) 358-376.
    [10] S.D. Sheth, R.P. Giugliano, Coronary artery stents: advances in technology, Hospital Practice 42(4) (2014) 83-91.
    [11] A.T. Ong, E.P. McFadden, E. Regar, P.P. de Jaegere, R.T. van Domburg, P.W. Serruys, Late angiographic stent thrombosis (LAST) events with drug-eluting stents, Journal of the American College of Cardiology 45(12) (2005) 2088-2092.
    [12] G. Mani, M.D. Feldman, D. Patel, C.M. Agrawal, Coronary stents: a materials perspective, Biomaterials 28(9) (2007) 1689-1710.
    [13] H. Kook, S.-W. Rha, W. Kim, D.H. Kim, S. Lee, S.-K. Oh, T.H. Ahn, W.H. Shim, A Case of Successful Bare Metal Stenting for Aortic Coarctation in an Adult, Korean Circulation Journal 43(4) (2013) 269-272.
    [14] D. Buccheri, D. Piraino, G. Andolina, B. Cortese, Understanding and managing in-stent restenosis: a review of clinical data, from pathogenesis to treatment, J Thorac Dis 8(10) (2016) E1150-E1162.
    [15] R. Virmani, A. Farb, Pathology of in-stent restenosis, Current opinion in lipidology 10(6) (1999) 499-506.
    [16] A. de Mel, G. Jell, M.M. Stevens, A.M. Seifalian, Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review, Biomacromolecules 9(11) (2008) 2969-2979.
    [17] G.J. Padfield, D.E. Newby, N.L. Mills, Understanding the role of endothelial progenitor cells in percutaneous coronary intervention, Journal of the American College of Cardiology 55(15) (2010) 1553-1565.
    [18] S. Kakinoki, K. Takasaki, A. Mahara, T. Ehashi, Y. Hirano, T. Yamaoka, Direct surface modification of metallic biomaterials via tyrosine oxidation aiming to accelerate the re‐endothelialization of vascular stents, Journal of Biomedical Materials Research Part A 106(2) (2018) 491-499.
    [19] H. Liu, C. Pan, Y. Liu, N. Huang, An inorganic coating and flexible regulating in situ of stent endothelialization by the controllable ion releasing, Materials Research Bulletin 107 (2018) 189-193.
    [20] D.L. Fischman, M.B. Leon, D.S. Baim, R.A. Schatz, M.P. Savage, I. Penn, K. Detre, L. Veltri, D. Ricci, M. Nobuyoshi, A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease, New England Journal of Medicine 331(8) (1994) 496-501.
    [21] T. Simard, B. Hibbert, F.D. Ramirez, M. Froeschl, Y.-X. Chen, E.R. O'Brien, The Evolution of Coronary Stents: A Brief Review, Canadian Journal of Cardiology 30(1) (2014) 35-45.
    [22] S.O. Marx, T. Jayaraman, L.O. Go, A.R. Marks, Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells, Circulation research 76(3) (1995) 412-417.
    [23] D.M. Martin, F.J. Boyle, Drug-eluting stents for coronary artery disease: a review, Medical engineering & physics 33(2) (2011) 148-163.
    [24] S. Cook, P. Wenaweser, M. Togni, M. Billinger, C. Morger, C. Seiler, R. Vogel, O. Hess, B. Meier, S. Windecker, Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation, Circulation 115(18) (2007) 2426-2434.
    [25] A.V. Finn, F.D. Kolodgie, J. Harnek, L.J. Guerrero, E. Acampado, K. Tefera, K. Skorija, D.K. Weber, H.K. Gold, R. Virmani, Differential response of delayed healing and persistent inflammation at sites of overlapping sirolimus- or paclitaxel-eluting stents, Circulation 112(2) (2005) 270-278.
    [26] M. Taniwaki, M.D. Radu, S. Zaugg, N. Amabile, H.M. Garcia-Garcia, K. Yamaji, E. Jørgensen, H. Kelbæk, T. Pilgrim, C. Caussin, Mechanisms of very late drug-eluting stent thrombosis assessed by optical coherence tomography, Circulation 133(7) (2016) 650-660.
    [27] L.-D. Hou, Z. Li, Y. Pan, M. Sabir, Y.-F. Zheng, L. Li, A review on biodegradable materials for cardiovascular stent application, Frontiers of Materials Science 10(3) (2016) 238-259.
    [28] E. Mostaed, M. Sikora-Jasinska, A. Mostaed, S. Loffredo, A. Demir, B. Previtali, D. Mantovani, R. Beanland, M. Vedani, Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation, Journal of the mechanical behavior of biomedical materials 60 (2016) 581-602.
    [29] T. Huang, J. Cheng, D. Bian, Y. Zheng, Fe–Au and Fe–Ag composites as candidates for biodegradable stent materials, Journal of Biomedical Materials Research Part B: Applied Biomaterials 104(2) (2016) 225-240.
    [30] D. Chen, Z. Su, L. Weng, L. Cao, C. Chen, S. Zeng, S. Zhang, T. Wu, Q. Hu, J. Xiao, Effect of inflammation on endothelial cells induced by poly-L-lactic acid degradation in vitro and in vivo, Journal of Biomaterials Science, Polymer Edition 29(15) (2018) 1909-1919.
    [31] R.A. Montone, G. Niccoli, F.D. Marco, S. Minelli, F. D’Ascenzo, L. Testa, F. Bedogni, F. Crea, Temporal Trends in Adverse Events After Everolimus-Eluting Bioresorbable Vascular Scaffold Versus Everolimus-Eluting Metallic Stent Implantation, Circulation 135(22) (2017) 2145-2154.
    [32] W. Klement, R.H. Willens, P.O.L. Duwez, Non-crystalline Structure in Solidified Gold–Silicon Alloys, Nature 187(4740) (1960) 869-870.
    [33] H.W. Kui, A.L. Greer, D. Turnbull, Formation of bulk metallic glass by fluxing, Applied Physics Letters 45(6) (1984) 615-616.
    [34] Y. Kawamura, T. Shibata, A. Inoue, T. Masumoto, Deformation behavior of Zr65Al10Ni10Cu15 glassy alloy with wide supercooled liquid region, Applied Physics Letters 69(9) (1996) 1208-1210.
    [35] D.V. Louzguine, H. Kato, A. Inoue, High-strength Cu-based crystal-glassy composite with enhanced ductility, Applied Physics Letters 84(7) (2004) 1088-1089.
    [36] M. Nastasi, F.W. Saris, L.S. Hung, J.W. Mayer, Stability of amorphous Cu/Ta and Cu/W alloys, Journal of Applied Physics 58(8) (1985) 3052-3058.
    [37] J. Rivory, J.M. Frigerio, M. Harmelin, A. Quivy, Y. Calvayrac, J. Bigot, Preparation of CUxZr1−x metallic glasses by sputtering and their thermal stability, electrical and optical properties, Thin Solid Films 89(3) (1982) 323-327.
    [38] J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, Thin film metallic glasses: Unique properties and potential applications, Thin Solid Films 520(16) (2012) 5097-5122.
    [39] J.J. Kruzic, Bulk Metallic Glasses as Structural Materials: A Review, Advanced Engineering Materials 18(8) (2016) 1308-1331.
    [40] J.F. Löffler, Bulk metallic glasses, Intermetallics 11(6) (2003) 529-540.
    [41] M.D. Demetriou, M.E. Launey, G. Garrett, J.P. Schramm, D.C. Hofmann, W.L. Johnson, R.O. Ritchie, A damage-tolerant glass, Nature Materials 10(2) (2011) 123-128.
    [42] A. Inoue, A. Takeuchi, Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys, Materials Science and Engineering: A 375-377 (2004) 16-30.
    [43] H. Jia, F. Liu, Z. An, W. Li, G. Wang, J.P. Chu, J.S.C. Jang, Y. Gao, P.K. Liaw, Thin-film metallic glasses for substrate fatigue-property improvements, Thin Solid Films 561 (2014) 2-27.
    [44] C.L. Qiu, Q. Chen, L. Liu, K.C. Chan, J.X. Zhou, P.P. Chen, S.M. Zhang, A novel Ni-free Zr-based bulk metallic glass with enhanced plasticity and good biocompatibility, Scripta Materialia 55(7) (2006) 605-608.
    [45] C.H. Chang, C.L. Li, C.C. Yu, Y.L. Chen, S. Chyntara, J.P. Chu, M.J. Chen, S.H. Chang, Beneficial effects of thin film metallic glass coating in reducing adhesion of platelet and cancer cells: Clinical testing, Surface and Coatings Technology 344 (2018) 312-321.
    [46] C.K. Sen, S. Khanna, M. Venojarvi, P. Trikha, E.C. Ellison, T.K. Hunt, S. Roy, Copper-induced vascular endothelial growth factor expression and wound healing, American Journal of Physiology-Heart and Circulatory Physiology 282(5) (2002) H1821-H1827.
    [47] J. Li, L. Ren, S. Zhang, G. Ren, K. Yang, Cu-bearing steel reduce inflammation after stent implantation, Journal of Materials Science: Materials in Medicine 26(2) (2015) 114-117.
    [48] S. Jin, X. Qi, B. Zhang, Z. Sun, B. Zhang, H. Yang, T. Wang, B. Zheng, X. Wang, Q. Shi, M. Chen, L. Ren, K. Yang, H. Zhong, Evaluation of promoting effect of a novel Cu-bearing metal stent on endothelialization process from in vitro and in vivo studies, Scientific Reports 7(1) (2017) 17394.
    [49] S.H. Teoh, Fatigue of biomaterials: a review, International Journal of Fatigue 22(10) (2000) 825-837.
    [50] V. Muthukumaran, V. Selladurai, S. Nandhakumar, M. Senthilkumar, Experimental investigation on corrosion and hardness of ion implanted AISI 316L stainless steel, Materials & Design 31(6) (2010) 2813-2817.
    [51] H.A. Zaman, S. Sharif, M.H. Idris, A. Kamarudin, Metallic biomaterials for medical implant applications: A Review, Applied Mechanics and Materials, Trans Tech Publ, 2015, pp. 19-25.
    [52] C. Uyan, H. Arinc, H. Gunduz, R. Akdemir, Immediate and six months clinical and angiographic results of intracoronary paclitaxel-coated stent implantation - the Meo:DrugStar-1 study, Vasc Health Risk Manag 4(1) (2008) 173-176.
    [53] E.A. Sprague, J.C. Palmaz, A Model System to Assess Key Vascular Responses to Biomaterials, Journal of Endovascular Therapy 12(5) (2005) 594-604.
    [54] L. NAVARRO, J. LUNA, I. RINTOUL, Surface conditioning of cardiovascular 316L stainless steel stents: a review, Surface Review and Letters 24(01) (2017) 1730002.
    [55] K. Kolandaivelu, F. Rikhtegar, The Systems Biocompatibility of Coronary Stenting, Interventional Cardiology Clinics 5 (2016) 295-306.
    [56] Z. Marczenko, M. Balcerzak, Copper, Separation, Preconcentration and Spectrophotometry in Inorganic Analysis2000, pp. 177-188.
    [57] N. Muslim, Y.W. Soon, C.M. Lim, Y. Voo, Influence of sputtering power on properties of titanium thin films deposited by rf magnetron sputtering, Journal of Engineering and Applied Sciences 10 (2015) 7184-7189.
    [58] Y. Arima, H. Iwata, Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers, Biomaterials 28(20) (2007) 3074-3082.
    [59] M. Gindl, G. Sinn, W. Gindl, A. Reiterer, S. Tschegg, A comparison of different methods to calculate the surface free energy of wood using contact angle measurements, Colloids and Surfaces A: Physicochemical and Engineering Aspects 181(1) (2001) 279-287.
    [60] L. Ren, L. Xu, J. Feng, Y. Zhang, K. Yang, In vitro study of role of trace amount of Cu release from Cu-bearing stainless steel targeting for reduction of in-stent restenosis, Journal of Materials Science: Materials in Medicine 23(5) (2012) 1235-1245.
    [61] C.K. Sen, S. Khanna, M. Venojarvi, P. Trikha, E.C. Ellison, T.K. Hunt, S. Roy, Copper-induced vascular endothelial growth factor expression and wound healing, American Journal of Physiology-Heart and Circulatory Physiology 282(5) (2002) H1821-7.
    [62] S. Li, Y. Hong, X. Jin, X. Li, E. Sun, G. Zhang, L. Lu, L. Nie, Agkistrodon acutus-purified protein C activator protects human umbilical vein endothelial cells against H2O2-induced apoptosis, Pharmaceutical Biology 54(12) (2016) 3285-3291.
    [63] L. Zhu, J. Zang, B. Liu, G. Yu, L. Hao, L. Liu, J. Zhong, Oxidative stress-induced RAC autophagy can improve the HUVEC functions by releasing exosomes, Journal of Cellular Physiology (2020).

    無法下載圖示 全文公開日期 2025/08/27 (校內網路)
    全文公開日期 2025/08/27 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE