簡易檢索 / 詳目顯示

研究生: Alemu Tesfaye Negussie
Alemu - Tesfaye Negussie
論文名稱: Annealing-Induced Indentation Recovery in Thin Film Metallic Glasses: Effects of Annealing Condition, Indenter Geometry, Film Composition and Thickness
Annealing-Induced Indentation Recovery in Thin Film Metallic Glasses: Effects of Annealing Condition, Indenter Geometry, Film Composition and Thickness
指導教授: 朱瑾
Jinn P.Chu
口試委員: 陳炤彰
Chao-Chang Chen
顏怡文
Yee-wen Yen
李志偉
Jyh-Wei Lee
薛承輝
Chun-Hway Hsueh
鄭憲清
Jason Shian-Ching Jang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 132
中文關鍵詞: 金屬玻璃薄膜壓痕恢復退火粗糙度探針尖端形狀薄膜成分
外文關鍵詞: Thin film metallic glass, Indentation depth recovery, Annealing, Roughness, Indenter tip geometry, Film composition
相關次數: 點閱:237下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於金屬玻璃薄膜具有獨特的性質,因此已在許多不同領域中被研究及工程上的應用,例如醫療器具、微機電系統元件以及改善材料的機械性職等。金屬玻璃薄膜用於特定的應用潛力,其電學性質、機械性質及熱性質已被熟知,因此金屬玻璃薄膜的壓痕接觸變形恢復性質必須被考慮。本研究中,探討退火溫度、持溫時間、自由體積、探針尖端幾何形狀、薄膜成分及薄膜厚度對於鋯基、銅基、鉿基及鐵基金屬玻璃薄膜壓痕恢復的影響。
    關於濺鍍的鋯基金屬玻璃薄膜於加熱後的壓痕恢復性質研究,由於表面張力驅動黏性流動,壓痕的形狀於不同的溫度及持溫時間具有不同程度的恢復,我們發現其在過冷液態區間退火後可達到59.8%最大壓痕深度恢復,薄膜中的自由體積量在壓痕恢復中扮演重要的角色。原子力顯微鏡結果顯示在過冷液態區間退火後,所量測到薄膜的粗糙度降低到最小值。此外我們使用模擬系統來解釋實驗上所觀察到的壓痕恢復,模擬結果顯示,於退火後,壓印所造成的凹陷恢復了許多。
    關於探針尖端幾何形狀、薄膜厚度及薄膜成分對於鋯基、銅基、鉿基及鐵基金屬玻璃薄膜壓痕恢復的影響研究,我們在室溫下使用兩種三面錐體探針尖端 (Berkovich and Cube-corner) 進行奈米壓印,接著退火於過冷液態區間,結果顯示,由Berkovich 探針尖端所壓印的壓痕其壓痕恢復程度大於Cube-corner 探針尖端所壓印的壓痕,其原因為,相較於Cube-corner,Berkovich 探針尖端具有較大的曲率半徑,因此在壓印後,Berkovich的壓痕下具有較高的壓應力,於鋯基金屬玻璃薄膜的深度剖析模擬中顯示愈鈍的探針尖端所形成的壓痕具有較高的恢復率,較厚的薄膜也顯示具有較高的恢復率。此外,由於薄膜成分中元素組成不同所造成園子間鍵結的差異,相較於銅基、鉿基及鐵基金屬玻璃薄膜,鋯基金屬玻璃薄膜具有較高的恢復率。
    當金屬玻璃薄膜於結晶溫度附近進行退火且有較長的持溫時間時,其具有較大的壓痕恢復,此外,若薄膜由較鈍的探針尖端所壓印、具有較厚的膜厚以及具有較低的玻璃轉移溫度其所顯示的壓痕恢復率較大。


    Because of their unique properties, most recently, thin film metallic glasses (TFMGs) have been studied for various research and engineering applications, such as for medical tools, microelectromechanical system (MEMS) devices, and improving mechanical properties of materials. TFMGs to be used for a particular potential application, their electrical, mechanical, and thermal properties should be well known and thus, indentation recovery property of TFMGs following contact deformation must be considered. In this study, the effects of annealing temperature, holding time, free volume, indenter geometry, film composition, and film thickness on indentation recovery property of Zr50.3Cu28.1Al14Ni7.6, Cu48Zr42Al6Ti4, Hf45.9Cu44.8Al6.5Ti2.8, and Fe65Ti13Co8Ni7B6Nb1 (in at. %) TFMGs are examined.
    The indentation recovery property of a sputtered Zr50.3Cu28.1Al14Ni7.6 (in at. %) thin film metallic glass upon heating is examined. Due to the surface tension-driven viscous flow, the shape of indentation appears to recover to different extents at various temperatures and holding times. It is found that a maximum of 59.8% indentation depth recovery is achieved after annealing within the supercooled liquid region (SCLR). The amount of free volume in the film is found to play a role in the recovery. Atomic force microscopy results reveal a decrease in film roughness to a minimum value after annealing within SCLR. To elucidate the experimentally observed shape recovery, a numerical modelling has been employed. It is evident that the depressed region caused by indentation is elevated after annealing.
    The influences of indenter tip geometry, film thickness and film composition on indentation recovery of Zr-, Cu-, Hf-, and Fe-based TFMGs have been studied. Nanoindentations are performed at room temperature with two three-sided pyramidal indenters (Berkovich and cube-corner), followed by annealing performed within the supercooled liquid temperatures. The results reveal that the extent of recovery of indentation by Berkovich indenter is higher than that of cube-corner owing to higher compressive stress underneath of Berkovich tip and larger radius of curvature of the indent left behind after Berkovich indentation. The numerical modelling of depth profile of Zr-based TFMG shows the blunter the indenter tip is the higher the recovery. The thicker film also shows larger recovery. In addition, because of the bonding force difference between constituent elements, Zr-based TFMG exhibits larger recovery than Cu-, Hf- and Fe-based TFMGs.
    Larger indentation recovery is achieved when TFMGs are annealed at around their corresponding crystallization temperature and longer holding time. In addition, films indented by blunter indenter, the thicker film, and the film that has lower glass transition temperature showed larger indentation recovery.

    中文摘要 Abstract Acknowledgments Table of Contents List of Figures List of Tables Chapter 1 Introduction Objectives of the Study Chapter 2 Background 2.1 Metallic Glass 2.1.1 Bulk Metallic Glass (BMG) 2.1.2 Thin Film Metallic Glass (TFMG) 2.2 Mechanical Properties of Metallic Glass 2.3 Deformation of Metallic Glass 2.3.1 Deformation Mechanisms of Metallic Glass 2.3.2 Factors Affecting Deformation Behavior of Metallic Glass 2.3.2.1 Indenter Tip Geometry 2.3.2.2 Load and Loading Rate 2.3.2.3 Temperature 2.4 Annealing-Induced Amorphization 2.5 Thermal Properties of Metallic Glass 2.5.1 Viscosity 2.5.2 Coefficient of Thermal Expansion (CTE) 2.6 Indentation Recovery of Metallic Glass 2.7 Potential Applications of TFMGs and BMGs 2.8 Physical Vapor Deposition 2.8.1 Sputtering 2.8.1.1 Magnetron Sputtering 2.8.1.2 RF and DC Magnetron Sputtering Deposition 2.9 Nanoindentation 2.10 Atomic Force Microscopy (AFM) Chapter 3 Experimental Section 3.1 Experimental Procedures 3.2 Thin Film Deposition 3.3 Heat Treatment 3.4 Making Mark 3.5 Thin Film Characterization 3.5.1 Chemical Composition 3.5.2 Crystallography 3.5.3 Thermal Analysis 3.5.4 Electrical Resistivity 3.5.5 Nanoindentation 3.5.6 Surface Topography, Roughness and Indentation depth profile 3.5.7 Numerical Simulation Chapter 4 Results and Discussion 4.1 Effects of Annealing Temperature and Time on Indentation Recovery 4.1.1 Chemical Composition 4.1.2 Thermal and Electrical Analysis 4.1.3 Annealing-Induced Amorphization 4.1.4 X-ray Diffraction Analysis 4.1.5 Indentation Recovery 4.1.5.1 Effects of Annealing Temperature 4.1.5.2 Effects of Annealing Holding Time 4.1.5.3 Numerical Modeling 4.2 Effects of Indenter Tip Geometry, Film Thickness, and Film Composition on Indentation Recovery 4.2.1 Effects of Indenter Tip Geometry 4.2.1.1 Numerical Modeling for Effect of Indenter Tip Geometry 4.2.2 Effects of Film Thickness on Indentation Recovery 4.2.3 Effects of Film Composition on Indentation Recovery 4.2.3.1 Chemical Analysis 4.2.3.2 Thermal Analysis 4.2.3.3 X-ray Diffraction Analysis Chapter 5 Conclusions and Future Works 5.1 Conclusions 5.2 Future Works References

    [1] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Materialia, 55 (2007) 4067-4109.
    [2] J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, Thin film metallic glasses: Unique properties and potential applications, Thin Solid Films, 520 (2012) 5097-5122.
    [3] J.M. Wheeler, R. Raghavan, J. Michler, In situ SEM indentation of a Zr-based bulk metallic glass at elevated temperatures, Materials Science and Engineering: A, 528 (2011) 8750-8756.
    [4] J. Basu, S. Ranganathan, Bulk metallic glasses: A new class of engineering materials, Sadhana, 28 (2003) 783-798.
    [5] W. Klement, R.H. Willens, P. Duwez, Non-crystalline Structure in Solidified Gold-Silicon Alloys, Nature, 187 (1960) 869-870.
    [6] J.P. Chu, J.C. Huang, J.S.C. Jang, Y.C. Wang, P.K. Liaw, Thin film metallic glasses: Preparations, properties, and applications, JOM, 62 (2010) 19-24.
    [7] S. Xie, E.P. George, Hardness and shear band evolution in bulk metallic glasses after plastic deformation and annealing, Acta Materialia, 56 (2008) 5202-5213.
    [8] J. Schroers, T. Nguyen, S. O’Keeffe, A. Desai, Thermoplastic forming of bulk metallic glass—Applications for MEMS and microstructure fabrication, Materials Science and Engineering: A, 449–451 (2007) 898-902.
    [9] S. Hata, J. Sakurai, A. Shimokohbe, Thin film metallic glasses as new MEMS materials, in: 18th IEEE International Conference on Micro Electro Mechanical Systems, 2005, pp. 479-482.
    [10] H.W. Jeong, S. Hata, A. Shimokohbe, Microforming of three-dimensional microstructures from thin-film metallic glass, Journal of Microelectromechanical Systems, 12 (2003) 42-52.
    [11] N. Li, L. Liu, K.C. Chan, Q. Chen, J. Pan, Deformation behavior and indentation size effect of Au49Ag5.5Pd2.3Cu26.9Si16.3 bulk metallic glass at elevated temperatures, Intermetallics, 17 (2009) 227-230.
    [12] J.F. Loffler, Bulk metallic glasses, Intermetallics, 11 (2003) 529-540.
    [13] J. Schroers, Processing of Bulk Metallic Glass, Advanced Materials, 22 (2010) 1566-1597.
    [14] M.M. Trexler, N.N. Thadhani, Mechanical properties of bulk metallic glasses, Progress in Materials Science, 55 (2010) 759-839.
    [15] H. Li, L. Li, C. Fan, H. Choo, P.K. Liaw, Nanocrystalline coating enhanced ductility in a Zr-based bulk metallic glass, Journal of Materials Research, 22 (2007) 508-513.
    [16] H.W. Jeong, S. Hata, A. Shimokohbe, Micro-forming of thin film metallic glass by local laser heating, in, Las Vegas, NV, 2002, pp. 372-375.
    [17] F.X. Liu, P.K. Liaw, W.H. Jiang, C.L. Chiang, Y.F. Gao, Y.F. Guan, J.P. Chu, P.D. Rack, Fatigue-resistance enhancements by glass-forming metallic films, Materials Science and Engineering: A, 468–470 (2007) 246-252.
    [18] H. Jia, F. Liu, Z. An, W. Li, G. Wang, J.P. Chu, J.S.C. Jang, Y. Gao, P.K. Liaw, Thin-film metallic glasses for substrate fatigue-property improvements, Thin Solid Films, (2014).
    [19] J.J. Pang, M.J. Tan, K.M. Liew, C. Shearwood, Nanoindentation study of size effect and loading rate effect on mechanical properties of a thin film metallic glass Cu 49.3Zr 50.7, Physica B: Condensed Matter, 407 (2012) 340-345.
    [20] Y.H. Liu, F. Zhao, Y.L. Li, M.W. Chen, Deformation behavior of metallic glass thin films, Journal of Applied Physics, 112 (2012) 063504-063504.
    [21] Y. Huang, Y.L. Chiu, J. Shen, J.J.J. Chen, J. Sun, Nanoindentation study of Ti-based metallic glasses, Journal of Alloys and Compounds, 479 (2009) 121-128.
    [22] N.K. Mukhopadhyay, A. Belger, P. Paufler, D.H. Kim, Nanoindentation studies on Cu-Ti-Zr-Ni-Si-Sn bulk metallic glasses, Materials Science and Engineering A, 448-451 (2007) 954-957.
    [23] C.A. Schuh, T.G. Nieh, A nanoindentation study of serrated flow in bulk metallic glasses, Acta Materialia, 51 (2003) 87-99.
    [24] M. Hojamberdiev, H.J. Stevens, Indentation recovery of soda-lime silicate glasses containing titania, zirconia and hafnia at low temperatures, Materials Science and Engineering: A, 532 (2012) 456-461.
    [25] M. Hojamberdiev, H.J. Stevens, W.C. LaCourse, Environment-dependent indentation recovery of select soda-lime silicate glasses, Ceramics International, 38 (2012) 1463-1471.
    [26] S. Yoshida, H. Sawasato, T. Sugawara, Y. Miura, J. Matsuoka, Effects of indenter geometry on indentation-induced densification of soda-lime glass, Journal of Materials Research, 25 (2010) 2203-2211.
    [27] B.G. Yoo, J.Y. Kim, J.I. Jang, Influence of indenter geometry on the deformation behavior of Zr60Cu30Al10 bulk metallic glass during nanoindentation (Special issue on bulk metallic glasses: selected papers from the fifth international conference on bulk metallic glasses (BMGV)), Materials Transactions, 48 (2007) 1765-1769.
    [28] S. Yoshida, J.C. Sanglebœuf, T. Rouxel, Quantitative evaluation of indentation-induced densification in glass, Journal of Materials Research, 20 (2005) 3404-3412.
    [29] G. Kumar, J. Schroers, Write and erase mechanisms for bulk metallic glass, Applied Physics Letters, 92 (2008) 031901-031903.
    [30] C.E. Packard, J. Schroers, C.A. Schuh, In situ measurements of surface tension-driven shape recovery in a metallic glass, Scripta Materialia, 60 (2009) 1145-1148.
    [31] W.H. Wang, C. Dong, C.H. Shek, Bulk metallic glasses, Materials Science and Engineering: R: Reports, 44 (2004) 45-89.
    [32] C. Suryanarayana, A. Inoue, Bulk Metallic Glasses, CRC Press, New York, 2011.
    [33] H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, Atomic packing and short-to-medium-range order in metallic glasses, Nature, 439 (2006) 419-425.
    [34] Y.Q. Cheng, E. Ma, Atomic-level structure and structure-property relationship in metallic glasses, Progress in Materials Science, 56 (2011) 379-473.
    [35] H.S. Chen, D. Turnbull, Thermal Properties of Gold-Silicon Binary Alloy near the Eutectic Composition, Journal of Applied Physics, 38 (1967) 3646-3650.
    [36] A. Inoue, T. Zhang, W. Zhang, A. Takeuchi, Bulk Nd-Fe-Al amorphous alloys with hard magnetic properties, Materials Transactions, JIM, 37 (1996) 99-108.
    [37] C.A. Angell, Formation of Glasses from Liquids and Biopolymers, Science, 267 (1995) 1924-1935.
    [38] H.S. Chen, D. Turnbull, Formation, stability and structure of palladium-silicon based alloy glasses, Acta Metallurgica, 17 (1969) 1021-1031.
    [39] Y. Liu, S. Hata, K. Wada, A. Shimokohbe, Thermal, Mechanical and Electrical Properties of Pd-Based Thin-Film Metallic Glass, Jpn. J. Appl. Phys, 40 (2001) 5382–5388.
    [40] A. Inoue, A. Takeuchi, Recent progress in bulk glassy alloys, Materials Transactions, 43 (2002) 1892-1906.
    [41] G.Y. Wang, P.K. Liaw, A. Peker, M. Freels, W.H. Peter, R.A. Buchanan, C.R. Brooks, Comparison of fatigue behavior of a bulk metallic glass and its composite, Intermetallics, 14 (2006) 1091-1097.
    [42] R.H.W. W. Klement, P. Duwez, Non-crystalline Structure in Solidified Gold-Silicon Alloys, Nature, 187 (1960) 2.
    [43] G. Kumar, A. Desai, J. Schroers, Bulk metallic glass: The smaller the better, Advanced Materials, 23 (2011) 461-476.
    [44] N. Chen, Y. Li, K.-F. Yao, Thermal stability and fragility of Pd–Si binary bulk metallic glasses, Journal of Alloys and Compounds, 504, Supplement 1 (2010) S211-S214.
    [45] L. Luo, R. Tian, X. Xiao, Development of bulk metallic glasses based on the Dy-Al binary eutectic composition, Journal of Rare Earths, 26 (2008) 813-816.
    [46] L. Xia, S.T. Shan, D. Ding, Y.D. Dong, Binary bulk metallic glass Ni62Nb38 with high compressive strength of 3100 MPa, Intermetallics, 15 (2007) 1046-1049.
    [47] D. Xu, B. Lohwongwatana, G. Duan, W.L. Johnson, C. Garland, Bulk metallic glass formation in binary Cu-rich alloy series – Cu100−xZrx (x=34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass, Acta Materialia, 52 (2004) 2621-2624.
    [48] N. Nishiyama, A. Inoue, Glass-forming ability of Pd42.5Cu30Ni7.5P20 alloy with a low critical cooling rate of 0.067 K/s, Applied Physics Letters, 80 (2002) 568-570.
    [49] K. Amiya, A. Inoue, Fe-(Cr,Mo)-(C,B)-Tm Bulk Metallic Glasses with High Strength and High Glass-Forming Ability, MATERIALS TRANSACTIONS, 47 (2006) 1615-1618.
    [50] Y.H. Li, W. Zhang, C. Dong, J.B. Qiang, K. Yubuta, A. Makino, A. Inoue, Unusual compressive plasticity of a centimeter-diameter Zr-based bulk metallic glass with high Zr content, Journal of Alloys and Compounds, 504, Supplement 1 (2010) S2-S5.
    [51] Q. Zhang, W. Zhang, A. Inoue, New Cu–Zr-based bulk metallic glasses with large diameters of up to 1.5 cm, Scripta Materialia, 55 (2006) 711-713.
    [52] V. Ponnambalam, S.J. Poon, G.J. Shiflet, Fe-based bulk metallic glasses with diameter thickness larger than one centimeter, Journal of Materials Research, 19 (2004) 1320-1323.
    [53] I.R. Lu, G. Wilde, G.P. Gorler, R. Willnecker, Thermodynamic properties of Pd-based glass-forming alloys, Journal of Non-Crystalline Solids, 250–252, Part 2 (1999) 577-581.
    [54] C.L. Chiang, J.P. Chu, F.X. Liu, P.K. Liaw, R.A. Buchanan, A 200nm thick glass-forming metallic film for fatigue-property enhancements, Applied Physics Letters, 88 (2006) 131902.
    [55] G.P. Zhang, Y. Liu, B. Zhang, Effect of annealing close to Tg on notch fracture toughness of Pd-based thin-film metallic glass for MEMS applications, Scripta Materialia, 54 (2006) 897-901.
    [56] W. Diyatmika, J.P. Chu, Y.W. Yen, C.H. Hsueh, Sn whisker mitigation by a thin metallic-glass underlayer in Cu-Sn, Applied Physics Letters, 103 (2013) 241912.
    [57] J.P. Chu, T.Y. Liu, C.L. Li, C.H. Wang, J.S.C. Jang, M.J. Chen, S.H. Chang, W.C. Huang, Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application, Thin Solid Films, 561 (2014) 102-107.
    [58] W. Diyatmika, J.P. Chu, Y.W. Yen, W.Z. Chang, C.H. Hsueh, Thin film metallic glass as an underlayer for tin whisker mitigation: A room-temperature evaluation, Thin Solid Films, 561 (2014) 93-97.
    [59] C.J. Lee, J.C. Huang, T.G. Nieh, Sample size effect and microcompression of Mg65 Cu25 Gd10 metallic glass, Applied Physics Letters, 91 (2007).
    [60] Y.H. Lai, C.J. Lee, Y.T. Cheng, H.S. Chou, H.M. Chen, X.H. Du, C.I. Chang, J.C. Huang, S.R. Jian, J.S.C. Jang, T.G. Nieh, Bulk and microscale compressive behavior of a Zr-based metallic glass, Scripta Materialia, 58 (2008) 890-893.
    [61] D. Jang, J.R. Greer, Transition from a strong-yet-brittle to astronger-and-ductile state by size reductionofmetallicglasses, Nature Materials, 9 (2010) 215-219.
    [62] D. Jang, C.T. Gross, J.R. Greer, Effects of size on the strength and deformation mechanism in Zr-based metallic glasses, International Journal of Plasticity, 27 (2011) 858-867.
    [63] C.C. Wang, J. Ding, Y.Q. Cheng, J.C. Wan, L. Tian, J. Sun, Z.W. Shan, J. Li, E. Ma, Sample size matters for Al88Fe7Gd5 metallic glass: Smaller is stronger, Acta Materialia, 60 (2012) 5370-5379.
    [64] C.Q. Chen, Y.T. Pei, J.T.M. De Hosson, Effects of size on the mechanical response of metallic glasses investigated through in situ TEM bending and compression experiments, Acta Materialia, 58 (2010) 189-200.
    [65] A. Bharathula, S.W. Lee, W.J. Wright, K.M. Flores, Compression testing of metallic glass at small length scales: Effects on deformation mode and stability, Acta Materialia, 58 (2010) 5789-5796.
    [66] S. Hata, K. Sato, A. Shimokohbe, Fabrication of thin film metallic glass and its application to microactuators, in, 1999, pp. 97-108.
    [67] L. Yongdong, S. Hata, K. Wada, A. Shimokohbe, Thin film metallic glasses: fabrication and property test, in: The 14th IEEE International Conference on Micro Electro Mechanical Systems 2001, pp. 102-105.
    [68] K. Takenaka, N. Saidoh, N. Nishiyama, A. Inoue, Fabrication and nano-imprintabilities of Zr-, Pd- and Cu-based glassy alloy thin films, Nanotechnology, 22 (2011) 105302.
    [69] P. Sharma, N. Kaushik, H. Kimura, Y. Saotome, A. Inoue, Nano-fabrication with metallic glass - An exotic material for nano-electromechanical systems, Nanotechnology, 18 (2007) 035302.
    [70] J.P. Chu, C.T. Liu, T. Mahalingam, S.F. Wang, M.J. O’Keefe, B. Johnson, C.H. Kuo, Annealing-induced full amorphization in a multicomponent metallic film, Physical Review B, 69 (2004) 113410.
    [71] J.P. Chu, C.Y. Wang, L.J. Chen, Q. Chen, Annealing-induced amorphization in a sputtered glass-forming film: In-situ transmission electron microscopy observation, Surface and Coatings Technology, 205 (2011) 2914-2918.
    [72] J.P. Chu, C.T. Lo, Y.K. Fang, B.S. Han, On annealing-induced amorphization and anisotropy in a ferromagnetic Fe-based film: A magnetic and property study, Applied Physics Letters, 88 (2006) 012510-012513.
    [73] J.P. Chu, Annealing-induced amorphization in a glass-forming thin film, JOM, 61 (2009) 72-75.
    [74] L. Zhang, L.-l. Shi, J. Xu, Hf–Cu–Ni–Al bulk metallic glasses: Optimization of glass-forming ability and plasticity, Journal of Non-Crystalline Solids, 355 (2009) 1005-1007.
    [75] S.-f. Guo, Y. Shen, Design of high strength Fe-(P, C)-based bulk metallic glasses with Nb addition, Transactions of Nonferrous Metals Society of China, 21 (2011) 2433-2437.
    [76] O.V. Kuzmin, Y.T. Pei, J.T.M. De Hosson, Size effects and ductility of Al-based metallic glass, Scripta Materialia, 67 (2012) 344-347.
    [77] C.C. Wang, J. Ding, Y.Q. Cheng, J.C. Wan, L. Tian, J. Sun, Z.W. Shan, J. Li, E. Ma, Sample size matters for Al 88Fe 7Gd 5 metallic glass: Smaller is stronger, Acta Materialia, 60 (2012) 5370-5379.
    [78] F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metallurgica, 25 (1977) 407-415.
    [79] A.S. Argon, Plastic deformation in metallic glasses, Acta Metallurgica, 27 (1979) 47-58.
    [80] J. Lu, G. Ravichandran, W.L. Johnson, Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures, Acta Materialia, 51 (2003) 3429-3443.
    [81] B. van Aken, P. de Hey, J. Sietsma, Structural relaxation and plastic flow in amorphous La50Al25Ni25, Materials Science and Engineering: A, 278 (2000) 247-254.
    [82] P. Li, J. Hao, J. Tan, Q. Wang, Influence of annealing on the elastic properties and microstructure of Cu58.1Zr35.9Al6 bulk metallic glass, Materials Science and Engineering A, 527 (2010) 3416-3419.
    [83] Q.P. Cao, J.F. Li, Y.H. Zhou, A. Horsewell, J.Z. Jiang, Free-volume evolution and its temperature dependence during rolling of Cu60Zr20Ti20 bulk metallic glass, Applied Physics Letters, 87 (2005) 101901.
    [84] A.C. Fischer-Crips, Nanoindentation, 1st ed., Springer, New York, 2002.
    [85] N.A. Sakharova, J.V. Fernandes, J.M. Antunes, M.C. Oliveira, Comparison between Berkovich, Vickers and conical indentation tests: A three-dimensional numerical simulation study, International Journal of Solids and Structures, 46 (2009) 1095-1104.
    [86] B.G. Yoo, J.Y. Kim, J.I. Jang, Influence of Indenter Geometry on the Deformation Behavior of Zr60Cu30Al10 Bulk Metallic Glass during Nanoindentation, Materials Transactions, 48 (2007) 1765-1769.
    [87] T.M. Gross, Deformation and cracking behavior of glasses indented with diamond tips of various sharpness, Journal of Non-Crystalline Solids, 358 (2012) 3445-3452.
    [88] J. Wu, Y. Pan, J. Pi, Nanoindentation study of Cu52Zr37Ti 8In3 bulk metallic glass, Applied Physics A: Materials Science and Processing, 115 (2014) 305-312.
    [89] V. Nekouie, G. Abeygunawardane-Arachchige, U. Kuhn, A. Roy, V.V. Silberschmidt, Indentation-induced deformation localisation in Zr–Cu-based metallic glass, Journal of Alloys and Compounds, (2013).
    [90] C.E. Packard, C.A. Schuh, Initiation of shear bands near a stress concentration in metallic glass, Acta Materialia, 55 (2007) 5348-5358.
    [91] C. Nagel, K. Ratzke, E. Schmidtke, F. Faupel, W. Ulfert, Positron-annihilation studies of free-volume changes in the bulk metallic glass Zr65Al7.5Ni10Cu17.5 during structural relaxation and at the glass transition, Physical Review B, 60 (1999) 9212-9215.
    [92] J.P. Chu, S.F. Wang, S.J. Lee, C.W. Chang, Crystallization of sputtered BaTiO[sub 3]-based thin films: A differential scanning calorimetry study, Journal of Applied Physics, 88 (2000) 6086-6088.
    [93] J.P. Chu, C.M. Lee, R.T. Huang, P.K. Liaw, Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects, Surface and Coatings Technology, 205 (2011) 4030-4034.
    [94] Y.C. Chang, J.C. Huang, C.W. Tang, C.I. Chang, J.S.C. Jang, Viscous Flow Behavior and Workability of Mg-Cu-(Ag)-Gd Bulk Metallic Glasses, Materials Transactions, 49 (2008) 2605-2610.
    [95] Y.C. Chang, J.C. Huang, Y.T. Cheng, C.J. Lee, X.H. Du, T.G. Nieh, On the fragility and thermomechanical properties of Mg--Cu--Gd--(B) bulk metallic glasses, Journal of Applied Physics, 103 (2008) 103521-103526.
    [96] T.W. Tang, Y.C. Chang, J.C. Huang, Q. Gao, J.S.C. Jang, C.Y.A. Tsao, On thermomechanical properties of Au–Ag–Pd–Cu–Si bulk metallic glass, Materials Chemistry and Physics, 116 (2009) 569-572.
    [97] G.J. Fan, H.-J. Fecht, E.J. Lavernia, Viscous flow of the Pd43Ni10Cu27P20 bulk metallic glass-forming liquid, Applied Physics Letters, 84 (2004) 487-489.
    [98] R. Busch, E. Bakke, W.L. Johnson, Viscosity of the supercooled liquid and relaxation at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy, Acta Materialia, 46 (1998) 4725-4732.
    [99] E. Bakke, R. Busch, W.L. Johnson, The viscosity of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming alloy in the supercooled liquid, Applied Physics Letters, 67 (1995) 3260-3262.
    [100] G. Li, Y.C. Li, Z.K. Jiang, T. Xu, L. Huang, J. Liu, T. Zhang, R.P. Liu, Elasticity, thermal expansion and compressive behavior of Mg65Cu25Tb10 bulk metallic glass, Journal of Non-Crystalline Solids, 355 (2009) 521-524.
    [101] Y.F. Zhu, J.S. Lian, Q. Jiang, Modeling of the melting point, debye temperature, thermal expansion coefficient, and the specific heat of nanostructured materials, Journal of Physical Chemistry C, 113 (2009) 16896-16900.
    [102] H. Kato, H.S. Chen, A. Inoue, Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses, Scripta Materialia, 58 (2008) 1106-1109.
    [103] H. Kimura, M. Kishida, T. Kaneko, A. Inoue, T. Masumoto, Physical and mechanical properties of Zr-based metallic glasses, Materials Transactions, JIM, 36 (1995) 890-895.
    [104] N. Mattern, U. Kuhn, H. Hermann, S. Roth, H. Vinzelberg, J. Eckert, Thermal behavior and glass transition of Zr-based bulk metallic glasses, Materials Science and Engineering: A, 375–377 (2004) 351-354.
    [105] T. Komatsu, K. Matusita, R. Yokota, Compositional dependence of thermal expansion coefficient of metallic glasses, Journal of Non-Crystalline Solids, 72 (1985) 279-286.
    [106] W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Progress in Materials Science, 57 (2012) 487-656.
    [107] S. Yoshida, J.C. Sanglebœuf, T. Rouxel, Indentation-induced densification of soda-lime silicate glass, International Journal of Materials Research, 98 (2007) 360-364.
    [108] N. Li, X. Xu, Z. Zheng, L. Liu, Enhanced formability of a Zr-based bulk metallic glass in a supercooled liquid state by vibrational loading, Acta Materialia, 65 (2014) 400-411.
    [109] J. Schroers, On the formability of bulk metallic glass in its supercooled liquid state, Acta Materialia, 56 (2008) 471-478.
    [110] S. Hata, K. Sato, A. Shimokohbe, Fabrication of thin film metallic glass and its application to microactuators, (1999) 97-108.
    [111] J.P. Chu, J.E. Greene, J.S.C. Jang, J.C. Huang, Y.L. Shen, P.K. Liaw, Y. Yokoyama, A. Inoue, T.G. Nieh, Bendable bulk metallic glass: Effects of a thin, adhesive, strong, and ductile coating, Acta Materialia, 60 (2012) 3226-3238.
    [112] Y.Z. Chang, P.H. Tsai, J.B. Li, H.C. Lin, J.S.C. Jang, C. Li, G.J. Chen, Y.C. Chen, J.P. Chu, P.K. Liaw, Zr-based metallic glass thin film coating for fatigue-properties improvement of 7075-T6 aluminum alloy, Thin Solid Films, 544 (2013) 331-334.
    [113] C.M. Lee, J.P. Chu, W.Z. Chang, J.W. Lee, J.S.C. Jang, P.K. Liaw, Fatigue property improvements of Ti–6Al–4V by thin film coatings of metallic glass and TiN: a comparison study, Thin Solid Films, 561 (2014) 33-37.
    [114] J. Schroers, G. Kumar, T. Hodges, S. Chan, T. Kyriakides, Bulk metallic glasses for biomedical applications, JOM, 61 (2009) 21-29.
    [115] J.E. Mahan, Physical Vapor Deposition of Thin Films, Wiley, New York, 2000.
    [116] http://www.alacritas-consulting.com, in.
    [117] M.K. K.Wasa, H.Adachi, Thin Film Materials Technology, Springer, United States, 2004.
    [118] http://www.cyberchemvn.com, in.
    [119] H. Nili, K. Kalantar-zadeh, M. Bhaskaran, S. Sriram, In situ nanoindentation: Probing nanoscale multifunctionality, Progress in Materials Science, 58 (2013) 1-29.
    [120] X. Li, B. Bhushan, A review of nanoindentation continuous stiffness measurement technique and its applications, Materials Characterization, 48 (2002) 11-36.
    [121] G.M. Pharr, Measurement of mechanical properties by ultra-low load indentation, Materials Science and Engineering: A, 253 (1998) 151-159.
    [122] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, 7 (1992) 1564-1580.
    [123] http://www.nanoindentation.cornell.edu, in.
    [124] G. Binnig, C.F. Quate, C. Gerber, Atomic Force Microscope, Physical Review Letters, 56 (1986) 930-933.
    [125] www.accessscience.com, in.
    [126] S.S.G. S. Chatterjee, T. K. Kundu, Atomic Force Microscopy: a tool to unveil the mystery of biological systems, Journal of Science Education, (2010) 622-642.
    [127] Y. Zhao, Yun, A. Inoue, C. Chang, J. Liu, B. Shen, X. Wang, R.-W. Li, Composition Effect on Intrinsic Plasticity or Brittleness in Metallic Glasses, Sci. Rep., 4 (2014).
    [128] H.S. Chou, J.C. Huang, L.W. Chang, T.G. Nieh, Structural relaxation and nanoindentation response in Zr--Cu--Ti amorphous thin films, Applied Physics Letters, 93 (2008) 191901-191903.
    [129] S. Scudino, B. Bartusch, J. Eckert, Viscosity of the supercooled liquid in multi-component Zr-based metallic glasses, Journal of Physics: Conference Series, 144 (2009) 012097.
    [130] T. Yamasaki, S. Maeda, T. Fukami, Y. Yokoyama, H.M. Kimura, A. Inoue, Annealing Effects on Viscosity of Zr55Cu30Al10Ni5 Supercooled Liquids, MATERIALS TRANSACTIONS, 48 (2007) 1834-1837.
    [131] A. van den Beukel, J. Sietsma, The glass transition as a free volume related kinetic phenomenon, Acta Metallurgica et Materialia, 38 (1990) 383-389.
    [132] J. Gu, M. Song, S. Ni, S. Guo, Y. He, Effects of annealing on the hardness and elastic modulus of a Cu36Zr48Al8Ag8 bulk metallic glass, Materials & Design, 47 (2013) 706-710.
    [133] W.H. Jiang, F.X. Liu, H. Choo, P.K. Liaw, Effect of structural relaxation on mechanical behavior of a Zr-based bulk-metallic glass, Materials Transactions, 48 (2007) 1781-1784.
    [134] Personal Communication to Prof. Y.L. Shen, University of New Mexico, USA, 2014.
    [135] K.W. Peter, Densification and flow phenomena of glass in indentation experiments, Journal of Non-Crystalline Solids, 5 (1970) 103-115.
    [136] T.H. Wang, T.H. Fang, Y.C. Lin, A numerical study of factors affecting the characterization of nanoindentation on silicon, Materials Science and Engineering A, 447 (2007) 244-253.
    [137] X. Huang, A.A. Pelegri, Mechanical characterization of thin film materials with nanoindentation measurements and FE analysis, Journal of Composite Materials, 40 (2006) 1393-1407.
    [138] Y.L. Shen, Constrained deformation of materials: Devices, heterogeneous structures and thermo-mechanical modeling, 2010.
    [139] J.C. Ye, J.P. Chu, Y.C. Chen, Q. Wang, Y. Yang, Hardness, yield strength, and plastic flow in thin film metallic-glass, Journal of Applied Physics, 112 (2012) 053516.
    [140] A.C. Fischer-Cripps, Nanoindentation, Springer New York, 2004.
    [141] B. Yang, C.T. Liu, T.G. Nieh, Unified equation for the strength of bulk metallic glasses, Applied Physics Letters, 88 (2006) 221911.
    [142] H.S. Chen, Alloying effect on the viscous flow in metallic glasses, Journal of Non-Crystalline Solids, 29 (1978) 223-229.
    [143] A. Mallikarjuna Reddy, A. Sivasankar Reddy, P. Sreedhara Reddy, Effect of substrate bias voltage on the physical properties of dc reactive magnetron sputtered NiO thin films, Materials Chemistry and Physics, 125 (2011) 434-439.
    [144] P. Patsalas, C. Charitidis, S. Logothetidis, The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films, Surface and Coatings Technology, 125 (2000) 335-340.

    無法下載圖示 全文公開日期 2019/11/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE