簡易檢索 / 詳目顯示

研究生: 盧雅妮
Cut - Rullyani
論文名稱: Studies on Thin Film Metallic Glasses: Shape-recovery Behavior and Their Roles Affecting the Substrate Properties
Studies on Thin Film Metallic Glasses: Shape-recovery Behavior and Their Roles Affecting the Substrate Properties
指導教授: 朱瑾
Jinn P. Chu
口試委員: 李志偉
J. W. Lee
王復民
F. M. Wang
薛承輝
C. H. Hsueh
陳柏宇
P. Y. Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 102
中文關鍵詞: Thin FilmMetallic GlassIndentationShear bandShape Recovery
外文關鍵詞: Thin Film, Metallic Glass, Indentation, Shear band, Shape Recovery
相關次數: 點閱:280下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,金屬玻璃或非晶金屬不僅用於塊材、粉末、線材及薄帶上,也在薄膜上有所研究,金屬玻璃薄膜(TFMGs)具有許多優異及獨特的性質,包括高強度、高韌性、耐磨損和耐腐蝕性,此外,於升溫加熱後,TFMGs與一般金屬玻璃相同具有玻璃轉換溫度(Tg)和結晶溫度(Tx)。
    在此研究中,將不同厚度的銅基和鋯基金屬玻璃薄膜沉積於矽基材上,使用奈米壓痕試驗進行薄膜性質的分析,並於Tg和Tx(過冷液態區間,ΔT)之間,觀察其退火前後之表面形貌及微結構。結果顯示,在退火後壓痕的凹陷程度減少,這項結果證明,TFMGs在過冷液態區間(ΔT)退火後,具有低黏流性,因此擁有較佳的形狀恢復的能力,相較於鋯基金屬玻璃薄膜,銅基金屬玻璃薄膜呈現總壓痕深度14-19%的較高恢復量, 而鋯基金屬玻璃僅有7-9%的恢復量,此原因可能為在退火時不同成分的金屬玻璃 薄膜具有不同的黏流性,另一方面,較厚的薄膜擁有較大的質量供其恢復,因此較厚薄膜的試片壓痕恢復量會高於較薄薄膜的試片。
    金屬玻璃薄膜也可以用來改善塊狀金屬玻璃(BMG)的延展性,BMG於室溫下伴隨著不均勻剪切帶的形成及擴展,因此在極小的塑性變形後隨即斷裂。在這項研究中,沉積200奈米厚度的各種薄膜於Zr52.5Cu17.9Ni14.6Al10Ti5BMG基材上,來阻止剪切帶的產生和擴展,利用洛氏壓痕試驗於不同荷重下在具塗層及無塗層的試片上進行測試,探討薄膜對壓痕型態的影響。結果顯示,剪切帶均勻分布於具塗層的基材上,發現在具塗層的基材上有78條放射狀剪切帶,而在無塗層的基材上僅有30條。剪切帶增生能力的增加是由於塗層可以抵抗剪切帶在塗層及BMG基材之間擴展。
    相較上述研究,在低於及高於玻璃轉換溫度下進行退火處理也可以改善BMG的延展性,結果顯示,在Tg以下進行短時間退火可增加BMG的塑性變形量,然而當退火溫度接近Tx時,推測是由於自由體積的減少,而造成BMG的脆化。


    In recent years, metallic glasses or amorphous metals are available not only in bulk, powder, wire, and ribbon but also thin film. Thin film metallic glasses (TFMGs) possess many excellent and unique properties, including high strength, good ductility, excellent wear and corrosion resistance. Like ordinary metallic glasses, the TFMGs in general undergo the glass transition and crystallization at temperatures of Tg and Tx, respectively, upon heating.
    In this study, Cu- and Zr-based TFMGs with different thicknesses were deposited on Si substrates. Nanoindentation tests were performed to evaluate the film properties. Surface morphology and microstructure before and after annealing at a temperature between Tg and Tx (or so-called the supercooled liquid region, ΔT) were examined. It revealed that the size of indentation mark decreased after annealing. This study confirmed that TFMGs exhibit shape-recovery ability during annealing at temperatures within ΔT due mainly to the low viscosity flow. Interestingly, Cu-based TFMG exhibits higher recovery, in the range of 14-19% of the indentation depth, compared with only 7-9% for Zr-based TFMG. It may be attributed to the different compositions of the TFMGs exhibit different viscosities during annealing. The percentages of depth recovered after annealing in thicker samples were higher than in thinner samples due to the larger mass in the thicker films contributing to the recovery during annealing.
    TFMG also can be used to improve ductility of bulk metallic glass (BMG). As widely known, metallic glasses in the bulk form or BMG are often fractured with very limited plastic strains at room temperature, accompanying with imhomogeneous shear band formation and propagation. In this study, various 200-nm-thick overlay coatings, including TFMG, were deposited onto Zr52.5Cu17.9Ni14.6Al10Ti5 BMG substrates to impede shear-band initiation and propagation. Rockwell indentations with different loadings were carried out on coated and uncoated samples to investigate the effects of coatings on the morphology of deformation zone around the indent on the BMG substrates. As a result, more homogeneous shear bands were found on the coated substrate. The number of radial shear band for uncoated substrate was 30 while 78 shear bands were found on the coated substrate. The increased ability of the shear band multiplication is due to the resistance of the coating to the shear band propagation at the interface between the BMG and the coating.
    For comparison, thermal annealing below and above glass transition was also carried out in order to improve ductility of BMG. The result shows that annealing at a temperature below Tg for short period of time caused increasing of plasticity. On the other hand, embrittlement occurred when the temperature was increased to near Tx presumably due to the significant decrease in free volume.

    Table of Contents 摘要 i Abstract ii Acknowledgments iv Table of Contents v List of Tables viii List of Figures ix Chapter 1 Introduction 1 1.1 Background of the Study 1 1.2 Objectives of the Study 2 Chapter 2 Literature Review 3 2.1 Bulk Metallic Glasses (BMGs) 3 2.1.1 Deformation Behavior of Metallic Glasses [19, 20]. 3 2.1.2 Indentation Induced Plastic Deformation 4 2.1.3 Plasticity Improvement by Surface Coating 10 2.1.4 Plasticity Improvement by Annealing 14 2.1.5 Plasticity Improvement by Other Methods 16 2.2 Shape Recovery of BMGs 19 2.3 Thin Film Metallic Glasses (TFMGs) 24 2.4 Physical Vapor Deposition (PVD) 27 2.4.1 Sputter Deposition [48] 27 2.4.2 Magnetron Sputtering [48] 28 2.4.2.1 DC Magnetron Sputtering [48] 29 2.4.2.2 RF Magnetron Sputtering [48] 29 Chapter 3 Experimental Procedures 31 3.1 Sample Preparation 32 3.1.1 Substrate Preparation 32 3.1.2 Fabrication of TFMGs 32 3.2. Indentation Technique 33 3.2.1 Nanoindentation 33 3.2.2 Rockwell Indentation 35 3.2.2.1 Rockwell Hardness Test 35 3.2.3.2 HRC Adhesion test 36 3.3 Thermal Annealing 37 3.4 Material Characterizations 37 3.4.1 Chemical Composition Analysis 37 3.4.2 Thermal Analysis 37 3.4.3 Crystallography 37 3.4.4 Microstructure Analysis 38 3.4.5 Surface Topography 38 Chapter 4 Results and Discussion 39 4.1 Shape Recovery of TFMGs 39 4.1.1 Structure and Composition of TFMGs 39 4.1.2 Mechanical Properties of TFMGs 41 4.1.2 Shape Recovery Mechanism 42 4.1.3 Thickness Effect on Recovery Ability 48 4.2 Surface Treatments of BMG for Plasticity Improvements 52 4.2.1 BMG Substrate Properties 52 4.2.2 Coating Composition 53 4.2.3 Adhesion Evaluation of Coating on BMG substrate 54 4.2.4 Rockwell Hardness 56 4.2.5 Projected Contact Area 57 4.2.6 Effects of Coating on Shear Band Properties 61 4.2.7 Effects of Coating on Shear Band Propagation 65 4.2.8 Effects of Annealing on Shear Band Propagation 70 4.2.8.1 Sub-Tg Annealing 71 4.2.8.2 Above Tg Annealing 72 4.3 Simulation of Shear Band Patterns on Coated and Uncoated Samples 74 4.3.1 Simulation based on Free Volume Model 75 4.3.2 Simulation based on Rudnicki-Rice Instability Theory 77 Chapter 5 Conclusions and Future Works 80 5.1 Conclusions 80 5.2 Suggestion for Future works 81 References 82

    References

    [1] J.P. Chu, J.C. Huang, J.S.C. Jang, Y.C. Wang, P.K. Liaw, JOM 62/4 (2010) 19.
    [2] J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C. Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, Thin Solid Films (2012).
    [3] Y.H. Liu, T. Fujita, A. Hirata, S. Li, H.W. Liu, W. Zhang, A. Inoue, M.W. Chen, Intermetallics 21/1 (2012) 105.
    [4] C.J. Chen, J.C. Huang, H.S. Chou, Y.H. Lai, L.W. Chang, X.H. Du, J.P. Chu, T.G. Nieh, Journal of Alloys and Compounds 483/1-2 (2009) 337.
    [5] M. Hojamberdiev, H.J. Stevens, W.C. LaCourse, Ceramics International 38/2 (2012) 1463.
    [6] G. Kumar, J. Schroers, Applied Physics Letters 92/3 (2008) 031901.
    [7] H. Li, L. Li, C. Fan, H. Choo, P.K. Liaw, Journal of Materials Research 22/2 (2007) 508.
    [8] R.D. Conner, W.L. Johnson, Scripta Materialia 55/7 (2006) 645.
    [9] R.K. Wunderlich, M.L. Vaillant, A. Caron, H.J. Fecht, Advanced Engineering Materials 10/11 (2008) 1020.
    [10] Y. Zhang, W.H. Wang, A.L. Greer, Nat Mater 5/11 (2006) 857.
    [11] W. Chen, K.C. Chan, S.F. Guo, P. Yu, Materials Letters 65/8 (2011) 1172.
    [12] Y.C. Choi, S.I. Hong, Scripta Materialia 61/5 (2009) 481.
    [13] H.J. Jun, K.S. Lee, C.P. Kim, Y.W. Chang, Intermetallics 20/1 (2012) 47.
    [14] F.X. Liu, P.K. Liaw, W.H. Jiang, C.L. Chiang, Y.F. Gao, Y.F. Guan, J.P. Chu, P.D. Rack, Materials Science and Engineering: A 468-470 (2007) 246.
    [15] C.L. Chiang, J.P. Chu, F.X. Liu, P.K. Liaw, R.A. Buchanan, Applied Physics Letters 88/13 (2006).
    [16] J.P. Chu, C.M. Lee, R.T. Huang, P.K. Liaw, Surface and Coatings Technology 205/16 (2011) 4030.
    [17] J.F. Loffler, Intermetallics 11/6 (2003) 529.
    [18] M. Chen, NPG Asia Materials 3/9 (2011) 82.
    [19] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, Acta Materialia 55/12 (2007) 4067.
    [20] M.M. Trexler, N.N. Thadhani, Progress in Materials Science 55/8 (2010) 759.
    [21] C. Tang, Y. Li, K. Zeng, Materials Science and Engineering: A 384/1–2 (2004) 215.
    [22] V. Keryvin, Acta Materialia 55/8 (2007) 2565.
    [23] S. Jana, U. Ramamurty, K. Chattopadhyay, Y. Kawamura, Materials Science and Engineering: A 375-377/0 (2004) 1191.
    [24] H. Zhang, X. Jing, G. Subhash, L.J. Kecskes, R.J. Dowding, Acta Materialia 53/14 (2005) 3849.
    [25] K.-W. Chen, J.-F. Lin, International Journal of Plasticity 26/11 (2010) 1645.
    [26] B.-G. Yoo, J.-i. Jang, J. Phys. D: Appl. Phys. 41 (2008).
    [27] X. Wang, Q.P. Cao, Y.M. Chen, K. Hono, C. Zhong, Q.K. Jiang, X.P. Nie, L.Y. Chen, X.D. Wang, J.Z. Jiang, Acta Materialia 59/3 (2011) 1037.
    [28] L. Zhang, Y.-Q. Cheng, A.J. Cao, J. Xu, E. Ma, Acta Materialia 57/4 (2009) 1154.
    [29] F. Jiang, H. Li, G. Fan, Y. Wang, P.K. Liaw, H. Choo, Metallurgical and Materials Transactions A 39/8 (2008) 1817.
    [30] X.H. Du, J.C. Huang, K.C. Hsieh, Y.H. Lai, H.M. Chen, J.S.C. Jang, P.K. Liaw, Applied Physics Letters 91/13 (2007) 131901.
    [31] Y.H. Liu, C.T. Liu, A. Gali, A. Inoue, M.W. Chen, Intermetallics 18/8 (2010) 1455.
    [32] S.-B. Qiu, K.-F. Yao, Applied Surface Science 255/5, Part 2 (2008) 3454.
    [33] J.P. Chu, J.E. Greene, J.S.C. Jang, J.C. Huang, Y.-L. Shen, P.K. Liaw, Y. Yokoyama, A. Inoue, T.G. Nieh, Acta Materialia 60/6–7 (2012) 3226.
    [34] Y.B. Wang, D.D. Qu, X.H. Wang, Y. Cao, X.Z. Liao, M. Kawasaki, S.P. Ringer, Z.W. Shan, T.G. Langdon, J. Shen, Acta Materialia 60/1 (2012) 253.
    [35] K. Mondal, T. Ohkubo, T. Toyama, Y. Nagai, M. Hasegawa, K. Hono, Acta Materialia 56/18 (2008) 5329.
    [36] B. Chen, Y. Li, M. Yi, R. Li, S. Pang, H. Wang, T. Zhang, Scripta Materialia/0 (2012).
    [37] C.E. Packard, J. Schroers, C.A. Schuh, Scripta Materialia 60/12 (2009) 1145.
    [38] S. Hata, J. Sakurai, A. Shimokohbe, Micro Electro Mechanical Systems, 2005. MEMS 2005. 18th IEEE International Conference on, 2005, p. 479.
    [39] S. Hata, K. Sato, A. Shimokohbe, Proc. of SPIE 3892 (1999) 97.
    [40] J.P. Chu, C.T. Liu, T. Mahalingam, S.F. Wang, M.J. O'Keefe, B. Johnson, C.H. Kuo, Physical Review B 69/11 (2004) 113410.
    [41] P. Sharma, W. Zhang, K. Amiya, H. Kimura, A. Inoue, Journal of Nanoscience and Nanotechnology 5/3 (2005) 416.
    [42] P. Sharma, N. Kaushik, H. Kimura, Y. Saotome, A. Inoue, Nanotechnology 18/3 (2007).
    [43] G.P. Zhang, Y. Liu, B. Zhang, Advanced Engineering Materials 7/7 (2005) 606.
    [44] F.X. Liu, F.Q. Yang, Y.F. Gao, W.H. Jiang, Y.F. Guan, P.D. Rack, O. Sergic, P.K. Liaw, Surface and Coatings Technology 203/22 (2009) 3480.
    [45] C.W. Chu, J.S.C. Jang, G.J. Chen, S.M. Chiu, Surface and Coatings Technology 202/22–23 (2008) 5564.
    [46] C.W. Chu, J.S.C. Jang, S.M. Chiu, J.P. Chu, Thin Solid Films 517/17 (2009) 4930.
    [47] J.P. Chu, C.-T. Lo, Y.-K. Fang, B.-S. Han, Applied Physics Letters 88/1 (2006) 012510.
    [48] D.M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Noyes Publications, New Mexico, USA, 1998.
    [49] http://www.alacritas-consulting.com.
    [50] X. Li, B. Bhushan, Materials Characterization 48/1 (2002) 11.
    [51] http://www.gordonengland.co.uk/hardness/rockwell.htm.
    [52] H. Jehn, Reiners, G., Siegel, N., Charakterisierung Dunner Schichten, Berlin, 1993.
    [53] N. Vidakis, A. Antoniadis, N. Bilalis, Journal of Materials Processing Technology 143–144/0 (2003) 481.
    [54] M. Hojamberdiev, H.J. Stevens, Materials Science and Engineering: A 532/0 (2012) 456.
    [55] S. Scudino, B. Bartusch, J. Eckert, Journal of Physics: Conference Series 144/1 (2009) 012097.
    [56] C.A. Angell, Science 267/5206 (1995) 1924.
    [57] L.T. Ward, Materials Science and Engineering, The Ohio State University, 2011.
    [58] J. Eckert, A. Kubler, L. Schultz, Journal of Applied Physics 85/10 (1999) 7112.
    [59] T. Yamasaki, S. Maeda, Y. Yokoyama, D. Okai, T. Fukami, H.M. Kimura, A. Inoue, Mater Trans 46/12 (2005) 2746.
    [60] J. Eckert, M. Seidel, A. Kubler, U. Klement, L. Schultz, Scripta Materialia 38/4 (1998) 595.
    [61] S. Mukherjee, J. Schroers, Z. Zhou, W.L. Johnson, W.K. Rhim, Acta Materialia 52/12 (2004) 3689.
    [62] P. Jia, J. Xu, Journal of Materials Research 24 (2009) 96.
    [63] A. Kubler, J. Eckert, A. Gebert, L. Schultz, Journal of Applied Physics 83/6 (1998) 3438.
    [64] Y. Ritter, K. Albe, Acta Materialia 59/18 (2011) 7082.
    [65] Z. Zhang, V. Keppens, O.N. Senkov, D.B. Miracle, Materials Science and Engineering: A 471/1–2 (2007) 151.
    [66] G.S. Kim, S.Y. Lee, J.H. Hahn, B.Y. Lee, J.G. Han, J.H. Lee, Surface and Coatings Technology 171/1-3 (2002) 83.
    [67] G. Wang, P.K. Liaw, O.N. Senkov, D.B. Miracle, M.L. Morrison, Advanced Engineering Materials 11/1-2 (2009) 27.
    [68] Y. Yokoyama, T. Yamasaki, M. Nishijima, A. Inoue, Materials Transactions 48/6 (2007) 1276
    [69] S.-W. Lee, C.-M. Lee, J.-P. Ahn, Y.-C. Kim, J.-C. Lee, Materials Science and Engineering: A 449–451/0 (2007) 172.
    [70] F.X. Liu, Y.F. Gao, P.K. Liaw, Metallurgical and Materials Transactions A 39/8 (2008) 1862.
    [71] A. Antoniou, A.F. Bastawros, C.C.H. Lo, S.B. Biner, Materials Science and Engineering: A 394/1-2 (2005) 96.
    [72] M.E. Launey, J.J. Kruzic, C. Li, R. Busch, Applied Physics Letters 91/5 (2007) 051913.
    [73] P. Murali, U. Ramamurty, Acta Materialia 53/5 (2005) 1467.
    [74] Y. Liu, T.-H. Zhang, B.-C. Wei, D.-M. Xing, W.-H. Li, L.-C. Zhang, Chinese Physics Letters 23/7 (2006) 1868.
    [75] R. Raghavan, P. Murali, U. Ramamurty, Acta Materialia 57/11 (2009) 3332.
    [76] Z. Bian, G. He, G.L. Chen, Scripta Materialia 46/6 (2002) 407.
    [77] F.F. Wu, Z.F. Zhang, J. Shen, S.X. Mao, Acta Materialia 56/4 (2008) 894.
    [78] Z. An, W. Li, F. Liu, P. Liaw, Y. Gao, Metallurgical and Materials Transactions A (2012) 1.
    [79] Y.F. Gao, L. Wang, H. Bei, T.G. Nieh, Acta Materialia 59/10 (2011) 4159.

    QR CODE