簡易檢索 / 詳目顯示

研究生: 丁偉庭
Wei-Ting Ting
論文名稱: 修飾磷酸鈣於電漿聚合六甲基二矽氮烷薄膜並應用於生醫材料
Incorporation of Calcium Phosphate on Plasma Polymerized Hexamethyldisilazane Thin Films for Biomaterial Applications
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 王孟菊
Meng-Jiy Wang
陳克紹
Ko-Shao Chen
周秀慧
Shiu-Huey Chou
林忻怡
Hsin-Yi Lin
葉旻鑫
Min-Hsin Yeh
楊佩芬
Pei-Fen Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 119
中文關鍵詞: 電漿輔助化學氣相沉積交替浸泡法六甲基二矽氮烷磷酸鈣石英晶體微天秤
外文關鍵詞: Plasma-enhanced chemical vapor deposition (PECVD), Alternative immersion, Hexamethyldisilazane (HMDSZ), Calcium phosphate (Ca-P), Quartz crystal microbalance (QCM)
相關次數: 點閱:283下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   骨質疏鬆症是一種常見的老人病症,骨質疏鬆的症狀是骨骼會變得脆弱且容易發生骨折。因此,尋找替代人造骨支架的材料非常重要。本論文利用電漿輔助化學氣相沉積(PECVD) 技術,製備含有矽氮之六甲基二矽氮烷 (hexamethyldisilazane, HMDSZ) 薄膜,並使用交替浸泡法 (alternative immersion) 將磷酸鈣 (calcium phosphate, Ca-P) 修飾於電漿聚合之六甲基二矽氮烷薄膜 (plasma polymerization of hexamethyldisilazane, ppHMDSZ) 上。藉由此製程所製備的Ca-P/ppHMDSZ複合材料,可增進欲植入基材的抗腐蝕能力,並促進骨傳導性 (osteoinduction),有利於成骨細胞 (osteoblast) 增殖於材料上。
      在製備ppHMDSZ薄膜實驗中,藉由調整電漿沉積時間 (2、5、10、20及30分鐘),探討薄膜表面的化學及物理性質,除了利用場發射式電子顯微鏡 (FE-SEM) 觀察薄膜表面型態、還利用水接觸角方法測量ppHMDSZ薄膜表面的水潤濕性、藉由全反射傅立葉紅外線轉換光譜儀 (ATR-FTIR) 與化學分析電子能譜儀 (ESCA) 分析薄膜表面的化學官能基及元素組成。同時,利用FE-SEM橫截面分析薄膜的厚度,並探討ppHMDSZ沉積時間與薄膜厚度的關係。在抗腐蝕的實驗中,Tafel 極化曲線顯示,未經修飾的不鏽鋼腐蝕電流密度為1.431 μA/cm2,經過電漿沉積10分鐘ppHMDSZ薄膜修飾的不鏽鋼,腐蝕電流密度下降至0.129 μA/cm2,顯示經ppHMDSZ薄膜修飾後的基材具有較佳的抗腐蝕能力。此外,修飾ppHMDSZ薄膜於矽晶圓片後,相較於未經修飾的矽晶圓片,彈性模數由89.3 ± 6.6 GPa下降至62.3 ± 6.3 GPa,證實ppHMDSZ薄膜的表面修飾有助於降低基材的應力屏蔽效應。
      利用ppHMDSZ薄膜修飾基材之後,使用交替泡法沉積Ca-P層於ppHMDSZ/基材,以增進 ppHMDSZ/基材 的生物相容性及骨傳導能力。對於沉積之Ca-P層,利用石英晶體微天秤 (QCM) 量測不同交替浸泡次數 (1、2、5與10次) 對於Ca-P層重量變化的影響。實驗結果顯示,Ca-P沉積質量與浸泡的循環次數呈線性關係 (沉積速率:3.080 μg/cm2∙cycle)。X-射線繞射儀 (XRD) 的分析結果顯示,Ca-P層為二水磷酸鈣 (dicalcium phosphate dehydrate, DCPD) 的結晶型。最後,利用老鼠纖維母細胞 (L-929) 進行細胞存活率的實驗結果,顯示L-929細胞在經過循環浸泡2次的 Ca-P/ppHMDSZ/載玻片後,具有最佳的生物相容性及細胞延展性。利用所製備的 Ca-P/ppHMDSZ/載玻片 培養人類成骨細胞 (hFOB1.19) 的細胞存活率實驗,結果顯示Ca-P層有助於提升hFOB1.19細胞增殖及延展性,由此可知本論文所製備的Ca-P/ppHMDSZ複合材料具有做為骨骼植入材料的潛力。


    Vertebrate bones and teeth are known to be mainly composed of inorganic calcium phosphate (Ca-P) salts. Because the Ca-P layers possess good biocompatibility, osteoinduction, and osteoconduction properties, this study aims to incorporate the Ca-P layers with good adhesion and functionalities via plasma-enhanced chemical vapor deposition (PECVD) technique. Firstly, plasma-polymerized hexamethyldisilazane (ppHMDSZ) thin films were deposited on the substrates (to form ppHMDSZ/substrate) to be used in the artificial bone-substitute materials to promote the resistance against corrosion. Then, Ca-P is incorporated on ppHMDSZ/substrate via alternative immersion method, where the cycles of immersion were adjusted from 1 to 10 times.
    To evaluate the wettability of ppHMDSZ thin films, water contact angle was applied. The thickness of ppHMDSZ was analyzed by the cross-section images taken by field-emission scanning electron microscope (FE-SEM). In order to investigate the chemical and physical properties of the ppHMDSZ thin films, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and electron spectroscopy for chemical analysis (ESCA) were applied. With the Tafel polarization curve tests, the corrosion current (1.431 μA/cm2) of the pristine and ppHMDSZ coated stainless steel was measured. The results showed that the corrosion current of ppHMDSZ/stainless steel reduced to 0.129 μA/cm2 after 10 minutes of plasma deposition time. Moreover, the elastic modulus of the deposited ppHMDSZ/Si wafer decreased from 89.3 ± 6.6 GPa to 62.3 ± 6.3 GPa, which shows that ppHMDSZ has the potential to reduce the stress shielding of the substrate.The biocompatibility and osteoconduction of Ca-P modified ppHMDSZ/substrate was also evaluated. The weight of Ca-P was controlled by different immersion cycles (1, 2, 5, and 10) and measured by quartz crystal microbalance (QCM). The results showed a linear relationship between deposition weight and immersion cycles (deposition rate: 3.080 μg/cm2∙cycle). The X-ray diffraction (XRD) spectrum identified that the crystallinity of Ca-P layers was dicalcium phosphate dehydrate (DCPD). Finally, the effects of Ca-P/ppHMDSZ composites on cell viability of mouse fibroblast cells (L-929) and human osteoblast cells (hFOB1.19) were studied. The results showed that Ca-P/ppHMDSZ/glass has the best biocompatibility after two immersion cycles. In addition, the Ca-P layers coated ppHMDSZ/glass revealed higher hFOB1.19 cell density. The Ca-P/ppHMDSZ composites showed the potential in further applications for bone tissue engineering.

    中文摘要 I Abstract III 誌謝 V 目錄 VII 圖目錄 IX 表目錄 XV 第一章 緒論 1 1-1 研究背景 1 1-2 研究目標 2 第二章 文獻回顧 3 2-1 生醫植入材料 3 2-1.1 生醫植入材料介紹與應用 3 2-1.2 合成替代骨材料 5 2-1.3 材料表面改質的方法 6 2-2 電漿原理及應用 16 2-2.1 電漿定義 16 2-2.2 電漿技術之應用 17 第三章 研究方法及儀器原理 22 3-1 實驗架構 22 3-2 實驗藥品及配製 23 3-2.1 實驗藥品 23 3-2.2 藥品配製 23 3-3 實驗設備及方法 23 3-3.1 實驗設備 23 3-3.2 電漿聚合六甲基二矽氮烷薄膜 24 3-3.3 氧氣電漿活化薄膜表面 25 3-3.4 交替浸泡法沉積磷酸鈣層 25 3-4 分析儀器原理及方法 26 第四章 結果與討論 41 4-1 電漿聚合六甲基二矽氮烷 41 4-1.1 薄膜表面型態 (FE-SEM) 41 4-1.2 薄膜厚度及沉積時間關係 (FE-SEM cross-section) 42 4-1.3 薄膜定量吸附 (QCM) 42 4-1.4 薄膜厚度對薄膜水潤濕性的影響 (WCA) 42 4-1.5 薄膜表面化學鍵結組成分析 (ATR-FTIR) 43 4-1.6 薄膜表面粗糙度分析 (AFM) 43 4-1.7 薄膜表面元素組成分析 (ESCA) 44 4-1.8 探討薄膜沉積時間及抗腐蝕能力之關係 (Tafel plot) 45 4-2 磷酸鈣/聚六甲基二矽氮烷複合材料 56 4-2.1 複合材料表面型態 (FE-SEM) 56 4-2.2 複合材料之厚度及循環浸泡次數關係 (FE-SEM cross-section) 56 4-2.3 探討循環浸泡次數對沉積量之影響 (QCM) 57 4-2.4 複合材料表面的水潤濕性質 (WCA) 57 4-2.5 複合材料化學鍵結組成分析 (ATR-FTIR) 58 4-2.6 複合材料表面粗糙度分析 (AFM) 58 4-2.7 複合材料表面元素組成分析 (ESCA) 59 4-2.8 探討複合材料之晶體結構分析 (XRD) 60 4-2.9 複合材料之表面機械性能測試 60 4-2.10 複合材料之表面生物相容性測試 (MTT assasy) 62 第五章 結論 84 Appendix 86 第六章 參考文獻 97

    [1] World Population Prospects The 2017 Revision, Key Findings and Advance Tables, United Nations, Department of Economic and Social Affairs, Population Division, 2017.
    [2] S. Henríquez, and M. J. G. de Tejada Romero, “Osteoporosis,” Medicine - Programa de Formación Médica Continuada Acreditado, vol. 12, no. 60, pp. 3499-3505, 2018.
    [3] W. Habraken, P. Habibovic, M. Epple, and M. Bohner, “Calcium phosphates in biomedical applications: materials for the future?,” Materials Today, vol. 19, no. 2, pp. 69-87, 2016.
    [4] G. Dong, L. He, D. Pang, L. Wei, and C. Deng, “An in situ study of the deposition of a calcium phosphate mineralized layer on a silicon-substituted hydroxyapatite sensor modulated by bovine serum albumin using QCM-D technology,” Ceramics International, vol. 42, no. 16, pp. 18648-18656, 2016.
    [5] R. T. Chen, B. W. Muir, L. Thomsen, A. Tadich, B. C. Cowie, G. K. Such, A. Postma, K. M. McLean, and F. Caruso, “New insights into the substrate-plasma polymer interface,” J Phys Chem B, vol. 115, no. 20, pp. 6495-502, May 26, 2011.
    [6] A. Michelmore, P. Martinek, V. Sah, R. D. Short, and K. Vasilev, “Surface Morphology in the Early Stages of Plasma Polymer Film Growth from Amine-Containing Monomers,” Plasma Processes and Polymers, vol. 8, no. 5, pp. 367-372, 2011.
    [7] I. Langmuir, “Oscillations in Ionized Gases,” Proceedings of the National Academy of Sciences, vol. 14, no. 8, pp. 627-637, 1928.
    [8] J. J. Thomson, “XL. Cathode Rays,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 44, no. 269, pp. 293-316, 1897.
    [9] R. Langer, L. G. Cima, J. A. Tamad, and h. W. Earic, “Future directions in biomaterials,” Biomaterials, vol. 11, 1990.
    [10] K. J. L. Burg, S. Porter, and J. F. Kellam, “Biomaterial developments for bone tissue engineering,” Biomaterials, vol. 21, pp. 2347-2359, 2000.
    [11] J. L. Bengt Kasemo, “Biomaterial and implant surfaces: On the role of cleanliness, contamination, and preparation procedures,” J. Biomed. Mater. Res.: Applied Biomaterials, vol. 22, pp. 145-158, 1988.
    [12] R. Deepashree, V. Devaki, B. Kandhasamy, and R. Ajay, “Evolution of implant biomaterials: A literature review,” Journal of Indian Academy of Dental Specialist Researchers, vol. 4, no. 2, pp. 65, 2017.
    [13] W. Wang, and K. W. K. Yeung, “Bone grafts and biomaterials substitutes for bone defect repair: A review,” Bioact Mater, vol. 2, no. 4, pp. 224-247, Dec, 2017.
    [14] A. Kolk, J. Handschel, W. Drescher, D. Rothamel, F. Kloss, M. Blessmann, M. Heiland, K. D. Wolff, and R. Smeets, “Current trends and future perspectives of bone substitute materials - from space holders to innovative biomaterials,” J Craniomaxillofac Surg, vol. 40, no. 8, pp. 706-18, Dec, 2012.
    [15] H. Shi, X. Ye, F. He, and J. Ye, “Improving osteogenesis of calcium phosphate bone cement by incorporating with lysine: An in vitro study,” Colloids Surf B Biointerfaces, vol. 177, pp. 462-469, May 1, 2019.
    [16] A. Abdal-hay, P. Vanegas, A. S. Hamdy, F. B. Engel, and J. H. Lim, “Preparation and characterization of vertically arrayed hydroxyapatite nanoplates on electrospun nanofibers for bone tissue engineering,” Chemical Engineering Journal, vol. 254, pp. 612-622, 2014.
    [17] S. Rößler, A. Sewing, M. S. lzel, R. Born, D. Scharnweber, M. Dard, and H. Worch, “Electrochemically assisted deposition of thin calcium phosphate coatings at near-physiological pH and temperature,” J Biomed Mater Res A, vol. 64, no. 4, pp. 655-663, 2003.
    [18] V. Q. Le, G. Pourroy, A. Cochis, L. Rimondini, W. I. Abdel-Fattah, H. I. Mohammed, and A. Carrado, “Alternative technique for calcium phosphate coating on titanium alloy implants,” Biomatter, vol. 4, pp. e28534, 2014.
    [19] A. Alcheikh, G. Pavon-Djavid, G. Helary, H. Petite, V. Migonney, and F. Anagnostou, “PolyNaSS grafting on titanium surfaces enhances osteoblast differentiation and inhibits Staphylococcus aureus adhesion,” J Mater Sci Mater Med, vol. 24, no. 7, pp. 1745-54, Jul, 2013.
    [20] E. Gerits, S. Kucharikova, P. Van Dijck, M. Erdtmann, A. Krona, M. Lovenklev, M. Frohlich, B. Dovgan, F. Impellizzeri, A. Braem, J. Vleugels, S. C. Robijns, H. P. Steenackers, J. Vanderleyden, K. De Brucker, K. Thevissen, B. P. Cammue, M. Fauvart, N. Verstraeten, and J. Michiels, “Antibacterial activity of a new broad-spectrum antibiotic covalently bound to titanium surfaces,” J Orthop Res, vol. 34, no. 12, pp. 2191-2198, Dec, 2016.
    [21] S. P. Krumdieck, R. Boichot, R. Gorthy, J. G. Land, S. Lay, A. J. Gardecka, M. I. J. Polson, A. Wasa, J. E. Aitken, J. A. Heinemann, G. Renou, G. Berthome, F. Charlot, T. Encinas, M. Braccini, and C. M. Bishop, “Nanostructured TiO2 anatase-rutile-carbon solid coating with visible light antimicrobial activity,” Sci Rep, vol. 9, no. 1, pp. 1883, Feb 13, 2019.
    [22] M. Kumaresan, K. Vijai Anand, K. Govindaraju, S. Tamilselvan, and V. Ganesh Kumar, “Seaweed Sargassum wightii mediated preparation of zirconia (ZrO2) nanoparticles and their antibacterial activity against gram positive and gram negative bacteria,” Microb Pathog, vol. 124, pp. 311-315, Nov, 2018.
    [23] P. Li, Y. F. Poon, W. Li, H.-Y. Zhu, S. H. Yeap, Y. Cao, X. Qi, C. Zhou, M. Lamrani, R. W. Beuerman, E.-T. Kang, Y. Mu, C. M. Li, M. W. Chang, S. S. J. Leong, and M. B. Chan-Park, “A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability,” Nature Materials, vol. 10, pp. 149, 12/12/online, 2010.
    [24] R. R. Maddikeri, S. Tosatti, M. Schuler, S. Chessari, M. Textor, R. G. Richards, and L. G. Harris, “Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces,” J Biomed Mater Res A, vol. 84, no. 2, pp. 425-35, Feb, 2008.
    [25] P. H. Chua, K. G. Neoh, Z. Shi, and E. T. Kang, “Structural stability and bioapplicability assessment of hyaluronic acid-chitosan polyelectrolyte multilayers on titanium substrates,” J Biomed Mater Res A, vol. 87, no. 4, pp. 1061-74, Dec 15, 2008.
    [26] L. N. Wang, and J. L. Luo, “Fabrication and formation of bioactive anodic zirconium oxide nanotubes containing presynthesized hydroxyapatite via alternative immersion method,” Materials Science and Engineering: C, vol. 31, no. 4, pp. 748-754, 2011.
    [27] P. Li, C. Xie, J. Liu, Z. Wang, and X. Xiao, “Titanium dioxide nanotubes/calcium silicate composite coatings prepared by alternative loop immersion method,” Surface and Coatings Technology, vol. 258, pp. 624-630, 2014.
    [28] Y. X. Gu, J. Du, J. M. Zhao, M. S. Si, J. J. Mo, and H. C. Lai, “Characterization and preosteoblastic behavior of hydroxyapatite-deposited nanotube surface of titanium prepared by anodization coupled with alternative immersion method,” J Biomed Mater Res B Appl Biomater, vol. 100, no. 8, pp. 2122-30, Nov, 2012.
    [29] N. Chen, H. Kim do, P. Kovacik, H. Sojoudi, M. Wang, and K. K. Gleason, “Polymer Thin Films and Surface Modification by Chemical Vapor Deposition: Recent Progress,” Annu Rev Chem Biomol Eng, vol. 7, pp. 373-93, Jun 7, 2016.
    [30] C. L. C. Rodriguez, F. Kessler, N. Dubey, V. Rosa, and G. J. M. Fechine, “CVD graphene transfer procedure to the surface of stainless steel for stem cell proliferation,” Surface and Coatings Technology, vol. 311, pp. 10-18, 2017.
    [31] P. Gibbon, “Proceedings of the 2014 CAS-CERN Accelerator School: Plasma Wake Acceleration,” vol. 1, pp. 51, 2016.
    [32] R. Dendy, Plasma physics: an introductory course: books.google.com, 1995.
    [33] J. A. Bittencourt, Fundamentals of Plasma Physics Library of Congress Cataloging, 2004.
    [34] G. B. C. Borcia, N. Dumitrascu “Surface Treament of Polymers by Plasma and UV Radiation,” Rom. Journ. Phys., vol. 56, pp. 224-232, 2011.
    [35] A. Waterhouse, S. G. Wise, Y. Yin, B. Wu, B. James, H. Zreiqat, D. R. McKenzie, S. Bao, A. S. Weiss, M. K. C. Ng, and M. M. M. Bilek, “In vivo biocompatibility of a plasma-activated, coronary stent coating,” Biomaterials, vol. 33, no. 32, pp. 7984-7992, 2012.
    [36] R. Bitar, P. Cools, N. De Geyter, and R. Morent, “Acrylic acid plasma polymerization for biomedical use,” Applied Surface Science, vol. 448, pp. 168-185, 2018.
    [37] P. Li, G. Wu, R. Xu, W. Wang, S. Wu, K. W. K. Yeung, and P. K. Chu, “In vitro corrosion inhibition on biomedical shape memory alloy by plasma-polymerized allylamine film,” Materials Letters, vol. 89, pp. 51-54, 2012.
    [38] B. S. Lou, S. B. Wang, S. B. Hung, C. J. Wang, and J. W. Lee, “Characterization of plasma polymerized organosilicon thin films deposited on 316L stainless steel,” Thin Solid Films, vol. 660, pp. 637-645, 2018.
    [39] J. Esguerra-Arce, A. B. Castañeda, A. Esguerra-Arce, Y. Aguilar, and S. Mischler, “Fretting corrosion between bone and calcium phosphate-calcium titanate coatings,” Wear, vol. 414-415, pp. 366-375, 2018.
    [40] M. J. Garcia-Ramirez, R. Lopez-Sesenes, I. Rosales-Cadena, and J. G. Gonzalez-Rodriguez, “Corrosion behaviour of Ti–Ni–Al alloys in a simulated human body solution,” Journal of Materials Research and Technology, vol. 7, no. 3, pp. 223-230, 2018.
    [41] W. F. Ng, M. H. Wong, and F. T. Cheng, “Stearic acid coating on magnesium for enhancing corrosion resistance in Hanks' solution,” Surface and Coatings Technology, vol. 204, no. 11, pp. 1823-1830, 2010.
    [42] S. Burany, “Scanning Electron Microscopy and X-Ray Microanalysis,” Microscopy and Microanalysis, vol. 9, no. 5, pp. 484-484, 2003.
    [43] G. Sauerbrey, “Verwendung Von Schwingquarzen Zur Wagung Dunner Schichten Und Zur Mikrowagung,” Zeitschrift für Physik A Hadrons and Nuclei, vol. 155, no. 2, pp. 206-222, 1959.
    [44] T. S. Chow, “Wetting of rough surfaces,” Journal of Physics: Condensed Matter, vol. 10, no. 27, pp. L445-L451, 1998.
    [45] J. A. d. H. Peter R. Griffiths, Fourier Transform Infrared Spectrometry, Second ed.: Copyright © 2007 John Wiley & Sons, Inc., 2006.
    [46] K. M. Lang, D. A. Hite, R. W. Simmonds, R. McDermott, D. P. Pappas, and J. M. Martinis, “Conducting atomic force microscopy for nanoscale tunnel barrier characterization,” Review of Scientific Instruments, vol. 75, no. 8, pp. 2726-2731, 2004.
    [47] K. Siegbahn, and K. Edvarson, “β-Ray spectroscopy in the precision range of 1 : 105,” Nuclear Physic vol. 1, no. 8, pp. 137-159, 1956.
    [48] A. Einstein, Relativity, p.^pp. 176: Routledge, 2001.
    [49] E. Rutherford, Radioactive substances and their radiations: Cambridge, Univ. Press, 1913.
    [50] H. P. Myers, Introductory Solid State Physics, second ed., Taylor & Francis e-Library, 2009.
    [51] B. P. Swain, “The analysis of carbon bonding environment in HWCVD deposited a-SiC:H films by XPS and Raman spectroscopy,” Surface and Coatings Technology, vol. 201, no. 3-4, pp. 1589-1593, 2006.
    [52] Woo-Seok Choa, Yoon-Suk Oh, Chang-Sam Kima, Minoru Osada, Masato Kakihana, Dae-Soon Lim, and Deock-Soo Cheong, “Characterization of Si3N4/SiC nanocomposite by Raman scattering and XPS,” Journal of Alloys and Compounds, vol. 285, pp. 255-259, 1999.
    [53] J. Carpentier, and G. Grundmeier, “Chemical structure and morphology of thin bilayer and composite organosilicon and fluorocarbon microwave plasma polymer films,” Surface and Coatings Technology, vol. 192, no. 2-3, pp. 189-198, 2005.
    [54] S.-D. Wang, and Y.-S. Jiang, “The durability of superhydrophobic films,” Applied Surface Science, vol. 357, pp. 1647-1657, 2015.
    [55] H. S. Medeiros, R. S. Pessoa, J. C. Sagás, M. A. Fraga, L. V. Santos, H. S. Maciel, M. Massi, A. S. d. S. Sobrinho, and M. E. H. M. da Costa, “Effect of nitrogen content in amorphous SiCxNyOz thin films deposited by low temperature reactive magnetron co-sputtering technique,” Surface and Coatings Technology, vol. 206, no. 7, pp. 1787-1795, 2011.
    [56] M. M. Rahman, and S. K. Hasan, “Ellipsometric, XPS and FTIR study on SiCN films deposited by hot-wire chemical vapor deposition method,” Materials Science in Semiconductor Processing, vol. 42, pp. 373-377, 2016.
    [57] X. W. Du, Y. Fu, J. Sun, P. Yao, and L. Cui, “Intensive light emission from SiCN films by reactive RF magnetron sputtering,” Materials Chemistry and Physics, vol. 103, no. 2-3, pp. 456-460, 2007.
    [58] Guido Grundmeier, and M. Stratmann, “Interfacial processes during plasma polymer deposition on oxide covered iron,” Thin Solid Films, vol. 352, pp. 119-127, 1999.
    [59] F. Te´ne´gal, A. Gheorghiu de la Rocque, G. Dufour, C. Se´ne´maud, B. Doucey, D. Bahloul-Hourlier, P. Goursat, M. Mayne, and M. Cauchetier, “Structural determination of sintered Si3N4/SiC nanocomposite using the XPS differential charge effect,” Journal of Electron Spectroscopy and Related Phenomena, vol. 109, pp. 241-248, 2000.
    [60] G. Eddy Jai Poinern, S. Brundavanam, and D. Fawcett, “Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant,” American Journal of Biomedical Engineering, vol. 2, no. 6, pp. 218-240, 2013.
    [61] A.-E. P. Baeza-Marrufo R., Carrera-Figueiras C., Muñoz-Rodríguez D., Ávila-Ortega A., “Surface modification of poly(tetrafluorethylene) magnetic stirring bars with plasma of hexamethyldisiloxane and its applications in the stir bar sorptive extraction technique,” Superficies y Vacío, vol. 25, no. 1, pp. 49-55, 2012.
    [62] J. L. M.T. Kim, “Characterization of amorphous SiC:H films deposited from hexamethyldisilazane,” Thin Solid Films, vol. 303, pp. 173-179, 1997.
    [63] E. Vyhmeister, L. Reyes-Bozo, H. Valdés-González, J.-L. Salazar, A. Muscat, L. A. Estévez, and D. Suleiman, “In situ FTIR experimental results in the silylation of low-k films with hexamethyldisilazane dissolved in supercritical carbon dioxide,” The Journal of Supercritical Fluids, vol. 90, pp. 134-143, 2014.
    [64] J. Bour, J. Bardon, H. Aubriet, D. Del Frari, B. Verheyde, R. Dams, D. Vangeneugden, and D. Ruch, “Different Ways to Plasma-Polymerize HMDSO in DBD Configuration at Atmospheric Pressure for Corrosion Protection,” Plasma Processes and Polymers, vol. 5, no. 8, pp. 788-796, 2008.
    [65] J. He, X. Li, D. Su, H. Ji, X. Zhang, and W. Zhang, “Super-hydrophobic hexamethyl-disilazane modified ZrO2–SiO2 aerogels with excellent thermal stability,” Journal of Materials Chemistry A, vol. 4, no. 15, pp. 5632-5638, 2016.
    [66] A. Roguska, M. Pisarek, M. Andrzejczuk, M. Dolata, M. Lewandowska, and M. Janik-Czachor, “Characterization of a calcium phosphate–TiO2 nanotube composite layer for biomedical applications,” Materials Science and Engineering: C, vol. 31, no. 5, pp. 906-914, 2011.
    [67] M. Sadat-Shojai, M. T. Khorasani, E. Dinpanah-Khoshdargi, and A. Jamshidi, “Synthesis methods for nanosized hydroxyapatite with diverse structures,” Acta Biomater, vol. 9, no. 8, pp. 7591-621, Aug, 2013.
    [68] A. K. Nayak, “Hydroxyapatite Synthesis Methodologies: An Overview,” ChemTech, vol. 2, pp. 903-907, 2010.
    [69] D. K. Pattanayak, R. Dash, R. C. Prasad, B. T. Rao, and T. R. Rama Mohan, “Synthesis and sintered properties evaluation of calcium phosphate ceramics,” Materials Science and Engineering: C, vol. 27, no. 4, pp. 684-690, 2007.
    [70] M. L. H. Rozali, Z. Ahmad, and M. I. N. Isa, “Interaction between Carboxy Methylcellulose and Salicylic Acid Solid Biopolymer Electrolytes,” Advanced Materials Research, vol. 1107, pp. 223-229, 2015.
    [71] A. Zavattini, V. P. Feitosa, F. Mannocci, F. Foschi, A. Babbar, A. Luzi, L. Ottria, F. Mangani, I. Casula, and S. Sauro, “Bonding ability of experimental resin-based materials containing (ion-releasing)-microfillers applied on water-wet or ethanol-wet root canal dentine,” International Journal of Adhesion and Adhesives, vol. 54, pp. 214-223, 2014.
    [72] A. Polini, D. Pisignano, M. Parodi, R. Quarto, and S. Scaglione, “Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors,” PLoS One, vol. 6, no. 10, pp. e26211, 2011.
    [73] C. Drouet, “Apatite formation: why it may not work as planned, and how to conclusively identify apatite compounds,” Biomed Res Int, vol. 2013, pp. 490946, 2013.
    [74] B. C. Liga, and B. Natalija, Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy, Infrared Spectroscopy: InTech, 2012.
    [75] I. D. Stein, and G. Granik, “Human vertebral bone: relation of strength, porosity, and mineralization to fluoride content ” Calcified Tissue International, vol. 32, no. 1, pp. 189-194, 1980.
    [76] J. D. Currey, “The effect of porosity and mineral content on the Young's modulus of elasticity of compact bone,” J Biomech, vol. 21, no. 2, pp. 131-139, 1988.
    [77] G. A. Renders, L. Mulder, L. J. van Ruijven, and T. M. van Eijden, “Porosity of human mandibular condylar bone,” J Anat, vol. 210, no. 3, pp. 239-48, Mar, 2007.
    [78] B. D. Boyan, V. L. Sylvia, Y. Liu, R. Sagun, D. L. Cochran, C. H., Lohmann, D. D. Dean, and Z. Schwartz, “Surface roughness mediates its effects on osteoblasts via protein kinase A and phospholipase A2,” Biomaterials, vol. 20, no. 23-24, pp. 2305-2310, 1999.

    無法下載圖示 全文公開日期 2024/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE