簡易檢索 / 詳目顯示

研究生: 林軒至
Syuan-Jhuh Lin
論文名稱: 以反應式離子束濺鍍沉積法成長之氧化鋅薄膜的特性分析
Growth and characterization of ZnO thin films prepared by reactive ion beam sputtering deposition
指導教授: 趙良君
Liang -Chiun Chao
口試委員: 黃鶯聲
Ying-Sheng Huang
莊敏宏
Miin-Horng Juang
李奎毅
Kuei-Yi Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 50
中文關鍵詞: 氧化鋅離子束濺鍍沉積法電場
外文關鍵詞: ZnO, ion beam sputtering deposition, electric field
相關次數: 點閱:212下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文使用反應式離子束濺鍍沉積法,在晶向(100)的矽基板上成長氧化鋅薄膜,觀察不同成長溫度、氧通量和基板偏壓對薄膜造成的影響。300℃時,有弱的近能隙發光和強的綠光缺陷發光;500℃時,有強的近能隙發光和弱的紅光缺陷發光。改變氧通量均能夠明顯改變缺陷面積對近能隙發光面積比、表面形貌和應力。成長溫度300℃和500℃時,氧通量為37.5%均有最小的缺陷面積對近能隙發光面積比,分別是5.3和1.5。基板加上+40 V、+80 V的偏壓時,能增強c軸取向的成長,使薄膜形成柱狀結構;基板加上讣40 V、讣80 V的偏壓時,有離子過度轟擊的現象,造成沉積率降低;正負偏壓均造成近能隙發光半高寬增加的現象。300℃時,鋅氧比約52:48,但成長溫度上升到500℃時會變成55:45,再加上正負40 V的偏壓則變成40:60,由此發現基板偏壓有能夠控制成份比的可能性。


    ZnO thin films have been deposited on Si(100) substrates by reactive ion beam sputtering deposition at 300 and 500牵C. The effect of growth temperature, oxygen partial flow rate and substrate bias on the properties of ZnO thin films were investigated. ZnO deposited at both temperatures were found grown along the (002) direction while the grain size increases from 10 to 25 nm as temperature increases from 300 to 500牵C. ZnO deposited at at 300牵C shows weak near-band-edge (NBE) emission and strong defect related deep level emission centered at 2.3 eV. ZnO deposited at 500牵C shows strong NBE emission and weak defect related deep level emission centered at 1.8 eV. The ratio of integrated defect related deep level emission (Idefect) to that of integrated NBE (INBE) emission is dependent on oxygen partial flow rate that a minimum is achieved with an oxygen partial flow rate of 37.5% regardless of growth temperature. The atomic percent ratio of Zn/O is 52/48 and 55/45 for ZnO deposited at 300 and 500牵C, respectively. Applying a positive or negative 40 V bias to the substrate changes Zn/O ratio from 55/45 to 40/60, indicating the possibility of controlling the stoichiometry of the film by substrate bias. However, the added bias causes an increased amount of oxygen atoms located at oxygen deficient matrixes, likely due to the bombardment of accelerated ions.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 V 表目錄 VII 第一章 緒論 1 1.1 前言與研究動機 1 1.2 氧化鋅簡介 2 1.3 氧化鋅的發光機制 2 1.3.1 紫外光發光 3 1.3.2 綠光發光 3 第二章 文獻回顧 6 2.1 離子束濺鍍沉積法(ion beam sputtering deposition, IBSD)介紹 6 2.2 影響反應式濺鍍(reactive sputtering)的不同參數 8 2.3 基板偏壓對薄膜造成的影響 11 第三章 實驗與分析 12 3.1 實驗方法與流程 12 3.2 分析儀器介紹 15 3.2.1 X-ray繞射儀(X-ray diffraction) 15 3.2.2 光激螢光光譜(Photoluminescence) 16 3.2.3 場發射掃描式電子顯微鏡(Field emission scanning electron microscopy) 17 3.2.4 X光光電子譜(X-ray photoelectron spectroscopy) 17 第四章 實驗結果與討論 19 4.1 X-ray繞射分析 19 4.1.1 300℃成長 19 4.1.2 500℃成長 21 4.2 光激螢光光譜分析 23 4.2.1 300℃成長 23 4.2.2 500℃成長 25 4.3 FE-SEM分析 27 4.3.1 300℃成長 27 4.3.2 500℃成長 30 4.4 XPS分析 36 4.4.1 300℃成長 37 4.4.2 500℃成長 38 第五章 結論與未來展望 41 參考文獻 42

    [1] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Solid State Commun., Vol. 103, No. 8, pp. 459-463, 1997.
    [2] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura and T. Yasuda, "Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films ," Appl. Phys. Lett., Vol. 78, No. 9, pp. 1237-1239, 2001.
    [3] Z. L. Wang, "Nanostructures of zinc oxide," Mater. Today, Vol. 7, No. 6, pp. 26-33, 2004.
    [4] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, "Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature," Solid State Commun., Vol. 103, pp. 459-463, 1997.
    [5] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback and H. Shen, "Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (01 2) sapphire by metalorganic chemical vapor deposition," J. Appl. Phys., Vol. 85, No. 5, pp. 2595-2602, 1999.
    [6] W. Tang and D. C. Cameron, "Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process," Thin Solid Films, Vol. 238, No. 1, pp. 83-87, 1994.
    [7] E. S. Shim, H. S. Kang, J. S. Kang, J. H. Kim and S. Y. Lee, "Effect of the variation of film thickness on the structural and optical properties of ZnO thin films deposited on sapphire substrate using PLD," Appl. Surf. Sci., Vol. 186, No. 1-4, pp. 474-476, 2002.
    [8] Y. Kashiwaba, K. Sugawara , K. Haga , H. Watanabe , B. P. Zhang and Y. Segawab, "Characteristics of c-axis oriented large grain ZnO films prepared by low-pressure MO-CVD method," Thin Solid Films, Vol. 411, No. 1, pp. 87-90, 2002.
    [9] H. Z. Wu, K. M. He, D. J. Qiu and D. M. Huang, "Low-temperature epitaxy of ZnO films on Si(001) and silica by reactive e-beam evaporation," J. Cryst. Growth, Vol. 217, No. 1, pp. 131-137, 2000.
    [10] Y. M. Lu, X. Wang, Z. Z. Zhang, D. Z. Shen, S. C. Su, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, X. W. Fan and Z. K. Tang, "Effects of low-temperature-grown ZnO buffer layer and Zn/O ratio on the properties of high-temperature-overgrown ZnO main layer on Si substrate by MBE," J. Cryst. Growth, Vol. 301-302, pp. 373-377, 2007.
    [11] T. Koyama, T. Onuma and S. F. Chichibu, "In situ spectral control of Zn species during helicon-wave-excited-plasma sputtering epitaxy of ZnO," Appl. Phys. Lett., Vol. 83, No. 14, pp. 2973-2975, 2003.
    [12] H. Y. Tsai, "Characteristics of ZnO thin film deposited by ion beam sputter," J. Mater. Process. Technol., Vol. 192-193, pp. 55-59, 2007.
    [13] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. J. Cho and H. Morkoç, "A comprehensive review of ZnO materials and devices," J. Appl. Phys. , Vol. 98, No. 041301, pp. 1-103, 2005.
    [14] F. Yakuphanoglu, Y. Caglar, S. Ilican and M. Caglar, "The effects of fluorine on the structural, surface morphology and optical properties of ZnO thin films," Physica B, Vol. 394, No. 1, pp. 86-92, 2007.
    [15] X. L. Wu, G. G. Siu, C. L. Fu and H. C. Ong, "Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films," Appl. Phys. Lett., Vol. 78, No. 16, pp. 2285-2287, 2001.
    [16] S. A. Studenikin, N. Golego and M. Cocivera, "Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis," J. Appl. Phys., Vol. 84, No. 4, pp. 2287-2294, 1998.
    [17] A. B. Djurišić, Y. H. Leung, K. H. Tam, Y. F. Hsu, L. Ding, W. K. Ge, Y. C. Zhong, K. S. Wong, W. K. Chan, H. L. Tam, K. W. Cheah, W. M. Kwok and D. L. Phillips, "Defect emissions in ZnO nanostructures," Nanotechnol., Vol. 18, No. 095702, pp. 1-8, 2007.
    [18] B. Lin, Z. Fu, Y. Jia and G. Liao, "Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions," J. Electrochem. Soc., Vol. 148, No. 3, pp. 110-113, 2001.
    [19] G. Roussos, H. J. Schulz and M. Thiede, "Luminescence and related optical properties of iron ions in II–VI compounds," J. Lumin., Vol. 31-32, pp. 409-411, 1984.
    [20] X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan and X. G. Kong, "Temperature dependence of excitonic luminescence from nanocrystalline ZnO films," J. Lumin., Vol. 99, No. 2, pp. 149-154, 2002.
    [21] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, "Mechanisms behind green photoluminescence in ZnO phosphor powders," J. Appl. Phys., Vol. 79, No. 10, pp. 7983-7990, 1996.
    [22] E. G. Bylander, "Surface effects on the low-energy cathodoluminescence of zinc oxide," J. Appl. Phys., Vol. 49, No. 3, pp. 1188-1195, 1977.
    [23] J. Chen, Z. Feng, P. Ying, M. Li, B. Han and C. Li, "The visible luminescent characteristics of ZnO supported on SiO2 powder," PCCP, Vol. 6, No. 18, pp. 4473-4479, 2004.
    [24] Chr. Weissmantel, O. Fiedler, G. Hecht and G. Reisse, "Ion beam sputtering and its application for the deposition of semiconducting films," Thin Solid Films, Vol. 13, No. 2, pp. 359-366, 1972.
    [25] S. M. Kane and K. Y. Ahn, "Characteristics of ion-beam-sputtered thin films," J. Vac. Sci. Technol., Vol. 16, No. 2, pp. 171-174, 1979.
    [26] Y. Suzuki, T. Yotsuya, K. Takiguchi, M. Yoshitake and S. Ogawa, "The effect of charged particles when preparing ZnO thin film by ion beam sputtering deposition," Appl. Surf. Sci., Vol. 33-34, pp. 1114-1119, 1988.
    [27] S. B. Krupanidhi, H. Hu and V. Kumar, "Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films," J. Appl. Phys., Vol. 71, No. 1, pp. 376-388, 1992.
    [28] C. C. Lee, J. C. Hsu, D. T. Wei and J. H. Lin, "Morphology of dual beam ion sputtered films investigated by atomic force microscopy," Thin Solid Films, Vol. 308-309, No. 1-4, pp. 74-78, 1997.
    [29] T. Tsurumi, S. Nishizawa, N. Ohashi and T. Ohgaki, "Electric properties of zinc oxide epitaxial films grown by ion-beam sputtering with oxygen-radical irradiation," Jpn. J. Appl. Phys., Vol. 38, pp. 3682-3688, 1999.
    [30] C. C. Lee, J. C. Hsu and D. H. Wong, "The characteristics of some metallic oxides prepared in high vacuum by ion beam sputtering," Appl. Surf. Sci., Vol. 171, No. 1-2, pp. 151-156, 2001.
    [31] J.P. Rivière, D. Texier, J. Delafond, M. Jaouen, E.L. Mathé and J. Chaumont, "Formation of the crystalline β-C3N4 phase by dual ion beam sputtering deposition," Mater. Lett., Vol. 61, No. 14-15, pp. 2855-2858, 2007.
    [32] S. Berg and T. Nyberg, "Fundamental understanding and modeling of reactive sputtering processes," Thin Solid Films, Vol. 476, pp. 215-230, 2005.
    [33] J. H. Lee and J. T. Song, "Dependence of the electrical and optical properties on the bias voltage for ZnO:Al films deposited by r.f. magnetron sputtering," Thin Solid Films, Vol. 516, No. 7, pp. 1377-1381, 2008.
    [34] K. C. Ruthe and S. A. Barnett, "Glancing-angle ion-assisted deposition of ZnO thin films," Surf. Sci., Vol. 538, No. 1-2, pp. 460-464, 2003.
    [35] C. H. Liu, M. Yan, X. Liu, E. Seelig and R. P. H. Chang, "Effect of electric field upon the ZnO growth on sapphire (0001) by atomic layer epitaxy method," Chem. Phys. Lett., Vol. 355, No. 1-2, pp. 43-47, 2002.
    [36] S. O. Kucheyev, J. S. Williams, C. Jagadish, J. Zou, Cheryl Evans, A. J. Nelson and A. V. Hamza, "Ion-beam-produced structural defects in ZnO," Phys. Rev. B: Condens. Matter, Vol. 67, No. 094115, pp. 941151-9411511, 2003.
    [37] V. Gupta and A. Mansingh, "Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film," J. Appl. Phys., Vol. 80, No. 2, pp. 1063-1073, 2004.
    [38] C. Li, X. C. Li, P. X. Yan, E. M. Chong, Y. Liu, G. H. Yue and X. Y. Fan, "Research on the properties of ZnO thin films deposited by using filtered cathodic arc plasma technique on glass substrate under different flow rate of O2," Appl. Surf. Sci., Vol. 253, pp. 4000-4005, 2007.
    [39] C. Hirose, Y. Matsumoto, Y. Yamamoto and H. Koinuma, "Electric field effect in pulsed laser deposition of epitaxial ZnO thin film," Appl. Phys. A, Vol. 79, No. 4-6, pp. 807-809, 2004.
    [40] N. Parkansky, G. Shalev, B. Alterkop, S. Goldsmith, R. L. Boxman, Z. Barkay, L. Glikman, H. Wulff and M. Quaas, "Growth of ZnO nanorods by air annealing of ZnO films with an applied electric field," Surf. Coat. Technol., Vol. 201, No. 6, pp. 2844-2848, 2006.
    [41] M. Gomi, N. Oohira, K. Ozaki and M. Koyano, "Photoluminescent and Structural Properties of Precipitated ZnO Fine Particles," Jpn. J. Appl. Phys., Vol. 42, pp. 481-485, 2003.
    [42] T. Tang, Y. C. Wang, W. C. Hwang, C. C. Hwang, N. C. Wu, M. P. Houng and Y. H. Wang, "Investigation of piezoelectric ZnO film deposited on diamond like carbon coated onto Si substrate under different sputtering conditions," J. Cryst. Growth, Vol. 252, No. 1-3, pp. 190-198, 2003.
    [43] R. Ghosh, D. Basak and S. Fujihara, "Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films," J. Appl. Phys., Vol. 96, No. 5, pp. 2689-2692, 2004.
    [44] Y. F. Chen, H. J. Koa, S. K. Hong, K. Inaba, Y. Segawa and T. Yao, "Plasma-assisted molecular beam epitaxy of ZnO thin films on sapphire substrates with an MgO buffer," J. Cryst. Growth, Vol. 227-228, pp. 917-922, 2004.
    [45] T. Szörényi, L.D. Laude, I. Bertóti, Z. Kántor and Zs. Geretovszky, "Excimer laser processing of indium-tin-oxide films: An optical investigation," J. Appl. Phys., Vol. 78, No. 10, pp. 6211-6219, 1995.
    [46] L. K. Rao and V. Vinni, "Novel mechanism for high speed growth of transparent and conducting tin oxide thin films by spray pyrolysis," Appl. Phys. Lett., Vol. 63, No. 5, pp. 608-610, 1993.
    [47] J. C. C. Fan and J. B. Goodenough, "X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films," J. Appl. Phys., Vol. 48, No. 8, pp. 3524-3531, 1977.
    [48] S. Major, S. Kumar, M. Bhatnagar and K. L. Chopra, "Effect of hydrogen plasma treatment on transparent conducting oxides," Appl. Phys. Lett., Vol. 49, No. 7, pp. 394-396, 1986.
    [49] Md. N. Islam, T. B. Ghosh, K. L. Chopra and H. N. Acharya, "XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films," Thin Solid Films, Vol. 280, No. 1-2, pp. 20-25, 1996.
    [50] Z. W. Liua, C. K. Ong, T. Yu and Z. X. Shen, "Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties," Appl. Phys. Lett., Vol. 88, No. 053110, pp. 1-3, 2006.

    QR CODE