簡易檢索 / 詳目顯示

研究生: 吳軍緯
Jiun-Wei Wu
論文名稱: 具表面散射結構之摻鎵氧化鋅透明導電膜的CVD合成設計
Process design of CVD of gallium-doped zinc oxide films with light-scattering surface structure
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 江志強
Jyh-Chiang Jiang
陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 66
中文關鍵詞: 透明導電接觸層摻鎵氧化鋅光學散射低壓化學氣相沉積法競爭反應
外文關鍵詞: transparent conductive layer, Ga-doped ZnO, light-scattering, LPCVD, competitive reaction
相關次數: 點閱:292下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於利用化學氣相沉積的程序變化模式,尋找在低溫下成長低電阻率且具有光學散射特性之粗糙表面氧化鋅鎵薄膜,最終目標在用來取代氧化銦錫當作為藍光發光二極體的透明導電接觸層。
    考慮鎵源先驅物-三乙基鎵不易在200℃以下裂解,我們嘗試利用遠距式電漿輔助解離鎵源氣體,再通入二乙基鋅/水之反應系統來沉積薄膜。結果顯示,以此方法在基材溫度為146℃所成長出的薄膜具有粗糙表面,且在455~475 奈米光波段的霧度最高可達20%,但是電阻率卻高達102 Ω∙cm。推測乃因為以遠距式電漿獨立供給的鎵源氣體在進入腔體前即反應而失去活性。
    另外,我們發現使用傳統的低壓化學氣相沉積法,令獨立供給的三乙基鎵和預先與水混合的二乙基鋅來進行競爭反應時,可在130℃的低溫及適當的三乙基鎵/二乙基鋅及水/二乙基鋅流量比下生成電阻率為2.61×10-3 Ω∙cm,且表面粗糙(光波段為455~475 奈米區間的霧度約為11%)的摻鎵氧化鋅薄膜。


    The aim of this study is using various CVD (chemical vapor deposition) methods to synthesize Ga-doped ZnO thin films with low electrical resistivity and textured surface for light-scattering. The final purpose is to substitute ITO applied as the material of transparent conductive layer above p-type GaN layers for GaN-based LEDs.
    Considering that triethylgallium (TEGa) is not easily to decompose under 200℃, we tried to use remote plasma-assisted dissociation of TEGa and to let it to react with DEZn/H2O-LPCVD reaction system. The synthesized films showed rough surface structures with 20% haze at around 460 nm. However, the films resistivity was relatively high (>102Ω∙cm). Another way to use traditional LPCVD but supplying TEGa separately into a reaction zone where DEZn has already met with H2O has also been tried. The result showed that a under low substrate temperature of 130℃, Ga-doped ZnO films did form with a lowest electrical resistivity value of 2.61×10-3 Ω∙cm and a haze value of 11% (near 460 nm). A possible mechanism was proposed to explain this phenomenon.

    摘要 I Abstract II 致謝 IV 目錄 V 圖索引 VI 表索引 X 第一章 緒論 1 1.1 前言 1 1.2 背景與文獻介紹 2 1.3 實驗方向 8 第二章 實驗方法與步驟 10 2.1 實驗氣體與藥品 10 2.1.1 二乙基鋅(diethylzinc, DEZn) 10 2.1.2 三乙基鎵(triethylgallium, TEGa) 10 2.1.3 去離子水(deionized water, DI water) 11 2.1.4 氬氣(argon, Ar) 11 2.1.5 玻璃(glass) 11 2.1.6 丙酮(acetone, CH3COCH3) 12 2.1.7 乙醇(ethanol, C2H5OH) 12 2.2 實驗設備與步驟 13 2.2.1 實驗設備 13 2.2.2 實驗步驟 14 2.3 分析儀器 15 2.3.1掃描式電子顯微鏡 (scanning electron microscope, SEM) 15 2.3.2霍爾量測儀 (Hall measurement) 15 2.3.3 X光繞射儀(X-ray Diffraction, XRD) 18 2.3.4 分光光度計(UV-VIS-NIR spectrophotometer) 19 2.3.5 X射線光電子能譜化學分析儀 ( X-ray photoelectron Spectrometer, XPS) 20 第三章 結果與討論 21 3.1利用遠距式電漿輔助化學氣相沉積法(remote plasma-enhanced CVD, RPECVD)成長GZO 21 3.1.1 RPECVD實驗設計理念 21 3.1.2 改變電漿功率對長膜的影響(固定原料流量比TEGa/DEZn=0.05) 22 3.1.3改變TEGa/DEZn流量比對長膜的影響(固定電漿功率為1W) 27 3.1.4 總結與檢討 29 3.2利用低壓化學氣相沉積法(low pressure CVD, LPCVD)成長GZO 31 3.2.1 利用LPCVD成長ZnO 31 3.2.2另加入鎵源供給時對ZnO-LPCVD長膜的影響:實驗變數為TEGa/DEZn流量比 33 3.2.3改變H2O/DEZn流量比對TEGa/DEZn/H2O-LPCVD薄膜成長的影響 38 3.2.4 總結 48 第四章 總結 49 參考文獻 50

    1. Kuo, C.H., et al., Nitride-based near-ultraviolet light emitting diodes with meshed p-GaN. Applied Physics Letters, 2007. 90(14).
    2. Huh, C., et al., Improved light-output and electrical performance of InGaN-based, light-emitting diode by microroughening of the p-GaN surface. Journal of Applied Physics, 2003. 93(11): p. 9383-9385.
    3. Maruska, H.P. and J.J. Tietjen, THE PREPARATION AND PROPERTIES OF VAPOR‐DEPOSITED SINGLE‐CRYSTAL‐LINE GaN. Applied Physics Letters, 1969. 15(10): p. 327-329.
    4. Pankove, J.I., et al., Electroluminescence in GaN. Journal of Luminescence, 1971. 4(1): p. 63-66.
    5. Pankove, J.I., E.A. Miller, and J.E. Berkeyheiser, GaN blue light-emitting diodes. Journal of Luminescence, 1972. 5(1): p. 84-86.
    6. Amano, H., et al., P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Japanese Journal of Applied Physics, 1989. 28(12): p. L2112-4.
    7. S. Nakamura, N.I., and M. Senoh, US patent, 1994. 5,306,662.
    8. Shuji, N., et al., High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures. Japanese Journal of Applied Physics, 1995. 34(7A): p. L797.
    9. Nakamura, S., et al., High‐power InGaN single‐quantum‐well‐structure blue and violet light‐emitting diodes. Applied Physics Letters, 1995. 67(13): p. 1868-1870.
    10. Nakamura, S., et al., Room-Temperature Continuous-Wave Operation of InGaN Multi-Quantum-Well Structure Laser Diodes. Applied Physics Letters, 1996. 69(26): p. 4056-4058.
    11. Nakamura, S., et al., Room-Temperature Continuous-Wave Operation of InGaN Multi-Quantum-Well-Structure Laser Diodes with a Long Lifetime. Applied Physics Letters, 1997. 70(7): p. 868-870.
    12. Shen, L., et al., AlGaN/AlN/GaN High-Power Microwave HEMT. IEEE Electron Device Letters, 2001. 22(10): p. 457-459.
    13. Tsao, J.Y., Solid-State Lighting: Lamps, Chips, and Materials for Tomorrow. IEEE Circuits and Devices Magazine, 2004. 20(3): p. 28-37.
    14. Jae-Hong, L., L. Kyu Hwan, and L. Dong Chan, Enhanced Performance in GaN Light Emitting Diode by Patterned ZnO Transparent Conducting Oxide. Journal of the Korean Physical Society, 2010. 57(5): p. 1229.
    15. Zhuang, D. and J.H. Edgar, Wet etching of GaN, AlN, and SiC: a review. Materials Science and Engineering: R: Reports, 2005. 48(1): p. 1-46.
    16. Fujii, T., et al., Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening. Applied Physics Letters, 2004. 84(6): p. 855-857.
    17. Lee, J.-H., et al., Improvement of luminous intensity of InGaN light emitting diodes grown on hemispherical patterned sapphire. physica status solidi (c), 2006. 3(6): p. 2169-2173.
    18. Song, J.-C., et al., Characteristics Comparison between GaN Epilayers Grown on Patterned and Unpatterned Sapphire Substrate (0 0 0 1). Journal of Crystal Growth, 2007. 308(2): p. 321-324.
    19. Kang, D.-H., et al., Characteristic Comparison of GaN Grown on Patterned Sapphire Substrates Following Growth Time. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2007. 46(Compendex): p. 2563-2566.
    20. Gao, H., et al., Enhancement of the light output power of InGaN/GaN light-emitting diodes grown on pyramidal patterned sapphire substrates in the micro- and nanoscale. Journal of Applied Physics, 2008. 103(1): p. 014314.
    21. Kim, Y.H., et al., Microstructural properties and dislocation evolution on a GaN grown on patterned sapphire substrate: A transmission electron microscopy study. Journal of Applied Physics, 2010. 107(6): p. 063501.
    22. Tao, Y.B., et al., Evolution and Control of Dislocations in GaN Grown on Cone-Patterned Sapphire Substrate by Metal Organic Vapor Phase Epitaxy. Journal of Crystal Growth, 2011. 315(1): p. 183-187.
    23. Margalith, T., et al., Indium tin oxide contacts to gallium nitride optoelectronic devices. Applied Physics Letters, 1999. 74(26): p. 3930-3932.
    24. Lin, Y.C., et al., InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts. Solid-State Electronics, 2003. 47(5): p. 849-853.
    25. Lee, C.L. and W.I. Lee, Effects of strained InGaN interlayer on contact resistance between p-GaN and indium tin oxide. Applied Physics Letters, 2007. 90(18).
    26. Chae, S.W., et al., Highly transparent and low-resistant ZnNi/indium tin oxide Ohmic contact on p-type GaN. Applied Physics Letters, 2007. 90(18).
    27. Jung, S.P., et al., High-performance GaN-based light-emitting diode using high-transparency Ni/Au/Al-doped ZnO composite contacts. Applied Physics Letters, 2005. 87(18).
    28. Jang, J.S. and T.Y. Seong, Low-resistance and thermally stable indium tin oxide Ohmic contacts on strained p-In0.15Ga0.85N/p-GaN layer. Journal of Applied Physics, 2007. 101(1).
    29. Horng, R.H., et al., Low-resistance and high-transparency Ni/indium tin oxide ohmic contacts to p-type GaN. Applied Physics Letters, 2001. 79(18): p. 2925-2927.
    30. Horng, R.H., et al., High performance of Ga-doped ZnO transparent conductive layers using MOCVD for GaN LED applications. Optics Express, 2013. 21(12): p. 14452-14457.
    31. Faÿ, S., et al., Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes. Solar Energy Materials and Solar Cells, 2005. 86(3): p. 385-397.
    32. Nam, N.G., Development of ZnO:Ga Transparent Conducting Oxide Thin Films through Metalorganic Chemical Vapor Deposition using various Zn and Ga Source Materials. National Taiwan University of Science and Technology Department of Chemical Engineering PhD Dissertation, 2013.
    33. 陳毅修, 以電漿輔助化學氣相沉積法製備表面粗糙化的摻鎵氧化鋅薄膜. 國立台灣科技大學 化學工程系 碩士學位論文, 民國103年.
    34. 施敏, 半導體元件物理與製作技術,第二版. 國立交通大學出版社,新竹市, 2002.
    35. Nicolay, S., et al., Control of CVD-deposited ZnO films properties through water/DEZ ratio: Decoupling of electrode morphology and electrical characteristics. Solar Energy Materials and Solar Cells, 2012. 105: p. 46-52.
    36. Smith, S.M. and H.B. Schlegel, Molecular orbital studies of zinc oxide chemical vapor deposition: Gas-phase hydrolysis of diethyl zinc, elimination reactions, and formation of dimers and tetramers. Chemistry of Materials, 2003. 15(1): p. 162-166.

    QR CODE