簡易檢索 / 詳目顯示

研究生: 許迪堯
Di-Yao Hsu
論文名稱: 小角光散射技術於聚乙二醇/聚(乙二醇-丙二醇)共聚物混合物相分離行為之研究
Studies on Phase Separation of Poly(ethylene glycol)/Poly(ethylene glycol-ran-propylene glycol) Mixtures by Time-Resolved Small-Angle Light Scattering
指導教授: 洪伯達
Po-Da Hong
口試委員: 蘇安仲
An-Chung Su
廖文彬
Wen-Bin Liau
何榮銘
Rong-Ming Ho
黃延吉
Yan-Jyi Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 74
中文關鍵詞: 小角光散射相分離高分子混合物相圖滲流失穩分解液滴失穩分解超快流體力學粗化動態標度消光
外文關鍵詞: small-angle light scattering, phase separation, polymer mixture, phase diagram, percolating spinodal decomposition, droplet spinodal decomposition, ultra-fast hydrodynamic coarsening, dynamic scaling, light extinction
相關次數: 點閱:401下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   對於高分子混合物相分離行為的研究,特別是對於失穩分解的探討,在過去已取得重大的成果,其中以時間分辨小角度光散射技術(TRSALS)扮演了舉足輕重的角色。有鑑於本研究室長期致力於散射技術的提升與實驗數據的解析,故以自行架設的小角度光散射儀為研究主儀器,搭配相關儀器設備,挑選適合的高分子混合物(聚乙二醇/聚(乙二醇-丙二醇)共聚物]做為研究材料,試圖釐清存在於該混合物相分離行為中的複雜性。

      本研究因涉及不同的面向,故將分為三個章節來進行討論:
      (1)高分子混合物相圖的建立:利用自行架設的濁度儀來測定「曇點(cloud point)」,並採取更細緻的方法(τ-ϕ剖面)來直接定義兩共存組成,並利用Flory-Huggins格子理論與熔點下降關係來計算混合物的液-液共存曲線、失穩曲線以及熔融曲線。同時,藉由散射實驗獲得在不同組成和溫度下特徵峰位置q_m隨時間的變化,求得成長指數α的變化,利用動力學轉變定義出滲流線(percolation line)並探討失穩分解中滲流的發生與其不對稱於相圖的原因,進而繪製出完整相圖。
      (2)臨界組成之超快速流體力學粗化:在上一章節已注意到滲流區的冪律分析給出遠高於Siggia所預測的流體力學粗化指數(α>1),且會依賴於溫度、組成與樣品厚度的變化。同時在分析其結構因子發現雙重結構的存在。由於本系統存在著表面效應,認為雙重結構實際上代表著本體相與潤濕相結構,但經初步峰分離的分析發現兩者的成長維度皆為三維成長,又似乎並非代表著本體與表面的結構。
      (3)偏臨界組成之動態標度假說的合理性:由相圖得知在失穩分解區域中,滲流區僅佔據相當窄的範圍,而剩下的部分皆為液滴失穩分解區域,不可避免地提高了液滴失穩分解的重要性。本章節主要探討用於描述滲流失穩分解的「動態標度假說」,即「結構演化存在自相似性並可由單一長度參數來標度」是否同樣適用於液滴失穩分解。然而我們的答案是否定的,其中有幾個原因,包含一個以上長度參數的存在、雙重結構的形成,以及大尺寸液滴造成散射光的消光(無規繞射問題)。最後提出替代方法來疊合結構因子,以及利用相同方法疊合成隨時間超廣角度散射曲線,希望能藉此在未來發展出完善的散射建模,對液滴失穩分解的結構進行定量分析。


      During the past decades, many remarkable results have been achieved in the phase separation of polymer mixtures, especially for the spinodal decomposition, while the small-angle light scattering (SALS) plays an important role. In view of the improvement of scattering technique and subsequent data analysis, we have enough ability to study the complex phase separation behavior of PEG/PEG-ran-PPG polymer mixtures by using time-resolved small-angle light scattering apparatus.
      In this study, since involving different area researches of phase separation, we will focus on the following topics:
      (1) Thermodynamics and phase diagram of PEG/RAN mixture: in the temperature-traced turbidity experiments, the boundary of the phase separation can be approximation by the cloud point. However, in order to avoid the artificial distortion, we prefer to use the slice of τ-ϕ profile to analyze the “coexistence points”. Then, we use the Flory-Huggins lattice theory and melting point depression to calculate the coexistence, spinodal, and melting curves, respectively. On the other hand, time-traced peak position q_m is measured by using SALS, while the corresponding growth exponent α can define the kinetic transition to get percolation line. Here, we consider the reason why the percolation line is asymmetric with the diameter, and try to obtain an accurate phase diagram.
      (2) Ultra-fast hydrodynamic coarsening in near-critical quench: we have mentioned that the growth exponent for the percolation region is higher than the hydrodynamic coarsening (α>1), which depending on the temperature, composition, and sample thickness; moreover, we also found the existence of double structures. Inasmuch as the wetting effect in our system, we consider the double structures are represented the structures of bulk and surface phases, respectively. However, the preliminary result shows that the prediction seems not to be correct, and these two structures are 3D growth.
      (3) Validity of dynamic scaling hypothesis in off-critical quench: since the percolation spinodal decomposition (PSD) region is narrower than the spinodal region, it will inevitably heighten the importance of the droplet spinodal decomposition (DSD) region. In this chapter, we consider the validity of “dynamic scaling hypothesis”, that is, the structural evolution can be scaled by a single length parameter, in the process of DSD structural evolution; however, we believe that it does not hold here. There are several reasons, such as more than one length parameters, the formation of double structures, and the extinction effect of the scattered lights by large droplets (the so-called anomalous diffraction problem). Finally, we try to propose an alternative method to reduce the structure factor of DSD structure, and also superimpose the ultra-wide q-range scattering profiles. We hope to develop an exact scattering modeling for a quantitative analysis of the DSD structure in the future.

    Abstract..................................................II Acknowledgements..................................................III Contents..................................................IV Chart Catalogues..................................................VI Principal Notation..................................................IX Chapter 1. Introduction ..................................................1 1.1. Phase Diagram and Symmetric of Order Parameter..................................................1 1.1.1. Phase Diagram..................................................1 1.1.2. Order Parameter and Critical Exponent..................................................2 1.1.3. Symmetry of Order Parameter..................................................2 1.2. Confinement and Wetting Effects on Phase Separation..................................................3 1.2.1. Wetting Transition..................................................3 1.2.2. Phase Separation in Confined Space..................................................5 1.3. Surface-directed Spinodal Decomposition..................................................7 1.4. Coarsening Mechanisms of Phase Separation..................................................9 1.5. The Purpose of This Thesis..................................................10 Chapter 2. Experimental Section..................................................11 2.1. Materials..................................................11 2.1.1. Purification of PEG..................................................11 2.1.2. Purification of RAN..................................................11 2.1.3. Sample Preparation of PEG/RAN Mixture..................................................11 2.2. Experimental Methods..................................................12 2.2.1. Ultracentrifuge..................................................12 2.2.2. Gel Permeation Chromatography (GPC)..................................................12 2.2.3. Differential Scanning Calorimetry (DSC)..................................................12 2.2.4. Turbidimetry..................................................12 2.2.5. Phase Contrast Microscope (PCM)..................................................13 2.3. Time-resolved Small Angle Light Scattering Setup..................................................15 2.3.1. Ultra-fast Cooling System..................................................15 2.3.2. Microscopy Imaging Technique..................................................15 2.3.3. Ultra-wide q-range Small Angle Light Scattering Apparatus..................................................15 2.3.4. Scattering Pattern Calibration and Data Analysis..................................................18 Chapter 3. Thermodynamics and Phase Diagram of PEG/RAN Mixture..................................................19 3.1. Coexistence Curve Measurement of PEG/RAN Mixture..................................................19 3.2. Melting Curve of PEG/RAN Mixture..................................................22 3.3. Symmetry Breaking of Order Parameter..................................................23 3.4. Morphological Transition..................................................27 Chapter 4. Ultra-fast Hydrodynamic Coarsening in Near-critical Quench..................................................31 4.1. Fast Coarsening Kinetics of Spinodal Decomposition..................................................31 4.2. Analysis of Scaled Structure Factor..................................................35 4.3. Double Growth Modes during Phase Separation..................................................38 Chapter 5. Validity of Dynamic Scaling Hypothesis in Off-critical Quench..................................................41 5.1. Structural Formation of Droplet Spinodal Decomposition..................................................41 5.2. Light Extinction Phenomenon during Droplet Growth..................................................46 5.3. Sensitivity of Time-traced Combined Scattering Profiles..................................................52 5.4. Double Structures in Late-stage Coarsening..................................................53 Chapter 6. Summary..................................................56 References..................................................58

    (1) Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: New York, 1953.
    (2) Rubinstein, M.; Colby, R. H. In Polymer Physics; Oxford University Press: New York, 2003; Chapter 4.
    (3) Hashimoto, T. In Structure and Properties of Polymers; Thomas, E. L., Ed.; Wiley-VCH: New York, 1993; Chapter 6.
    (4) Binder, K. In Phase Transformations in Materials; Kostorz, G., Ed.; Wiley-VCH: New York, 2001; Chapter 4.
    (5) Stanley, H. E. Introduction to Phase Transitions and Critical Phenomena; Oxford University Press: New York, 1971.
    (6) Nose, T. Polymer 1995, 36, 2243−2248.
    (7) Binder, K.; Fratzl, P. In Phase Transformations in Materials; Kostorz, G., Ed.; Wiley-VCH: New York, 2001; Chapter 6.
    (8) Bonn, D.; Ross, D. Rep. Prog. Phys. 2001, 64, 1085−1163.
    (9) Cahn, J. W. J. Chem. Phys. 1977, 66, 3667−3672.
    (10) Nakanishi, H.; Fisher, M. E. J. Chem. Phys. 1983, 78, 3279−3293.
    (11) Tang, H.; Szleifer, I.; Kumar, S. K. J. Chem. Phys. 1994, 100, 5367−5371.
    (12) Flebbe, T.; Dünweg, B.; Binder, K. J. Phys. II 1996, 6, 665−695.
    (13) Binder, K. Adv. Polym. Sci. 1999, 138, 1−89.
    (14) Binder, K.; Müller, M.; Albano, E. V. Phys. Chem. Chem. Phys. 2001, 3, 1160−1168.
    (15) Binder, K.; Das, S. K.; Horbach, J.; Puri, S. Eur. Phys. J. Special Topics 2007, 141, s1−s6.
    (16) Wiltziu, P.; Cumming, A. Phys. Rev. Lett. 1991, 66, 3000−3003.
    (17) Bastea, S.; Puri, S.; Lebowitz, J. L. Phys. Rev. E 2001, 63, 041513.
    (18) Jones, R. A. L.; Norton, L. J.; Kramer, J.; Bates, F. S.; Wiltzius, P. Phys. Rev. Lett. 1991, 66, 1326−1329.
    (19) Jaiswal, P. K.; Binder, K.; Puri, S. J. Chem. Phys. 2012, 137, 064704.
    (20) Puri, S.; Jaiswal, P. K.; Das, S. K. Eur. Phys. J. Special Topics 2013, 222, 961-974.
    (21) Nikolayev, V. S.; Beysens, D.; Guenoun, P. Phys. Rev. Lett. 1996, 76, 3144−3147.
    (22) Nakata, M.; Kuwahara, N.; Kaneko, M. J. Chem. Phys. 1974, 62, 4278−4283.
    (23) Kuwahara, N.; Sato, H.; Kubota, K. Phys. Rev. Lett. 1995, 75, 1534−1537.
    (24) Xia, K. Q.; An, X. Q.; Shen, W. G. J. Chem. Phys. 1996, 105, 6018−6025.
    (25) Cahn, J. W.; Hilliard, J. E. J. Chem. Phys. 1958, 28, 258−267.
    (26) Cahn, J. W.; Hilliard, J. E. J. Chem. Phys. 1959, 31, 688−699.
    (27) Lifshitz, I. M.; Slyozov, V. V. J. Phys. Chem. Solids 1961, 19, 35−50.
    (28) Binder, K.; Stauffer, D. Adv. Phys. 1976, 25, 343−396.
    (29) Siggia, E. D. Phys. Rev. A 1979, 20, 595−605.
    (30) Tanaka, H. J. Chem. Phys. 1996, 105, 10099−10114.
    (31) Hashimoto, T.; Itakura, M.; Hasegawa, H. J. Chem. Phys. 1986, 85, 6118−6128.
    (32) Hashimoto, T.; Itakura, M.; Shimidzu, N. J. Chem. Phys. 1986, 85, 6773−6786.
    (33) Bates, F. S.; Wiltzius, P. J. Chem. Phys. 1989, 91, 3258−3274.
    (34) Bailey, A. E. et al. Phys. Rev. Lett. 2007, 99, 205701.
    (35) Furukawa, H. Adv. Phys. 1985, 34, 703−750.
    (36) Furukawa, H. J. Phys. Soc. Jpn. 1989, 58, 216−221.
    (37) Takenaka, M.; Izumitani, T.; Hashimoto, T. J. Chem. Phys. 1990, 92, 4566−4575.
    (38) Chou, C. M.; Hong, P. D. Macromolecules 2003, 36, 7331−7337.
    (39) Puglielli, V. G.; Ford, N. C. Phys. Rev. Lett. 1970, 25, 143−147.
    (40) Van Krevelen, D. W.; Nijenhuis, te, K. Properties of Polymers, 4 ed.; Elsevier: New York, 2009.
    (41) Nishi, T.; Wang, T. T. Macromolecules 1975, 8, 909−915.
    (42) Li, X.; Hsu, S. L. J. Polym. Sci., Part B: Polym. Phys. 1984, 22, 1331−1342.
    (43) Zheng, S.; Huang, J.; Li, Y.; Guo, Q. J. Polym. Sci., Part B: Polym. Phys. 1997, 35, 1383−1392.
    (44) Tang, M.; Liau, W. R. Eur. Polym. J. 2000, 36, 2597−2603.
    (45) Tanaka, H. Phys. Rev. Lett. 1994, 72, 1702−1705.
    (46) Tanaka, H. J. Chem. Phys. 1995, 103, 2361−2364.
    (47) Stauffer, D.; Aharonî, A. Introduction to Percolation Theory, 2nd ed.; Taylor & Francis: London, 1992.
    (48) Zallen, R. In The Physics of Amorphous Solids; John Wiley and Sons: New York, 1983; Chapter 4.
    (49) Jayalakshmi, Y.; Khalil, B.; Beysens, D. Phys. Rev. Lett. 1992, 69, 3088−3091.
    (50) Perrot, F.; Guenoun, P.; Baumberger, T.; Beysens, D.; Garrabos, Y.; Le Neindre, B. Phys. Rev. Lett. 1994, 73, 688−691.
    (51) Binder, K. Solid State Commun. 1980, 34, 191−194.
    (52) Takeno, H.; Iwata, M.; Takenaka, M.; Hashimoto, T. Macromolecules 2000, 33, 9657−9665.
    (53) Wagner, C. Z. Electrochem. 1961, 65, 581−591.
    (54) De Gennes, P.-G.; Brochard-Wyart, F.; Quéré, D. Capillarity and Wetting Phenomena; Reisinger, A., Translator; Springer: New York, 2004.
    (55) Onuki, A. Europhys. Lett. 1994, 28, 175−179.
    (56) Puri, S. J. Phys.: Condens. Matter 2005, 17, R101−R142.
    (57) Hashimoto, T.; Jinnai, H.; Nishikawa, Y.; Koga, T.; Takenaka, M. Prog. Colloid Polym. Sci. 1997, 106, 118−126.
    (58) Safran, S. A. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes; Westview Press: New York, 2003.
    (59) Granek, R. Langmuir 1996, 12, 5022−5027.
    (60) Furukawa, H. Phys. Rev. A 1985, 31, 1103−1108.
    (61) Furukawa, H. Phys. Rev. A 1987, 36, 2288−2292.
    (62) Furukawa, H. Phys. Rev. E 2000, 61, 1423−1431.
    (63) Grant, M.; Elder, K. R. Phys. Rev. Lett. 1999, 82, 14−16.
    (64) Hobley, J.; Kajimoto, S.; Takamizawa, A.; Furukawa, H. Phys. Rev. E 2006, 73, 011502.
    (65) Perlekar, P.; Benzi, R.; Clercx, H. J. H.; Nelson, D. R.; Toschi, F. Phys. Rev. Lett. 2014, 112, 014502.
    (66) Anastasiadis, S. H.; Gancarz, I.; Koberstein, J. T. Macromolecules 1988, 21, 2980−2987.
    (67) Goldburg, W. I.; Huang, J. S. In Fluctuations, Instabilities, and Phase Transitions; Riste, T., Ed.; Plenum Press: New York, 1975; pp 87−106.
    (68) Chan, C.-K.; Goldburg, W. I. Phys. Rev. Lett. 1987, 58, 674−677.
    (69) Aarts, D. G. A. L.; Dullens, R. F. A.; Lekkerkerker, H. N. W. New J. Phys. 2005, 7, 40.
    (70) Tanaka, H. Phys. Rev. E 1996, 54, 1709−1714.
    (71) Binder, K.; Stauffer, D. Phys. Rev. Lett. 1974, 33, 1006−1009.
    (72) Binder, K. Phys. Rev. B 1977, 15, 4425−4447.
    (73) Hashimoto, T.; Takenaka, M.; Jinnai, H. J. Appl. Crystallogr. 1991, 24, 457−466.
    (74) Shi, B. Q.; Harrison, C.; Cumming, A. Phys. Rev. Lett. 1993, 70, 206−209.
    (75) Harrison, C.; Rippard, W.; Cumming, A. Phys. Rev. E. 1995, 52, 723−729.
    (76) Houessou, C.; Guenoun, P.; Gastaud, R.; Perrot, F.; Beysens, D. Phys. Rev. A 1985, 32, 1818−1833.
    (77) Hashimoto, T.; Jinnai, H.; Hasegawa, H.; Han, C. C. Physica A 1994, 204, 261−276.
    (78) Hsu, D. Y.; Chou, C. M.; Chuang, C. Y.; Hong, P. D. ACS Macro Lett. 2015, 4, 1341−1345.
    (79) Wagner, A. J.; Yeomans, J. M. Phys. Rev. Lett. 1998, 80, 1429−1432.
    (80) Tanaka, S.; Kubo, Y.; Yokoyama, Y.; Toda, A.; Taguchi, K.; Kajioka, H. J. Chem. Phys. 2011, 135, 234503.
    (81) Stein, R. S.; Rhodes, M. B. J. Appl. Phys. 1960, 31, 1873−1884.
    (82) Stein, R. S.; Wilson, P. R. J. Appl. Phys. 1962, 33, 1914−1922.
    (83) Yoon, D. Y.; Stein, R. S. J. Polym. Sci., Part B: Polym. Phys. 1974, 12, 763−784.
    (84) Koberstein, J.; Russell, T. P.; Stein, R. S. J. Polym. Sci., Part B: Polym. Phys. 1979, 17, 1719−1730.
    (85) Meeten, G. H.; Navard, P. J. Polym. Sci., Part B: Polym. Phys. 1984, 22, 2159−2163.
    (86) Champion, J. V.; Killey, A.; Meeten, G. H. J. Polym. Sci., Part B: Polym. Phys. 1985, 23, 1467−1476.
    (87) Meeten, G. H.; Navard, P. J. Polym. Sci., Part B: Polym. Phys. 1989, 27, 2023−2035.
    (88) Desborder, M.; Meeten, G. H.; Navard, P. J. Polym. Sci., Part B: Polym. Phys. 1989, 27, 2037−2043.
    (89) Mishchenko, M. I.; Travis, L. D.; Lacis, A. A. Scattering, Absorption, and Emission of Light by Small Particles; Cambridge University Press:  Cambridge, 2002.
    (90) Beake, L.; Thiousdelet, P.; Keates, P.; Navard, P. Polymer 1997, 38, 5283−5287.
    (91) Sugiyama, T.; Sato, O.; Kang, S.; Tokita, M.; Watanabe, J. Soft Matter 2011, 7, 6998−7002.
    (92) Koyama, T.; Tanaka, H. J. Chem. Phys. 2012, 136, 064509.
    (93) Shimizu, R.; Kobayashi, M.; Tanaka, H. Phys. Rev. Lett. 2014, 112, 125702.
    (94) Svoboda, P.; Svobodova, D.; Chiba, T.; Inoue, T. Eur. Polym. J. 2008, 44, 329−341.
    (95) Lee, J. S.; Prabu, A. A.; Kim, K. J. Macromolecules 2009, 42, 5660−5669.
    (96) Matsuo, M.; Tanaka, T.; Ma, L. Polymer 2002, 43, 5299−5309.
    (97) Chou, C. M.; Hong, P. D. Macromolecules 2004, 37, 5596−5606.
    (98) Chou, C. M.; Hong, P. D. Macromolecules 2008, 41, 6147−6153.
    (99) Chou, C. M.; Hong, P. D. Macromolecules 2008, 41, 6540−6545.
    (100) Van de Hulst, H. C. In Light Scattering by Small Particles; John Wiley & Sons: New York, 1957; Chapter 11.
    (101) Meeten, G. H. Opt. Acta 1982, 29, 759−770.

    QR CODE