簡易檢索 / 詳目顯示

研究生: 林煒哲
Wei-Che Lin
論文名稱: 奈米粒子對聚乙二醇/聚(乙二醇-丙二醇)共聚合物混合物失穩分解動力學之影響
Effect of Nanoparticles on Spinodal Decomposition Dynamics of Poly(ethylene glycol)/Poly(ethylene glycol-ran-propylene glycol) Blends
指導教授: 洪伯達
Po-Da Hong
口試委員: 戴子安
Chi-An Dai
白孟宜
Meng-Yi Bai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 63
中文關鍵詞: 失穩分解小角度可見光散射
外文關鍵詞: Spinodal Decomposition, Small Angle Light Scattering
相關次數: 點閱:277下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 失穩分解相分離所形成的雙連續結構在應用上有非常大的潛力,過去的研究中,在理論與實驗方面我們已經對此相分離過程有非常深入的了解,然而並沒有一個有效的方法能穩定雙連續結構,更遑論將此結構應用到材料設計中。

    在二元相分離系統中引入第三相成分,例如:奈米粒子、奈米碳管、石墨烯等添加劑在近年來被認為能夠減緩,甚至停止相分離結構的粗化,其中最受矚目的系統為「雙連續界面堵塞乳膠凝膠(Bicontinuous interfacially jammed emulsion gels, Bijels)」。此外,添加劑也被使用在許多高分子複合材料中,雖然與 Bijels 不同的地方在於添加劑並不限定在界面上聚集,但對添加劑造成的效應之研究不僅能幫助我們理解和控制複合材料的性質,更能反過來加深我們對相分離機制的了解。

    在此研究中,我們嘗試在聚乙二醇/聚乙二醇-丙二醇共聚合物混合物(Poly(ethylene glycol)/Poly(ethylene glycol-ran-propylene glycol), PEG/RAN)中加入自行合成的二氧化矽奈米粒子,並以自行架設的小角度可見光散射(Small Angle Light Scattering, SALS)研究相分離動力學在加入奈米粒子前後的影響。我們的研究結果發現,加入奈米粒子後,在不同相分離溫度出現不同的動力學機制,並在相對低溫的條件觀察到結構演化停止的現象。


    The bicontinuous structure developed from spinodal decomposition (SD) has great application potential such as battery materials, biomedical tissue engineering and composite plastic materials. As a consequence, SD in polymer binary blends has been highly interested and thoroughly researched for decades. However, so far there is no any efficient way to stabilize such bicontinuous structure in polymer blends and the addition of the third phase, such as surfactants or nanoparticles which are amphiphilic to the two phases, seems to be an answer.

    In this study, silica nanoparticles (SiNPs) synthesized by ourselves were added into Poly(ethylene glycol)/ Poly(ethylene glycol-ran-propylene glycol) binary phase-separating system (PEG/RAN). The difference in structural evolution and kinetic behavior of PEG/RAN and PEG/RAN/SiNPs were observed by phase contrast microscope (PCM) and time-resolved small angel light scattering (SALS). The growth exponent of the bicontinuous structure can be determined by SALS, allowing us to distinguish the effect of SiNPs.

    Abstract 1 Contents 4 Chart Catalogues 6 Principal Notations 9 Chapter 1. Introduction 11 1.1 Thermodynamics of Mixing in Polymer Blends 11 1.1.1 Flory-Huggins Mean-field Theory 11 1.1.2 Phase Diagram of Polymer Binary System 12 1.1.3 Critical Condition 13 1.2 Order Parameter and Critical Exponent 15 1.2.1 Order Parameter 15 1.2.2 Theoretical Model and Critical Exponent 16 1.3 Cahn-Hilliard Theory and the Late-stage Coarsening 16 1.4 Adding Nanoparticles into Binary Mixtures 19 1.4.1 Nanoparticles on the Interface 20 1.4.2 Nanoparticles in Phase Domain 21 1.5 The Purpose of This Thesis 21 Chapter 2. Experimental Section 22 2.1 Materials 22 2.1.1 Purification of Poly(ethylene glycol) 22 2.1.2 Purification of Poly(ethylene glycol-ran-propylene glycol) 22 2.1.3 Synthesizing Silica Nanoparticles 23 2.1.4 Sample Preparation 24 2.2 Experimental Methods 25 2.2.1 Advanced Polymer Chromatography System (APC) 25 2.2.2 Thermogravimetric Analyzer (TGA) 25 2.2.3 Zetasizer 25 2.2.4 Transmission Electron Microscope (TEM) 26 2.2.5 Solid-State Nuclear Magnetic Resonance (ssNMR) 26 2.2.6 Turbidimeter 26 2.2.7 Differential Scanning Calorimetry (DSC) 27 2.2.8 Phase Contrast Microscope (PCM) 27 2.3 Time-Resolved Small Angle Light Scattering 28 2.3.1 Apparatus Setup 28 2.3.2 Data Analysis 30 2.3.3 Calibration of the Scattering Vector 31 2.4 Fast Cooling System 33 2.4.1 Fast-Cooling Method 33 2.4.2 Temperature Calibration 33 Chapter 3. Results and Discussion 36 3.1 Phase Diagram of PEG/RAN Blends 36 3.1.1 Turbidimetry 36 3.1.2 Establishing Phase Diagram 39 3.2 Characterization of Silica Nanoparticles 42 3.2.1 Particle Size Analysis 42 3.2.2 Qualitative Determination of SiNPs Surface 43 3.2.3 Affinity of SiNPs for PEG and RAN 45 3.3 Morphological Observation of PEG/RAN and PEG/RAN/SiNPs 46 3.4 Phase Separation Dynamics of PEG/RAN and PEG/RAN/SiNPs 49 3.4.1 Late-Stage Scaling of PEG/RAN and PEG/RAN/SiNPS 49 3.4.2 Validity of Dynamical Scaling Hypothesis 55 Chapter 4. Summary 58 References 59

    1. Flory, P. J. Principles of Polymer Chemistry; Cornell University, Press: New York, 1953.
    2. Rubinstein, M.; Colby, R. H. Polymer Physics; Oxford University Press: New York, 2003.
    3. Strobl, G. R. The Physics of Polymers; Springer Verlag: Berlin, 2007.
    4. Strobl, G. R., Bendler, J. T., Kambour, R. P., and Shultz, A. R., Macromolecules, 1986, 19, 2683-2689.
    5. Balsara, N. P., Physical Properties of Polymers Handbook; Mark, J. E., Ed.; AIP Press, 1996.
    6. Thomson, J. A., Schurtenberger, P., Thurston, G. M., and Benedek, G. B., Proceedings of the National Academy of Sciences, 1987, 84, 7079-7083.
    7. Binder, K., Phase Transformations in Materials; Kostorz, G., Ed.; Wiley-VCH: New York, 2001.
    8. Blundell, S., Magnetism in Condensed Matter; Oxford University Press: New York, 2001.
    9. Cahn, J. W., and Hilliard, J. E., The Journal of chemical physics, 1958, 28, 258-267.
    10. Cahn, J. W., On Spinodal Decomposition and The 1967 Institute of Metals Lecture, Spinodal Decomposition, In The Selected Works of John W. Cahn (eds W.C. Carter and W.C. Johnson), 1998.
    11. Hashimoto, T., Itakura, M., and Hasegawa, H., The Journal of chemical physics, 1986, 85, 6118-6128.
    12. Hashimoto, T., Itakura, M., & Shimidzu, N., The Journal of chemical physics, 1986, 85, 6773-6786.
    13. Binks, B. P., Colloidal Particles at Liquid Interfaces, Cambridge University Press: Cambridge, 2006.
    14. Ramsden, W., Proc. R. Soc. Lond., 1904, 72, 156–164
    15. Pickering, S. U., J. Chem. Soc., 1907, 91, 2001-2021
    16. Herzig, E., White, K., Schofield, A., Poon, W. C. K., Clegg, P. S., Nature Mater., 2007, 6, 966–971.
    17. Cates, M. E., Clegg, P. S., Soft Matter, 2008, 4, 2132-2138.
    18. Vermant, J., Cioccolo, G., Golapan Nair, K., Moldenaers, P., Rheol. Acta., 2004, 43, 529–538.
    19. Bai, L., Fruehwirth, J. W., Cheng, X., and Macosko, C. W., Soft Matter, 2015, 11, 5282-5293
    20. Chung, H. J., Ohno, K., Fukuda, T., and Composto, R. J., Nano Letters, 2005, 5, 1878-1882
    21. Chung, H. J., Ohno, K., Fukuda, T., and Composto, R. J., Macromolecules, 2007, 40, 384-388.
    22. Gam, S., Corlu, A., Chung, H. J., Ohno, K., Hore, M. J., Composto, R. J., Soft Matter, 2011, 7, 7262-7268.
    23. Chung, H. J., Kim, J., Ohno, K., Composto, R. J., ACS Macro Letters, 2012, 1, 252-256.
    24. H.-J. Chung, A. Taubert, R. D. Deshmukh1 and R. J. Composto
    25. Chung, H. J., Taubert, A., Deshmukh, R. D., and Composto, R. J., Europhysics Letters, 2004, 68, 219.
    26. Ginzburg, V. V., Macromolecules, 2005, 38, 2362-2367.
    27. Zhang, R., Lee, B., Bockstaller, M. R., Kumar, S. K., Stafford, C. M., Douglas, J. F., Raghavan, D., and Karim, A., Macromolecules, 2016, 49, 3965-3974.
    28. Stöber, W., Fink, A., Bohn, E., J. Colloid Interface Sci., 1968, 26, 62-69.
    29. Belton, D.J., Deschaume, O. and Perry, C.C., The FEBS Journal, 2012, 279, 1710-1720.
    30. Kistler, S. S., J. Phys. Chem., 1932, 36, 52–64.
    31. Nose, T., Polymer, 1995, 36, 2243-2248.
    32. To, K., Phys. Rev. E, 2001, 63, 026108.
    33. van Krevelen, D. W., Nijenhuis, te, K., Properties of Polymers, 4th ed., Elsevier, 2009.
    34. Imhof, A., Megens, M., Engelberts, J. J., de Lang, D. T. N., Sprik, R., and Vos, W. L., J. Phys. Chem. B, 1999, 103, 1408–1415.
    35. Reeves, M., Brown, A. T., Schofield, A. B., Cates, M. E., and Thijssen, J. H. J., Phys. Rev. E, 2015, 92, 032308.
    36. Bergna, H. E., The Colloid Chemistry of Silica, ACS, 1994.
    37. Niu, S., Yan, H., Chen, Z., Du, Y., Huang, W., Baiab, L., and Lv, Q., RSC Adv., 2016, 6, 106742-106753.
    38. Liu, C. C., and Maciel, G. E., J. Am. Chem. Soc., 1996, 118, 21, 5103–5119.
    39. Haukka, S., and Root, A., J. Phys. Chem., 1994, 98, 1695–1703.
    40. Hsu, D. Y., Chou, C. M., Chuang, C. Y., and Hong, P. D., ACS Macro Lett., 2015, 4, 1341–1345.
    41. Nakanishi, H., Fisher, M. E., J. Chem. Phys., 1983, 78, 3279.
    42. Lifshitz, I. M., and Slyozov, V. V., Journal of Physics and Chemistry of Solids, 1961, 19, 35-50.
    43. Wagner, C., Zeitschrift für Elektrochemie, 1961, 65, 581-591.
    44. Binder, K., and Stauffer, D., Phys. Rev. Lett., 1974, 33, 1006.
    45. Siggia, E. D., Phys. Rev. A, 1979, 20, 595.
    46. Chan, C. K., Goldburg, W. I., Phys. Rev. Lett., 1987, 58, 674.
    47. Tanaka, H., Phys. Rev. E, 1996, 54, 1709.
    48. Bates, F. S., Wiltzius, P., J. Chem. Phys., 1989, 91, 3258.
    49. Porod, G., Kolloid Zeit., 1951, 124, 83
    50. Yeung, C., Phys. Rev. Lett., 1988, 61, 1135.
    51. Ohta, T., Nozaki, H., preprint.

    無法下載圖示 全文公開日期 2025/02/07 (校內網路)
    全文公開日期 2025/02/07 (校外網路)
    全文公開日期 2025/02/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE